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1. INTRODUCTION

By honest I don’t mean that you only
tell what’s true. But you make clear the
entire situation. You make clear all the
information that is required for some-
body else who is intelligent to make up
their mind.

Richard Feynman

The neuroscience community signifi-
cantly benefits from the proliferation of
imaging-related analysis software pack-
ages. Established packages such as SPM
(Ashburner, 2012), the FMRIB Software
Library (FSL) (Jenkinson et al., 2012),
Freesurfer (Fischl, 2012), Slicer (Fedorov
et al., 2012), and the AFNI toolkit (Cox,
2012) aid neuroimaging researchers
around the world in performing complex
analyses as part of ongoing neuroscience
research. In conjunction with distribut-
ing robust software tools, neuroimaging
packages also continue to incorporate
algorithmic innovation for improvement
in analysis tools.

As fellow scientists who actively par-
ticipate in neuroscience research through
our contributions to the Insight Toolkit1

(e.g., Johnson et al., 2007; Ibanez et al.,
2009; Tustison and Avants, 2012) and
other packages such as MindBoggle,2

Nipype3 (Gorgolewski et al., 2011),
and the Advanced Normalization Tools

1 http://www.itk.org
2 http://www.mindboggle.info
3 http://nipy.org/nipype

(ANTs),4 (Avants et al., 2010, 2011) we
notice an increasing number of publica-
tions that intend a fair comparison of
algorithms which, in principle, is a good
thing. Our concern is the lack of detail
with which these comparisons are often
presented and the corresponding pos-
sibility of instrumentation bias (Sackett,
1979) where “defects in the calibration
or maintenance of measurement instru-
ments may lead to systematic deviations
from true values” (considering software as
a type of instrument requiring proper “cal-
ibration” and “maintenance” for accurate
measurements). Based on our experience
(including our own mistakes), we propose
a preliminary set of guidelines that seek to
minimize such bias with the understand-
ing that the discussion will require a more
comprehensive response from the larger
neuroscience community. Our intent is
to raise awareness in both authors and
reviewers to issues that arise when com-
paring quantitative algorithms. Although
herein we focus largely on image registra-
tion, these recommendations are relevant
for other application areas in biologically-
focused computational image analysis, and
for reproducible computational science in
general. This commentary complements
recent papers that highlight statistical
bias (Kriegeskorte et al., 2009; Vul and
Pashler, 2012), bias induced by registra-
tion metrics (Tustison et al., 2012), and

4 http://stnava.github.io/ANTs/

registration strategy (Yushkevich et al.,
2010) and guideline papers for soft-
ware development (Prlic and Procter,
2012).

2. GUIDELINES
A comparative analysis paper’s longevity
and impact on future scientific explo-
rations is directly related to the
completeness of the evaluation. A com-
plete evaluation requires preparation
(before any experiment is performed) and
effort to publish its details and results.
Here, we suggest general guidelines for
both of these steps most of which derive
from basic scientific principles of clarity
and reproducibility.

2.1. DESIGNING THE EVALUATION STUDY
The very idea that one (e.g., registration)
algorithm could perform better than all
other algorithms on all types of data is
fundamentally flawed. Indeed, the “No
Free Lunch Theorem” provides bounds
on solution quality. That is, it specifi-
cally demonstrates that “improvement of
performance in problem-solving hinges
on using prior information to match
procedures to problems” (Wolpert and
Macready, 1997). Therefore, the first thing
that authors of new algorithms should
do is identify how their methods differ
with respect to other available techniques
in terms of the use of prior knowledge.
Furthermore, the author must consider if
it is possible to incorporate prior knowl-
edge across existing methods.
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2.1.1. Demand that the algorithm
developers provide default
parameters for the comparative
context being investigated

Expert knowledge of a specific program
and/or algorithm is most likely found with
the original developers who would be in
a position to provide optimal parame-
terization. Relevant parameter files and
sample scripts that detail command line
calls should accompany an algorithm to
aid in its proper use, evaluation, and
comparison. For example, the developers
of the image registration program elastix
(Klein et al., 2010) provide an assort-
ment of parameter files on a designated
wiki page5 listed in tabular format com-
plete with short description (including
applied modality and object of interest)
and any publications which used that
specific parameter file. Another exam-
ple is the National Alliance for Medical
Image Computing registration use case
inventory6 where each listed case com-
prises a test dataset, a guided step-by-
step tutorial, the solution, and a custom
Registration Parameter Presets file with
optimized registration parameters.

