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Abstract. Quantitative criminology focuses on straightforward causal questions that are ideally

addressed with randomized experiments. In practice, however, traditional randomized trials are difficult

to implement in the untidy world of criminal justice. Even when randomized trials are implemented, not

everyone is treated as intended and some control subjects may obtain experimental services. Treatments

may also be more complicated than a simple yes/no coding can capture. This paper argues that the

instrumental variables methods (IV) used by economists to solve omitted variables bias problems in

observational studies also solve the major statistical problems that arise in imperfect criminological

experiments. In general, IV methods estimate causal effects on subjects who comply with a randomly

assigned treatment. The use of IV in criminology is illustrated through a re-analysis of the Minneapolis

domestic violence experiment. The results point to substantial selection bias in estimates using treatment

delivered as the causal variable, and IV estimation generates deterrent effects of arrest that are about

one-third larger than the corresponding intention-to-treat effects.
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Background

I’m not a criminologist, but I`ve long admired criminology from afar. As an

applied economist who puts the task of convincingly answering causal questions at

the top of my agenda, I’ve been impressed with the no-nonsense outcome-oriented

approach taken by many quantitative criminologists. Does capital punishment

deter? Do drug courts reduce recidivism? Does arrest for domestic assault reduce

the likelihood of a repeat offense? These are the sort of straightforward and

practical causal questions that I can imagine studying myself.

I also appreciate the focus on credible research designs reflected in much of the

criminological research agenda. Especially noteworthy is the fact that, in marked

contrast with an unfortunate trend in education research, criminologists do not

appear to have been afflicted with what social scientist Tom Cook (2001) calls

Fsciencephobia._ This is a tendency to eschew rigorous quantitative research de-

signs in favor of a softer approach that emphasizes process over outcomes. In fact,

of the disciplines tracked in a survey of social science research methods by Boruch

et al. (2002), Criminology is the only one to show a marked increase in the use of

randomized trials since the mid-sixties.
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The use of randomized trials in criminology has continued to grow and, by now,

criminological experiments have been used to study interventions in policing,

prevention, corrections, and courtrooms (Farrington and Welsh 2005). Randomized

trials are increasingly seen as the gold standard for scientific evidence in the

crime field, as they are in medicine (Weisburd et al. 2001). At the same time, a

number of considerations appear to limit the applicability of randomized research

designs to criminology.

A major concern in the criminological literature is the possibility of a failed

research design (see, e.g., Farrington 1983; Rezmovic et al. 1981; Gartin 1995).

Gartin (1995) notes that two sorts of design failure seem especially likely. The

first, treatment dilution, is when subjects or units assigned to the treatment group

do not get treated. The second, treatment migration, is when subjects or units in the

control group nevertheless obtain the experimental treatment. These scenarios are

indeed potential threats to the validity of a randomized trial. For one thing, with

non-random crossovers, the group that ends up receiving treatment may no longer

be comparable to the remaining pool of untreated controls. In addition, if intended

treatment is only an imperfect proxy for treatment received, it seems clear that an

analysis based on the original intention-to-treat probably understates the causal

effect of treatment per se. Not unique to criminology, these problems arise when

neither subjects nor those delivering treatment can be blinded and, must, in any

case, be given some discretion as to program participation for both practical and

ethical reasons.1

The purpose of this paper is to show how the instrumental variables (IV) meth-

ods widely used in Economics solve both the treatment dilution and treatment

migration problems. As a by-product, the IV framework also opens up the pos-

sibility of a wide range of flexible experimental research designs. These designs are

unlikely to raise the sort of ethical questions that are seen as limiting the appli-

cability of traditional experimental designs in crime and justice (see e.g., Weisburd

2003, for a discussion). Finally, the logic of IV suggests a number of promising

quasi-experimental research designs that may provide a reasonably credible (and

inexpensive) substitute for an investigator’s own random assignment.2

Motivation: the Minneapolis domestic violence experiment

Treatment migration and treatment dilution are features of one of the most in-

fluential randomized trials in criminological research, the Minneapolis domestic

violence experiment (MDVE), discussed in Sherman and Berk (1984) and Berk

and Sherman (1988). The MDVE was motivated by debate over the importance of

deterrence effects in the police response to domestic violence. Police are often

reluctant to make arrests for domestic violence unless the victim demands an arrest

or the suspect does something that warrants arrest (beside the assault itself). As

noted by Berk and Sherman (1988), this attitude has many sources: a general

reluctance to intervene in family disputes, the fact that domestic violence cases

may not be prosecuted, genuine uncertainty as to what the best course of action is,
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and an incorrect perception that domestic assault cases are especially dangerous for

arresting officers.

In response to a politically charged policy debate as to the wisdom of making

arrests in response to domestic violence, the MDVE was conceived as a social

experiment that might provide a resolution. The research design incorporated three

treatments: arrest, ordering the offender off the premises for 8 hours, and some form

of advice that might include mediation. The research design called for one of these

three treatments to be randomly selected each time participating Minneapolis po-

lice officers encountered a situation meeting the experimental criteria (some kind of

apparent misdemeanor domestic assault where there was probable cause to believe

that a cohabitant or spouse had committed an assault against the other party in the past

4 hours). Cases of life-threatening or severe injury, i.e., felony assault, were

excluded. Both suspect and victim had to be present upon the intervening officers`
arrival.

The randomization device was a pad of report forms that were randomly color-

coded for each of the three possible responses. Officers who encountered a situ-

ation that met the experimental criteria were to act according to the color of the

form on top of the pad. The police officers who participated in the experiment had

volunteered to take part, and were therefore expected to comply with the research

design. On the other hand, strict adherence to the randomization protocol was

understood by the experimenters to be both unrealistic and inappropriate.

In practice, officers often deviated from the responses called for by the color of

the report form drawn at the time of an incident. In some cases, suspects were

arrested when random assignment called for separation or advice. Most arrests in

these cases came about when a suspect attempted to assault an officer, a victim

persistently demanded an arrest, or if both parties were injured. In one case where

random assignment called for arrest, officers separated instead. In a few cases,

advice was swapped for separation and vice versa. Although most deviations from

the intended treatment reflected purposeful action on the part of the officers in-

volved, sometimes deviations arose when officers simply forgot to bring their

report forms.