2.1.2. Do not implement your own version of
an algorithm, particularly if one is
available from the original authors. If
you must re-implement, consider
making your implementation
available

Much is left unstated in published
manuscripts where novel algorithmic con-
cepts are presented. Ideally, the authors
provide an instantiation of the code to
accompany the manuscript. As observed
in Kovacevic (2006), however, this is
often not the case (even in terms of
pseudocode). As a result, comparative
evaluations are sometimes carried out
using code developed not by the origi-
nal authors but by the group doing the
comparison. For example, in Clarkson
et al. (2011), the authors compared three
algorithms for estimating cortical thick-
ness. Two of the algorithms were coded by
the authors of the study while the third
was used “off the shelf.” Thus, a natural
question to ask is whether the performance

5 http://elastix.bigr.nl/wiki/index.php/Parameter_file_
database
6 http://www.na-mic.org/Wiki/index.php/Projects:Regi
strationDocumentation:UseCaseInventory

difference is due to the algorithm itself,
implementation quality, and/or the
parameter tuning. None of these are
addressed by Clarkson et al. (2011) which
may decrease the publication’s usefulness.

2.1.3. Perform comparisons on publicly
available data

For reasons of reproducibility and trans-
parency, evaluations should be performed
using publicly available data sets. Given
the rather large number of such insti-
tutional efforts including NIREP,7 IXI,8

NKI,9 OASIS,10 Kirby,11 LONI,12 and oth-
ers, evaluations should include (if not
be exhausted by) comparisons using such
data. While evaluation on private cohorts
might exclude such possibilities, such eval-
uations should be extensively motivated
in the introduction and/or discussion. For
example, if a particular algorithm with
general application is found to perform
better on a private cohort of Parkinson’s
disease subject data, reasons for perfor-
mance disparity should be offered and
supplemented with analysis on public
data.

2.2. PUBLISHING THE EVALUATION
2.2.1. Include parameters
In Klein et al. (2009), 14 non-linear reg-
istration algorithms were compared using
four publicly available, labeled brain MRI
data sets. As part of the study, the respec-
tive algorithms’ authors were given an
opportunity to tune the parameters to
ensure good performance which were then
distributed on Prof. Klein’s website.13 In
contrast, not specifying parameters leaves
one susceptible to criticisms of confir-
mation and/or instrumentation bias. For
example, in a recent paper (Haegelen
et al., 2013),14 the authors compared their
ANIMAL registration algorithm with SyN
(Avants et al., 2011) and determined that
“registration with ANIMAL was better
than with SyN for the left thalamus” in
a cohort of Parkinson’s disease patients.
The difference in the authors’ experience

7 http://www.nirep.org
8 http://www.brain-development.org
9 http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
10 http://www.oasis-brains.org
11 http://mri.kennedykrieger.org/databases.html
12 http://www.loni.ucla.edu/Research/Databases/
13 http://mindboggle.info/papers/evaluation_NeuroIm
age2009.php
14 Similar issues can be found in Wu et al. (2013).

and investment between the two algo-
rithms could bias algorithmic perfor-
mance assessment. However, inclusion of
parameter settings for ANIMAL and SyN
would permit independent verification by
reviewers or readers of the article.

2.2.2. Provide details as to the source of the
algorithm

Origin should be provided for any code
or package used during the evaluation.
For example, N4 (Tustison et al., 2010)
is a well-known inhomogeneity correc-
tion algorithm for MRI first made avail-
able as a tech report (Tustison and Gee,
2009). However, since its inclusion in the
Insight Toolkit, different programs have
been made available. N4 is also avail-
able in ANTs (the only version directly
maintained by the original authors), as
a module in Slicer,15 a wrapper of the
Slicer module in Nipype,16 a module in
c3d,17and as a plugin in the BRAINS
suite.18While each version is dependent
on the original source code, there could
exist subtle variations which can affect per-
formance. As one specific example, the
c3d implementation hard-codes certain
parameter values with no access to modify
them by the user.