As noted above, non-compliance with random assignment is not unique to the

MDVE or criminological research. Any experimental intervention where ethical or

practical considerations lead to a deviation from the original research protocol is

likely to have this feature. It seems fair to say that non-compliance is usually

unavoidable in research using human subjects. Gartin (1995) discusses a number of

criminological examples with compliance problems, and non-compliance has long

been recognized as a feature of randomized medical trials (see e.g., Efron and

Feldman 1991).

In the MDVE, the most common deviation from random assignment was the

failure to separate or advise when random assignment called for this. This can be

seen in Table 1, taken from Sherman and Berk (1984), which reports a cross-

tabulation of treatment assigned and treatment delivered. Of the 92 suspects

randomly assigned to be arrested, 91 were arrested. In contrast, of the 108 suspects

randomly assigned to receive advice, 19 were arrested and five were separated. The
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compliance rate with the advice treatment was 78%. Likewise, of the 114 suspects

randomly assigned to be separated 26 were arrested and five were advised. The

compliance rate with the separation treatment was 73%.

Importantly, the random assignment of intended treatments in the MDVE does

not appear to have been subverted (Berk and Sherman 1988). At the same time, it

is clear that delivered treatments had a substantial behavioral component. The

variable Ftreatment delivered_ is, in the language of econometrics, endogenous. In

other words, delivered treatments were determined in part by unobserved features

of the situation that were very likely correlated with outcome variables such as re-

offense. For example, some of the suspects who were arrested in spite of having

been randomly assigned to receive advice or be separated were especially violent.

An analysis that contrasts outcomes according to the treatment delivered is there-

fore likely to be misleading, generating an over-estimate of the power of advice or

separation to deter violence. I show below that this is indeed the case.3

A simple, commonly used approach to the analysis of randomized clinical trials

with imperfect compliance is to compare subjects according to original random

assignment, ignoring compliance entirely. This is known as an intention-to-treat

(ITT) analysis. Because ITT comparisons use only the original random assignment,

and ignore information on treatments actually delivered, they indeed provide

unbiased estimates of the causal effect of researchers’ intention to treat. This is

valuable information which undoubtedly should be reported in any randomized

trial. The ITT effect predicts the effects of an intervention in circumstances where

compliance rates are expected to be similar to those observed in the study used to

estimate the ITT effect. At the same time, ITT estimates are almost always too

small relative to the effect of treatment itself. It is the latter that tells us the

Ftheoretical effectiveness_ of an intervention, i.e., what happens to those who were

actually exposed to treatment.

An easy way to see why ITT is typically too small is to consider the ITT effect

generated by an experiment where the likelihood of treatment turns out to be the

same in both the intended-treatment and intended-control groups. In this case, there

is essentially Fno experiment,_ i.e., the treatment-intended group gets treated, on

average, just like the control group. The resulting ITT effect is therefore zero, even

Table 1. Assigned and delivered treatments in spousal assault cases.

Assigned treatment

Delivered treatment

TotalArrest

Coddled

Advise Separate

Arrest 98.9 (91) 0.0 (0) 1.1 (1) 29.3 (92)

Advise 17.6 (19) 77.8 (84) 4.6 (5) 34.4 (108)

Separate 22.8 (26) 4.4 (5) 72.8 (83) 36.3 (114)

Total 43.4 (136) 28.3 (89) 28.3 (89) 100.0 (314)

The table shows statistics from Sherman and Berk (1984), Table 1.

JOSHUA D. ANGRIST26



though the causal effect of treatment on individuals may be positive or negative.

More generally, the ITT effect is, except under very unusual circumstances, diluted

by non-compliance. This dilution diminishes as compliance rates go up. Thus, an

ITT effect provides a poor predictor of the average causal effect of similar

interventions in the future, should future compliance rates substantially differ. For

example, if compliance rates substantially go up because the intervention of

interest has been shown to be effective (as, for example, arresting domestic abusers

was shown to be in the MDVE), the ITT from an earlier randomized trial will be

misleading.

Before turning to a detailed discussion of the manner in which IV solves the

compliance problem, I’ll briefly describe an alternative approach that was once

favored in economics but has now largely been supplanted by simpler methods.

This approach attempts to model the compliance (or treatment) decision directly,

and then to integrate the compliance model into the analysis of experimental data.

For example, we might assume compliance is determined by a comparison of latent

(i.e., unobserved) costs and benefits, and try to explicitly model the relationship

between these unobserved variables and potential outcomes, usually using a

combination of functional form and distributional assumptions such as the joint

Normality. Berk et al. (1988) tried such a strategy in their analysis of the MDVE.

In practice, however, this Fstructural modeling_ approach requires strong

assumptions, which are likely to be unattractive in the study of treatment effects

(Angrist 2001). One way to see this, is to note that if compliance problems could

be solved simply by econometric modeling, then we wouldn`t need random

assignment in the first place. Luckily, however, elaborate latent-variable models of

the compliance process are unnecessary.

The instrumental-variables framework

The simplest and most robust solution to the treatment-dilution and treatment-

migration problems is instrumental variables. This can be seen most easily using a

conceptual framework that postulates a set of potential outcomes that could be

observed in alternative states of the world. Originally introduced by statisticians

Fisher and Neyman in the 1920s as a way to discuss treatment effects in ran-

domized agricultural experiments, the potential-outcomes framework has become

the conceptual workhouse for non-experimental as well as experimental studies in

medicine and social science (see Holland 1986, for a survey and Rubin 1974, 1977,

for influential contributions). The intellectual history of instrumental variables

begins with an unrelated effort by the father and son team of geneticists Phillip and

Sewall Wright to solve the problem of statistical inference for a system of

simultaneous equations. The Wrights’ work can also be understood as an attempt

to describe potential outcomes, though this link was not made explicit until much

later. See Angrist and Krueger (2001) for an introduction to this fascinating story.

In an agricultural experiment, the potential outcomes notion is reasonably

straightforward. Potential outcomes in this context describe what a particular plot
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of land would yield under applications of alternative fertilizers. Although we only

get to see the plot fertilized in one particular way at a one particular time, we can

imagine what the plot would have yielded had it been treated otherwise. In social

science, potential outcomes usually require a bit more imagination. To link the

abstract discussion of potential outcomes to the MDVE example, I’ll start with an

interpretation of the MDVE as randomly assigning and delivering a single alter-

native to arrest, instead of two, as actually occurred. Because the policy discussion

in the domestic assault context focuses primarily on the decision to arrest and

possible alternatives, I define a binary (dummy) treatment variable for not arrest-

ing, which I’ll call coddling. A suspect was randomly assigned to be coddled if the

officer on the scene was instructed by the random assignment protocol (i.e., the

color-coded report forms) to advise or separate. A subject received the coddling

treatment if the treatment delivered was advice or separation. Later, I’ll outline an

IV setup for the MDVE that allows for multiple treatments.

The most important outcome variable in the MDVE was recidivism, i.e., the

occurrence of post-treatment domestic assault by the same suspect. Let Yi denote

the observed re-offense status of suspect i. The potential outcomes in the binary-

treatment version of MDVE are the re-offense status of suspect i if he were cod-

dled, denoted Y1i, and the re-offense status of suspect i if he were not coddled,

denoted Y0i. Both of these potential outcomes are assumed to be well-defined for

each suspect even though only one is ever observed. Let Di denote the treatment

delivered to subject i. Then we can write the observed recidivism outcome as

Yi ¼ Y0i 1jDið Þ þ Y1iDi:

In words, this means we get to see the Y1i for any subject who was coddled, but we

don’t know whether he would have re-offended if he had been arrested. Likewise,

we get to see Y0i for any subject who was arrested, but we don’t know whether he

would have re-offended had he been coddled.

A natural place to start any empirical analysis is by comparing outcomes on the

basis of treatment delivered. Because of the non-random nature of treatment

delivery, however, such naive comparisons are likely to be misleading. This can be

seen formally by writing

E YijDi ¼ 1½ �jE YijDi ¼ 0½ � ¼E Y1ijDi ¼ 1½ �jE Y0ijDi ¼ 0½ �

¼ E Y1ijY0ijDi ¼ 1½ � þ E Y0ijDi ¼ 1½ �jE Y0ijDi ¼ 0½ �f g:

The first term in this decomposition is the average causal effect of treatment on the

treated (ATET), a parameter of primary interest in evaluation research. ATET tells

us the difference between average outcomes for the treated, E[Y1i | Di = 1], and

what would have happened to treated subjects if they had not been treated, E[Y0i|Di

= 1]. The second term is the selection bias induced by the fact that treatment

delivered was not randomly assigned. In the MDVE, those coddled were probably

less likely to re-offend even in the absence of treatment. Hence, E[Y0i | Di = 1] j

E[Y0i | Di = 0], is probably negative.
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Selection bias disappears when delivered treatment is determined in a manner

independent of potential outcomes, as in a randomized trial with perfect com-

pliance. We then have

E YijDi ¼ 1½ �jE YijDi ¼ 0½ � ¼ E Y1ijY0ijDi ¼ 1½ � ¼ E Y1ijY0i½ �:

With perfect compliance, the simple treatment-control comparison recovers ATET.

Moreover, because {Y1i,Y0i} is assumed to be independent of Di in this case, ATET

is also the population average treatment effect, E[Y1i j Y0i].

The most important consequence of non-compliance is the likelihood of a

relation between potential outcomes and delivered treatments. This relation con-

founds analyses based on delivered treatments because of selection bias. But we

have an ace in the hole: the compliance problem does not compromise the

independence of potential outcomes and randomly assigned intended treatments.

The IV framework provides a set of simple strategies to convert comparisons using

intended random assignment, i.e., ITT effects, into consistent estimates of the causal

effect of treatments delivered.

The easiest way to see how IV solves the compliance problem is in the context

of a model with constant treatment effects, i.e., Y1i j Y0i = !, for some constant, !.

Also, let Y0i = " + "i, where " = E[Y0i]. The potential outcomes model can now

be written

Yi ¼ "þ !Di þ "i; ð1Þ

where ! is the treatment effect of interest. Note that because Di is a dummy

variable, the regression of Yi on Di is just the difference in mean outcomes by

delivered treatment status. As noted above, this difference does not consistently

estimate ! because Y0i and Di are not independent (equivalently, "i and Di are

correlated).

The random assignment of intended treatment status, which I"ll call Zi, provides

the key to untangling causal effects in the face of treatment dilution and migration.

By virtue of random assignment, and the assumption that assigned treatments have

no direct effect on potential outcomes other than through delivered treatments, Y0i

and Zi are independent. It therefore follows that

E "ijZi½ � ¼ 0; ð2Þ

though "i is not similarly independent of Di. Taking conditional expectations of

Equation (1) with Zi switched off and on, we obtain a simple formula for the

treatment effect of interest:

E Y ijZi ¼ 1
� �

� E Y ijZi ¼ 0
� �� ��

E DijZi ¼ 1
� �

� E DijZi ¼ 0
� �� �

¼ !:

ð3Þ

IV METHODS IN EXPERIMENTAL CRIMINOLOGICAL RESEARCH 29



Thus, the causal effect of delivered treatments is given by the causal effect of

assigned treatments (the ITT effect) divided by E[Di | Zi = 1]jE[Di | Zi = 0].