2.2.3. Co-authors should verify findings
Although different journals have varying
guidelines for determining co-authorship,
there is at least an implied sense of respon-
sibility for an article’s contents assumed
by each of the co-authors. Strategies taken
by journal editorial boards are used to
reduce undeserving authorship attribu-
tion such as requiring the listing of the
specific contributions of each co-author.
Additional proposals have included signed
statements of responsibility for the con-
tents of an article (Anonymous, 2007). We
suggest that at least one co-author inde-
pendently verify a subset of the results by
running the data processing and analysis
on their own computational platform. The
point of this exercise is to verify not only

15 http://www.slicer.org/slicerWiki/index.php/Docume
ntation/4.2/Modules/N4ITKBiasField Correction
16 http://www.mit.edu/∼satra/nipype-nightly/interfaces
/generated/nipype.interfaces.slicer.filtering.n4itkbiasfi
eldcorrection.html
17 http://www.itksnap.org8/pmwiki/pmwiki.php?n=
Convert3D.Documentation
18 http://www.nitrc.org/plugins/mwiki/index.php/bra
ins:N4ITK
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reproducibility but also that the process
can be explained in sufficient detail.

2.2.4. Provide computational platform
details of the evaluation

A recent article (Gronenschild et al.,
2012) pointed out significant differences
in FreeSurfer output that varied with
release version and with operating sys-
tem. While the former is to be expected
given upgrades and bug fixes which occur
between releases, the latter underscores
both the need for consistency in study
processing as well as the reporting of com-
putational details for reproducibility.

2.2.5. Supply pre- and post-processing
steps

In addition to disclosure of all parame-
ters associated with the methodologies to
be compared, all processing steps from
the raw to the final processed images in
the workflow need to be specified. Tools
like Nipype (Gorgolewski et al., 2011) cap-
ture this provenance information in a for-
mal and rigorous way, but at a minimum
the shell scripts or screen shots of the
parameter choices should be made avail-
able. Justification for any deviation of steps
between algorithms needs to be provided.

2.2.6. Post the resulting data online
The current publishing paradigm limits
the quantity of results that can be posted.
There are only so many pages allowed
for a particular publication and display-
ing every slice of every processed image,
for example, is not feasible. This results in
possible selection bias where results pro-
vided in the manuscript are selected by the
authors for demonstrating the effect pos-
tulated at the onset of the study. Thus, dif-
ferences in performance assessment tend
to be exaggerated based strictly on visual
representations in the paper. Publication
simply in print (or as figures in a PDF file)
and its limitations in terms of dynamic
range or spatial resolution also severely
limits the ability of reviewers and readers
to perform more sophisticated evaluation
beyond simple visual inspection.

Alternatively (or additionally),
online resources such as the the LONI
Segmentation Validation Engine (Shattuck
et al., 2009)19 can be used to evaluate

19 http://sve.loni.ucla.edu

individual algorithms for brain segmen-
tation on publicly available data sets and
compare with previously posted results. A
top ranking outcome provides significant
external validation for publishing newly
proposed methodologies (e.g., Eskildsen
et al., 2012).

2.2.7. Put comparisons and observed
performance differences into context

In addition to algorithmic and study
specifics, it is important to discuss poten-
tial limitations concerning qualitative
and/or quantitative assessment metrics.
In Rohlfing (2012), the author pointed
out deficiencies in using standard overlap
measures and image similarity metrics in
quantifying performance of image reg-
istration methods. Other issues, such as
biological plausibility of the resulting
transforms, need to also be consid-
ered. Also important for inclusion is
discussion of the possible reasons for
performance disparity. If one algorithm
outperforms another, reporting of those
findings would be much more significant
if the authors discuss possible reasons for
relative performance levels.

3. CONCLUSION
Considering that computational sciences
permeate neuroimaging research, certain
safeguards should be in place to prevent
(or at least minimize) potential biases and
errors that can unknowingly affect study
outcomes. There is no vetting agency for
ensuring that analysis programs used for
research are reasonably error-free. In addi-
tion, these software packages are simply
“black boxes” to many researchers who are
not formally trained to debug code, and
who, in most cases, have only a very super-
ficial understanding of the algorithms that
they apply. And even to those of us who
are trained to debug code, understanding
someone else’s code, perhaps implemented
in an unfamiliar programming language
and different coding style, is oftentimes
very difficult. To this end, algorithmic
comparisons are a very good way of eval-
uating general performance. We hope that
the guidelines proposed in this editorial
help the community in future compara-
tive assessments and avoid errors in sci-
entific computing that may otherwise lead
to publication of invalid results (Merali,
2010).
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