Note that in experiments where there is complete compliance in the comparison

group (i.e., no controls get treated), Formula (3) is just the ITT effect divided by

the compliance rate in the originally assigned treatment group. More generally, the

denominator in Equation (3) is the difference in compliance rates by assignment

status. In the MDVE, E[Di | Zi = 1] = P[Di = 1 | Zi = 1] = .77, that is, a little over

three-fourths of those assigned to be coddled were coddled. On the other hand,

almost no one assigned to be arrested was coddled:

E DijZi ¼ 0½ � ¼ P½Di ¼ 1jZi ¼ 0� ¼ :01:

Hence, the denominator of Equation (3) is estimated to be about .76. The sample

analog of Formula (3) is called a Wald estimator, since this formula first appeared

in a paper by Wald (1940) on errors-in-variables problems. The law of large

numbers, which says that sample means converge in probability to population

means, ensures that the Wald estimator of ! is consistent (i.e., converges in

probability to !).4

The constant-effects assumption is clearly unrealistic. We`d like to allow for the

fact that some men change their behavior in response to coddling, while others are

affected little or not at all. There is also important heterogeneity in treatment de-

livery. Some suspects would have been coddled with or without the experimental

manipulation, while others were coddled only because the police were instructed to

treat them this way. The MDVE is informative about causal effects only on this

latter group.

Imbens and Angrist (1994) showed that in a world of heterogeneous treatment

effects, IV methods capture the average causal effect of delivered treatments on the

subset of treated men whose delivered treatment status can be changed by the

random assignment of intended treatment status. The men in this group are called

compliers, a term introduced in the IV context by Angrist et al. (1996). In a

randomized drug trial, for example, compliers are those who Ftake their medicine_
when randomly assigned to do so, but not otherwise. In the MDVE, compliers were

coddled when randomly assigned to be coddled but would not have been coddled

otherwise.

The average causal effect for compliers is called a local average treatment effect

(LATE). A formal description of LATE requires one more bit of notation. Define

potential treatment assignments, D0i and D1i, to be individual i`s treatment status

when Zi equals 0 or 1. Note that one of D0i or D1i is necessarily counterfactual

since observed treatment status is

Di ¼ D0i þ Zi D1ijD0ið Þ: ð4Þ

In this setup, the key assumptions supporting causal inference are: (1) conditional

independence, i.e., that the joint distribution of {Y1i, Y0i, D1i, D0i} is independent of

Zi; and, (2) monotonicity, which requires that either D1i Q D0i for all i or vice versa.
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Assume without loss of generality that monotonicity holds with D1i Q D0i.

Monotonicity requires that, while the instrument might have no effect on some

individuals, all of those affected are affected in the same way. Monotonicity in the

MDVE amounts to assuming that random assignment to be coddled can only make

coddling more likely, an assumption that seems plausible. Given these two iden-

tifying assumptions, the Wald estimator consistently estimates LATE, which is

written formally as E[Y1ijY0i | D1i 9 D0i].
5

Compliers are those with D1i 9 D0i, i.e., they have D1i = 1 and D0i = 0. The

monotonicity assumption partitions the world of experimental subjects into three

groups: compliers who are affected by random assignment and two unaffected

groups. The first unaffected group consists of always-takers, i.e., subjects with

D1i = D0i = 1. The second unaffected group consists of never-takers, i.e., subjects

with D1i = D0i = 0. Because the treatment status of always-takers and never-takers

is invariant to random assignment, IV estimates are uninformative about treatment

effects for subjects in these groups.

In general, LATE is not the same as ATET, the average causal effect on all

treated individuals. Equation (4) shows that the treated can be divided into two

groups: the set of subjects with D0i = 1, and the set of subjects with D0i = 0, D1i = 1,

and Zi = 1. Subjects in the first set, with D0i = 1, are always-takers since D0i = 1

implies D1i = 1 by monotonicity. The second set consists of compliers with Zi = 1.

By virtue of the random assignment of Zi, the average causal effect on compliers

with Zi = 1 is the same as the average causal effects for all compliers. In general,

therefore, ATET differs from LATE because it is a weighted average of two

effects: one on always-takers and one on compliers.

An important special case when LATE equals ATET is when D0i equals zero

for everybody, i.e., there are no always-takers. This occurs in randomized trials

with one-sided non-compliance, a scenario that typically arises because no one in

the control group receives treatment. If no one in the control group receives

treatment, then by definition there can be no always-takers. Hence, all treated

subjects must be compliers. The MDVE is (approximately) this sort of experiment.

Since we have defined treatment as coddling, and (almost) no one in the group

assigned to be arrested was coddled, there are (almost) no always-takers. LATE in

this case is therefore ATET, the effect of coddling on the population coddled.6

The language of 2SLS

Applied economists typically discuss IV using the language of two-stage least

squares (2SLS), a generalized IV estimator introduced by Theil (1953) in the

context of simultaneous equation models. In models without covariates, the 2SLS

estimator using a dummy instrument is the same as the Wald estimator. In models

with exogenous covariates, 2SLS provides a simple and easily implemented

generalization that also allows for multiple instruments and multiple treatments.

Suppose the setup is the same as before, with the modification that we’d now

like to control for a vector of covariates, Xi. In particular, suppose that if Di had
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been randomly assigned as intended, we’d be interested in a regression-adjusted

treatment effect computed by ordinary least squares (OLS) estimation of the

equation:

Yi ¼ Xi

0
"þ !Di þ "i: ð5Þ

In 2SLS language, Equation (5) is the structural equation of interest. Note that the

causal effect in this model is the effect of being coddled on recidivism, relative to

the baseline recidivism rate when arrested.

The two most likely rationales for including covariates in Equation (5) are: (1)

that treatment was randomly assigned conditional on these covariates, and, (2) a

possible statistical efficiency gain (i.e., reduced sampling variance). In the MDVE,

for example, the coddling treatment might have been randomly assigned with

higher probability to suspects with no prior history of assault. We_d then need to

control for assault history in the IV analysis. Efficiency gains are a consequence of

the fact that regression standard errors Y whether 2SLS or OLS Y are proportional

to the variance of the residual, "i. The residual variance is typically reduced by the

covariates, as long as the covariates have some power to predict outcomes.7

In principle, we can construct 2SLS estimates in two steps, each involving an

OLS regression. In the first stage, the endogenous right-hand side variable (treat-

ment delivered in the MDVE) is regressed on the Fexogenous_ covariates plus the

instrument (or instruments). This regression can be written

Di ¼ X ¶
i:0 þ :1Zi þ )i: ð6Þ

The coefficient on the instrument in this equation, :1, is called the Ffirst-stage

effect_ of the instrument. Note that the first-stage equation must include exactly the

same exogenous covariates as appear in the structural equation.8 The size of the

first-stage effect is a major determinant of the statistical precision of IV estimates.

Moreover, in a model with dummy endogenous variables like the treatment dum-

my analyzed here, the first-stage effect measures the proportion of the population

that are compliers.9

In the second stage, fitted values from the first-stage are plugged directly into

the structural equation in place of the endogenous regressor. Note, however, that

although the term 2SLS arises from the fact that 2SLS estimates can be constructed

from two OLS regressions, we don’t usually compute them this way. This is

because the resulting standard errors are incorrect. Best practice therefore is to use

a packaged 2SLS routine such as may be found in software like SAS or Stata.

In addition to the first-stage, an important auxiliary equation that is often dis-

cussed in the context of 2SLS is the reduced form. The reduced form for Yi is the

regression obtained by substituting the first-stage into the causal model for Yi, in

this case, Equation (5). In the MDVE, we can write the reduced form as

Yi¼ X 0i"þ ! X 0i:0 þ :1Zi þ )i

� �
þ "i

¼ X 0i %0 þ %1Zi þ vi:

ð7Þ
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The coefficient %1 is said to be the Freduced-form effect_ of the instrument. Like the

first stage, the reduced form parameters can estimated by OLS, i.e., by simply

running a regression.

Note that with a single endogenous variable and a single instrument, the effect

of Di in the causal model is the ratio of reduced-form to first-stage effects:

! ¼ %1=:1:

2SLS second-stage estimates can therefore be understood as a re-scaling of the

reduced form. It can also be shown that the significance levels for the reduced-form

and the second-stage in this model are asymptotically the same under the null

hypothesis of no treatment effect. Hence, the workingman’s IV motto: BIf you

can’t see your causal effect in the reduced form, it ain’t there.[
On final reason for looking at the reduced form is that Y in contrast with the

2SLS estimates themselves Y the reduced form estimates have all the attractive

statistical properties of any ordinary least squares regression estimates. In

particular, estimates of reduced form regression coefficients are unbiased (i.e.,

centered on the population parameter in repeated samples) and the theory that

justifies statistical inference for these coefficients (i.e., confidence intervals and

hypothesis testing) does not require large samples. 2SLS estimates on the other

hand, are not unbiased, although they are consistent. This means that in large

samples, the estimates can be expected to be close to the target population

parameter, though in small samples, they can be unreliable. Moreover, the

statistical theory that justifies confidence intervals and hypothesis testing for 2SLS

requires that samples be large enough for a reasonably good asymptotic

approximation (in particular, for application of central limit theorems).

How large a sample is large enough for asymptotic statistical theory to work?

Unfortunately, there is no general answer to this question. Various theoretical

arguments and simulations studies have shown, however, that the asymptotic

approximations used for 2SLS inference are usually reasonably accurate in models

where the number of instruments is equal to (or not much more than) the number

Table 2. First stage and reduced forms for Model 1.

Endogenous variable is coddled

First stage Reduced form (ITT)

(1) (2)* (3) (4)*

Coddled-assigned 0.786 (0.043) 0.773 (0.043) 0.114 (0.047) 0.108 (0.041)

Weapon j0.064 (0.045) j0.004 (0.042)

Chem. influence j0.088 (0.040) 0.052 (0.038)

Dep. var. mean 0.567

(CoddledYdelivered)

0.178

(Re-arrested)

The table reports OLS estimates of the first-stage and reduced form for Model 1 in the text.

*Other covariates include year and quarter dummies, and dummies for non-white and mixed race.
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of endogenous variables (as would be the case in studies using randomly assigned

intention to treat as an instrument for treatment delivered). Also, that the key to

valid inference is a reasonably strong first stage, with a t-statistic for the coefficient

on the instrumental variable in the first-stage equation of at least 3. For further

discussion of statistical inference with 2SLS, see Angrist and Krueger (2001).

2SLS Estimates for MDVE with one endogenous variable

The first-stage effect of being assigned to the coddling treatment is .79 in a model

without covariates and .77 in a model that controls for a few covariates.10 These

first-stage effects can be seen in the first two columns of Table 2, which report

estimates of Equation (6) for the MDVE. The reduced form effects of random

assignment to the coddling treatment, reported in columns 3 and 4, are about .11,

and significantly different from zero with standard errors of .041Y.047. The first-

stage and reduced-form estimates change little when covariates are added to the

model, as expected since Zi was randomly assigned. The 2SLS results derived from

these first-stage and reduced form estimates are reported in Table 3.

Before turning to a detailed discussion of the 2SLS results, one caveat is in

order: for simplicity, I discuss these estimates as if they were constructed in the

usual way, i.e., by estimating Equations (5), (6), and (7) using micro-data. In

reality, however, I was unable to locate or construct the original recidivism var-

iable from the MDVE public-use data sets (Berk and Sherman, 1993). I therefore

generated my own micro-data on recidivism from the Logit coefficients reported

in Berk and Sherman (1988, Tables 4 and 6). Note that the Logistic regression,

of, say Yi on Di implicitly determines the conditional mean of Yi given Di (by

inverting the logistic transformation of fitted values, a simple mathematical

operation). Because Yi in this case is a dummy variable, this conditional mean is

also the conditional distribution of Yi given Di. It is therefore straightforward to

construct, by sampling from this distribution, a sample with same joint distribution

of Yi and Di (or Yi and Zi) as must have appeared in Berk and Sherman’s original

data set.

Table 3. OLS and 2SLS estimates for Model 1.

Endogenous variable is coddled

OLS IV/2SLS

(1) (2)* (3) (4)*

CoddledYdelivered 0.087 (0.044) 0.070 (0.038) 0.145 (0.060) 0.140 (0.053)

Weapon 0.010 (0.043) 0.005 (0.043)

Chem. influence 0.057 (0.039) 0.064 (0.039)

The Table reports OLS and 2SLS estimates of the structural equation in Model 1.

*Other covariates include year and quarter dummies, and dummies for non-white and mixed race.
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By virtue of this re-sampling scheme, my data set indeed has the same joint

distributions of {Yi, Di), and {Yi, Zi} as the original Berk and Sherman (1988) data.

My data set also has the same distribution of {Di, Xi} and {Zi, Xi} as in the original

data since the observations I use on {Di, Zi, Xi} are taken directly from the original

data set, available from the ICPSR web site. Importantly, my first-stage estimates

are therefore unaffected by the use of the data on Yi constructed by sampling from

the probability distributions implied by the Berk and Sherman (a consequence of

the fact that the first stage does not involve Yi). The only information lost in my

reconstruction of the Berk and Sherman outcomes data is a consequence of the fact

that I must assume that the conditional distributions of Yi given {Di, Xi} and of Yi

given {Zi, Xi} do not depend on the covariates, Xi. Thus, for models without

covariates, estimates using my data should be identical to those that would have

been generated by the original data set. Moreover, given the random assignment of

Z, the estimates using my data should also be similar even for models with

covariates.

The 2SLS estimates associated with the first stage and reduced form estimates in

Table 2 are .14Y.145. These estimates, reported in columns 3Y4 of Table 3, are about

double the size of the corresponding OLS estimates of the effects of delivered

treatments, reported in columns 1Y2 of the same table. Recall that the 2SLS esti-

mates in columns 3 an 4 of Table 3 are essentially a rescaling of the reduced form

estimates reported in columns 3 and 4 of Table 2. In particular, the 2SLS estimates

are implicitly calculated by dividing the reduced form (or ITT) estimates by the

first-stage estimates (or difference in compliance rates between the original treat-

ment and control groups).

The OLS estimates are almost certainly too low, probably because delivered

treatments were contaminated by selection bias. The reduced form effect of

coddling is also too small, relative to the causal effect of coddling per se, because

non-compliance dilutes ITT effects. As noted above, the 2SLS estimates in this

case capture the causal effect of coddling on the coddled, undiluted by non-

compliance and unaffected by selection bias. The 2SLS estimates point a dramatic

increase in re-offense rates due to coddling (the mean re-offense rate was .18). The

magnitude of this effect is clearly understated by alternative estimation strategies.

At this point, it bears emphasizing that even though treatments and outcomes

are dummy variables, I used linear models for every step of the analysis underlying

Tables 2 and 3 (and Tables 4 and 5, discussed below). To see why, it helps to bear

in mind that the purpose of causal inference is the estimation of average treatment

effects and not prediction of individual outcomes per se. Whenever you have a

complete set of dummy variables on the right hand side of a regression equation

(a scenario known as a saturated model), linear probability models estimate the

underlying conditional mean function perfectly. A model for the effect of a single

dummy treatment or a set of mutually exclusive dummy treatments is the simplest

sort of saturated model. Hence there is no point to the use of more complex

nonlinear models. You cannot improve on perfection.

Another way to see why linear models are appropriate in this context is to

suppose that instead of an OLS regression of Yi on Di, we were to estimate (for
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example) the corresponding Probit regression. The Probit conditional mean

function in this case is E[Yi | Di] = 6[.0 + .1Di], where 6[�] is the Normal

distribution function. But since Di is a dummy variable, this conditional mean

function can be rewritten as a linear model:

E YijDi½ � ¼ 6 .0½ � þ 6 .0 þ .1� � 6½.0�½ ÞDi:ð

Thus, the Probit estimate of the effect of Di is 6[.0 + .1] j 6[.0]). But since the

conditional mean function is linear in Di, this is exactly what the OLS regression of

Yi on Di, will produce. In other words, the slope coefficient in the OLS regression

will equal 6[.0 + .1] j 6[.0]. In fact, all two-parameter models will generate the

same marginal effect of Di.

In more complicated models with additional covariates, some of which are not

dummy variables, or when the model is not fully saturated, it is no longer the case

that Probit and OLS will produce exactly the same treatment effects (again, it’s

worth emphasizing that it is these effects that are of interest; the Probit coefficients

themselves mean little). But in practice, the treatment effects generated by

nonlinear models are likely to be indistinguishable from OLS regression

coefficients. See, for example, the comparison of Probit and regression estimates

in Angrist (2001). This close relation is a consequence of a very general regression

property Y no matter what the shape of the conditional mean function you are

trying to estimate, OLS regression always provides the minimum mean square

approximation to it (see, e.g., Goldberger, 1991).

The case for using 2SLS to estimate linear probability models with dummy

endogenous variables is slightly more involved than the case for using OLS

regression to estimate models without endogenous variables. Nevertheless, the

argument is essentially similar: even with binary outcomes like recidivism, linear

2SLS estimates have a robust causal interpretation that is insensitive to the possible

nonlinearity induced by dummy dependent variables. For example, the interpre-

tation of IV as estimating LATE is unaffected by the fact that the outcome is a

dummy. Likewise, consistency of 2SLS estimates is unaffected by the possible

nonlinearity of the first-stage conditional expectation function, E[Di | Xi, Zi]. For

details, see Angrist (2001), which also offers some simple nonlinear alternatives

for those who insist.11

2SLS estimates with two endogenous variables

The analysis so far looks at the MDVE as if it involved a single treatment. I now

turn to a 2SLS model that more realistically allows for distinct causal effects for

the two types of coddling that were randomly assigned, separation and advice. A

natural generalization of Equation (5) incorporating distinct causal effects for these

two interventions is

Y i ¼ X 0i"þ !aDai þ !sDsi þ "i; ð8Þ
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where Dai and Dsi are dummies that indicate delivery of advice and separation. As

before, because of the endogeneity of delivered treatments, OLS estimates of

Equation (8) are likely to be misleading. Again, the causal effects of interest are

the effects of advice and separation relative to the baseline recidivism rate when

arrested. The potential outcomes that motivate Equation (8) as a causal model

describe each suspect’s recidivism status had he been assigned to one of three

possible treatments (arrest, advise, separate).

Equation (8) is a structural model with two endogenous regressors, Dai and Dsi.

We also have two possible instruments, Zai and Zsi, dummy variables indicating

random assignment to advice and separation as intended treatments. The cor-

responding first-stage equations are

Dai ¼ X 0i :0a þ :aaZai þ :asZsi þ �ai ð9aÞ

Dsi ¼ X 0i :0s þ :saZai þ :ssZsi þ �si; ð9bÞ

where :aa and :as are the first-stage effects of the two instruments on delivered

advice, Dai, and :sa and :ss are the first-stage effects of the two instruments on

delivered separation, Dsi.

The reduced form equation for this two-endogenous-variables setup is obtained

by substituting Equations (9a) and (9b) into Equation (8). Similarly, the second

stage is obtained by substituting fitted values from the first stages into the structural

equation.12 Note that in a model with two endogenous variables we must have at

least two instruments for the second stage estimates to exist.13 Assuming the

second stage estimates exist, which is equivalent to saying that the structural

equation is identified, the 2SLS estimates in this case can be interpreted as

capturing the covariate-adjusted causal effects of each delivered treatment on those

who comply with random assignment.

Random assignment to receive advice increased the likelihood of advice

delivery by .78. Assignment to the separation treatment also increased the

likelihood of receiving advice, but this effect is small and not significantly

different from zero. These results can be seen in columns 1Y2 of Table 4, which

report the estimates of first-stage effects from Equation (9a). The corresponding

estimates of Equation (9b), reported in columns 3Y4 of the table, show that

assignment to the separation treatment increased delivered separation rates by

about .72, while assignment to advice had almost no effect on the likelihood of

receiving the separation treatment. The reduced form effects of random assignment

to receive advice range from .088Y.097, while the reduced form estimates of ran-

dom assignment to be separated are about .13. The reduced form estimates are

reported in columns 5Y6 of the table.

OLS and 2SLS estimates of the two-endogenous-variables model are reported in

Table 5. Interestingly, the OLS estimates of the effect of delivered advice on re-

offense rates are small and not significantly different from zero. The OLS estimates

of the effect of being separated are much larger and significant. Both of these
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results are reported in columns 1Y2 of the table. In contrast with the OLS effects,

the 2SLS estimates of the effects of both types of treatment are substantial and at

least marginally significant. For example, the 2SLS estimate of the impact of the

advice intervention is .107 (SE = .059) in a model with covariates. The 2SLS

estimate of the impact of separation is even larger, at around .17.

As in the model with a single endogenous variable, the reduced-form estimates

of intended treatment effects are larger than the corresponding OLS estimates of

Table 4. First stage and reduced forms for Model 2.

Two endogenous variables: Advise, separate

First stages

Reduced form (ITT)Advised Separated

(1) (2)* (3) (4)* (5) (6)*

Advise-

assigned

0.778

(0.039)

0.766 (0.039) 0.035

(0.043)

0.035 (0.043) 0.097

(0.054)

0.088 (0.046)

Separate-

assigned

0.044

(0.038)

0.031 (0.039) 0.717

(0.042)

0.715 (0.043) 0.130

(0.053)

0.127 (0.046)

Weapon j0.038 (0.036) j0.031 (0.039) j0.001 (0.042)

Chem.

influence

j0.068 (0.032) j0.018 (0.035) 0.051 (0.038)

Dep. var.

mean

0.283

(Adv.-deliver)

0.283

(Sep.-deliver)

0.178

(Re-arrested)

The table reports OLS estimates of the first-stage and reduced form for Model 2 in the text.

*In addition to the covariates reported in the table, these models include year and quarter dummies, and

dummies for non-white and mixed race.

Table 5. OLS and 2SLS estimates for Model 2.

Two endogenous variables: Advise, separate

OLS IV/2SLS

(1) (2)* (3) (4)*

Advise-assigned 0.047 (0.052) 0.019 (0.046) 0.116 (0.068) 0.107 (0.059)

Separate-assigned 0.126 (0.052) 0.120 (0.046) 0.174 (0.073) 0.174 (0.063)

Weapon 0.015 (0.043) 0.008 (0.043)

Chem. influence 0.052 (0.039) 0.061 (0.039)

Test F = 1.87 F = 4.14 F = .64 F = 1.14

Advise = separate p = .170 p = .043 p = .420 p = .290

The Table reports OLS and 2SLS estimates of the structural equation in Model 2.

*In addition to the covariates reported in the table, these models include year and quarter dummies, and

dummies for non-white and mixed race.
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delivered treatment effects, and the 2SLS estimates are larger than the cor-

responding reduced forms. The gap between OLS and 2SLS is especially large for

the advice effects, suggesting that the OLS estimates of the effect of receiving

advice are more highly contaminated by selection bias than the OLS estimates of

the effect of separation. Moreover, the difference between the separation and ad-

vice treatment effects is much larger when estimated by 2SLS than in the reduced

form.

Does anything new come out of this IV analysis of the MDVE? Two findings

seem important. First, a comparison of 2SLS estimates with estimates that ignore

the endogeneity of treatment delivered indicate considerable selection bias in the

latter. In particular, the 2SLS estimates of the effect of coddling are about twice as

large as the corresponding OLS estimates, largely due to the fact that the suspects

who were coddled were those least likely to re-offend anyway. The IV framework

corrects for this important source of bias. A related point is that the ITT effects Y
equivalently, the 2SLS reduced form estimates Y are not a fair comparison for

gauging selection bias. Although ITT effects have a valid causal interpretation (i.e.,

they preserve random assignment), they are diluted by non-compliance. OLS es-

timates of the effect for treatment delivered, while contaminated by selection bias,

are not similarly diluted. The second major finding, and one clearly related to the

first, is that non-compliance was important enough to matter; in some cases, the

2SLS estimates are as much as one-third larger than the corresponding ITT effects.

Based on these results, the evidence for a deterrent effect of arrest is even stronger

than previously believed.

Models with variable treatment intensity and observational studies

In closing, it bears emphasizing that IV methods are not limited to the estimation

of the effects of binary on-or-off treatments like coddling, separation, or advice in

the MDVE. Many experimental evaluations are concerned with the effects of in-

terventions with variable treatment intensity, i.e., the effects of an endogenous

variable that takes on ordered integer values. Applications of IV to these sorts of

interventions include Krueger’s (1999) analysis of experimental estimates of the

effects of class size, the Permutt and Hebel (1989) study of an experiment to

reduce the number of cigarettes smoked by pregnant women, and the Powers and

Swinton (1984) randomized study of the effect of hours of preparation for the GRE

test.

The studies mentioned above use 2SLS or related IV methods to analyze data

from randomized trials where the treatment of interest takes on values like 0, 1, 2,

. . . (cigarettes, hours of study) or 15, 16, 17 . . . (class size). Although these papers

interpret IV estimates using traditional constant-effects models, the 2SLS estimates

they report also have a more general LATE interpretation. In particular, 2SLS

estimates of models with variable treatment intensity give the average causal

response for compliers along the length of the underlying causal response function.

See Angrist and Imbens (1995) for details.
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The IV framework also goes beyond randomized trials and can be used to

exploit quasi-experimental variation in observational studies. An example from my

own work is Angrist (1990), which uses the draft lottery numbers that were ran-

domly assigned in the early 1970s as instrumental variables for the effect of Viet-

nam-era veteran status on post-service earnings. Draft lottery numbers are highly

correlated with veteran status among men born in the early 1950s, and probably

unrelated to earnings for any other reason.

A second example from my portfolio illustrates the fact that instrumental

variables need not be randomly assigned to be useful.14 Angrist and Lavy (1999)

constructed instrumental variables estimates of the effects of class size on test

scores. The instrument in this case is the class size predicted using Maimonides

rule, a mathematical formula derived from the practice in Israeli elementary

schools of dividing grade cohorts by integer multiples of 40, the maximum class

size (the same rule proposed by Maimonides in his Mishneh Torah biblical

commentary). This study can be seen as an application of Campbell’s (1969)

celebrated regression-discontinuity design for quasi-experimental research, but

also as a type of IV. The extension of IV methods to quasi-experimental

criminological research designs seems an especially promising avenue for further

work.
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Notes

1 Social experiments in labor economics, which are never double or even single-blind,

often allow those selected for treatment to opt out (an example is the Illinois

unemployment insurance bonuses experiment; see Woodbury and Spiegelman 1987).

And even in double-blind clinical trials, clinicians sometimes decipher and change

treatment assignments (Schultz 1995).
2 My brief discussion here glosses over a number of technical details. For a more

comprehensive introduction to IV see Angrist and Krueger (2001, 1999), or the chapters

on IV in Wooldridge (2003).
3 The fact that those who comply with randomly assigned treatments are not randomly

selected can be seen in medical trials, where subjects who comply with protocol by

taking a randomly assigned experimental treatment with no clinical effects Y i.e., a

placebo Y are often healthier than those who don_t (as in the study analyzed by Efron and

Feldman 1991). Efron and Feldman use the placebo sample in an attempt to characterize

those who comply with treatment assignment directly, but placebo-controlled trials are
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unusual in social science. Luckily, however, at least as far as solving the compliance

problem goes, they are unnecessary.
4 An estimator is said to be consistent when the limit (as a function of sample size) of the

probability that it is close to the population parameter being estimated is 1. In other

words, a consistent estimate can be taken to be close to the parameter of interest in large

samples. Note that consistency is not the same as unbiasedness; an unbiased estimator

has a sampling distribution centered on the parameter of interest in a sample of any size.

I briefly discuss this point further below.
5 In econometrics, a parameter is said to be Fidentified_ when it can be constructed from

the joint distribution of observed random variables. Assumptions that allow a parameter

to be identified are called Fidentifying assumptions._ The identifying assumptions for IV,

independence and monotonicity, allow us to construct LATE from the joint distribution

of {Yi, Di, Zi}.
6 The fact that a randomized trial with one-sided non-compliance can be used to estimate

the effect of treatment on the treated was first noted by Bloom (1984).
7 The causal (LATE) interpretation of IV estimates is similar in models with and without

covariates. See Angrist and Imbens (1995) or Abadie (2003) for details.
8 If the first stage includes covariates omitted from the second stage, then the covariates

are, in fact, playing the role of instruments. If, on the other hand, covariates included in

the second stage are omitted from the first stage, then the first stage residuals, which

necessarily end up in the second stage error term, are correlated with the covariates,

biasing the second-stage estimates. See e.g., Wooldridge (2003).
9 Formally, this is because without covariates, E[D1ijD0i] = :1. With covariates,

E[D1ijD0i | Xi] = :1 if the first stage is linear and additive in covariates, and, more

generally, E{E[D1ijD0i | Xi]} � :1.
10 The covariates are dummies for the presence of a weapon and whether the suspect was

under chemical influence, year and quarter dummies for time of follow-up, and dummies

for suspects_ race (non-white and mixed).
11 Rossi et al. (1980) present an IV-type analysis of a stipend program for ex-offenders.

Their analysis deviates from an orthodox 2SLS procedure in a number of respects,

however. First, they include potentially endogenous outcome variables on the right-hand

side as if these were covariates. Second, they use nonlinear models (e.g., Tobit) to which

IV methods do not easily transfer and which are, in any case, not well-suited to the sort

of question they are addressing.
12 With multiple endogenous variables, the second stage estimates can no longer be obtained

as the ratio of reduced form to first-stage coefficients, but rather solve a matrix equation.

Again, the best strategy for real empirical work is to use packaged 2SLS software.
13 The second stage has a regression design matrix with number of columns equal to

dim(Xi) + 2. This matrix must be of full column rank for the second stage to exist. The

rank of the design matrix is equal to the number of linearly independent columns in the

matrix. This can be no more than dim(Xi) plus the number of instruments, since the fitted

values used in the second step are linear combinations of Xi and the instruments. Hence

the need for at least K instruments when there are K endogenous variables.
14 A pioneering illustration of this point from criminology is Levitt_s (1997) study of the

effects of extra policing using municipal election cycles to create instruments for

numbers of police. See also McCrary (2002), who discusses a technical problem with

Levitt_s original analysis. Recent applications of IV in criminology include Snow-Jones

and Gondolf (2002), Gottfredson (2005), and White (2005).
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