
Instrumentation of Java Bytecode
for Runtime Analysis

Allen Goldberg and Klaus Havelund

Kestrel Technology, NASA Ames Research Center
Moffett Field, MS 269-3, California USA

Phone: 650-604-4858, Email: {goldberg,havelund}@email.arc.nasa.gov

Abstract. This paper describes JSpy, a system for high-level instru-
mentation of Java bytecode and its use with JPaX, our system for run-
time analysis of Java programs. JPaX monitors the execution of tem-
poral logic formulas and performs predicative analysis of deadlocks and
data races. JSpy’s input is an instrumentation specification, which con-
sists of a collection of rules, where a rule is a predicate/action pair. The
predicate is a conjunction of syntactic constraints on a Java statement,
and the action is a description of logging information to be inserted in
the bytecode corresponding to the statement. JSpy is built using JTrek
an instrumentation package at a lower level of abstraction.

1 Introduction

This paper describes an instrumentation package, JSpy, for instrumenting Java
[3] bytecode [11], and our application of JSpy to run time analysis. Run time
analysis [1,2] refers to examination of a single program execution trace to check,
for example, for conformance to a temporal logic assertions, or for detecting the
potential for deadlocks and data races. The Java PathExplorer, JPaX [10], is our
general framework for performing runtime analysis. JPaX has been incorporated
into an an automatic test case generation system. See [4] for details.

JSpy can be seen as an Aspect Oriented Programming [9] environment pack-
age in the sense that it is guided by rules, or aspects, which specify how a pro-
gram should be transformed to achieve additional functionality. However, the
main purpose of these aspects is to extract information from a running program.
JSpy is built on top of the low-level JTrek instrumentation package [7]. Other
low-level instrumentation packages could be used, such as for example BCEL
[8].

The paper is organized as follows. Section 2 gives a description of the overall
functionality of JSpy, and of the input specification that drives it. Section 3
discusses some implementation issues and how to run it. Section 4 lays out
an architecture for using JSpy to generate events to monitors, that check for
temporal logic property conformance and multi-threading problems. Section 6
discusses some planned enhancements and gives conclusions.



2

2 Input Instrumentation Specification

JSpy produces instrumented code based on an instrumentation specification
whose main component is a set of rules. We refer to the code to be instrumented
as the target and the result of instrumenting the target the instrumented target.
The instrumented target is functionally equivalent to the target except that,
when executed it generates a stream of event log objects as specified by the
rules of the instrumentation specification. The rules form a high-level declarative
description of where to insert log creation code and the contents of the log entries.
A design goal for the instrumentation package is to minimize the impact of the
instrumentation code on the time and space of the target program. Our run time
analysis system is designed so that the substantial work of analyzing event logs
is done off-line via file communication, or by a remote process that reads the log
stream via a socket connection.

Each rule is a predicate/action pair. The predicate is a conjunction of atomic
predicates. Each atomic predicate defines a syntactic constraint on the sequence
of bytecode instructions corresponding to a single Java statement. Examples
of predicates are summarized in Figure 1. A name specification, for example
methodNameSpec, specifies a fully qualified method name and method signa-
ture but allows wildcards for most components. Actions specify instrumenting
directives that are inserted at statements satisfying the rule predicate. Example
actions are given in Figure 2. The action ReportExpression takes an arbitrary
Java expression, encapsulates it into a method and inserts a call to the method
into the target. The method is inserted into a generated Java file inserted into
the package containing the target code. By placing the code in the same tar-
get as the target class file most data values available to the target code will be
visible to such a method. Other data, e.g. private data or local variables can
be transmitted as a parameters to the constructed method. When this auxiliary
class is completely populated with such methods, the Java compiler is called and
the resulting bytecode becomes part of the instrumented target.

An example instrumentation specification, using the JSpy Java API, is il-
lustrated in Figure 3. An instrumentation specification is built up from one or
more rules, each being a set of predicates and a set of actions that are inserted if
the predicates all evaluate to true. The example specification contains one rule,
with one predicate and two actions.

The goal of minimizing the impact of instrumentation on execution time
affects a fundamental design decision regarding the logging of program data in
response to a ReportLocal, ReportField or ReportExpression action. If the type
of value to log is primitive then the value can be inserted into the log. Since the
size of the value is just a few bytes the log entry is itself small. For values that
are objects there are four choices:

– A deep copy of the object is transmitted. That is, all fields of the object are
transmitted, including all objects reachable from the fields of the object.

– A shallow copy is transmitted. That is, the values of primitive-type fields and
an external reference to the values of non-primitive fields are transmitted.



3

Predicate Name Parameters Returns true iff. current statement:

InClass String classNameSpec is within class with name that
matches classNameSpec.

InMethod String methodNameSpec is within method with name that
matches methodNameSpec.

AtMethodStart String methodNameSpec is the first statement within method
with name that matches method-
NameSpec.

AtMethodEnd String methodNameSpec is the last statement or a return
statement within method with name
that matches methodNameSpec.

CallsMethod String methodNameSpec contains a call to a method who’s
name matches methodNameSpec.

AtFieldAccess String fieldNameSpec
boolean onlyUpdates

accesses a field who’s name matches
fieldNameSpec. If onlyUpdates
is true, only write accesses are
matched.

AtLocalAccess String varNameSpec
boolean onlyUpdates

accesses a local variable who’s name
matches varNameSpec. If onlyUp-
dates is true, only write accesses are
matched.

AtSyncStart enters a synchronized block, taking
a lock.

AtSyncEnd exits a synchronized block, releasing
a lock.

AtStatementType String stmtType is a statement of type stmtType,
which ranges over 32 different state-
ment types, such as: ”assign”,
”break”, ”return”, ”try”, ”throw”,
”while”, etc.

InStatementRange int lowerBound
int upperBound

is within the range of line numbers
lowerBound and upperBound.

Fig. 1. Examples of Predicates

– An external reference to the object is transmitted.
– Object values are not transmitted at all.

For some applications transmitting deep copies may be appropriate, e.g. for off-
line program debuggers. Our approach is to just transmit an external reference.
Note, using ReportExpression, the value of any field is transmittable, so the effect
of a shallow copy is achievable. Not transmitting object values is too limiting.
In particular, it is necessary to log object references in order to properly log the
taking and releasing of locks on those objects, information that is needed for
example for deadlock and data races analysis.

However this raises a problem of how to externally reference an object. Java
serialization is a potential solution to this since it provides external unique iden-
tifiers to objects, but serialization externalizes a portion of the heap at exactly
one time instant. For our purposes a reference to the same object reported at



4

Action Name Parameters Inserts code that reports:

ReportMethodStart String methodNameSpec name of method entered, who’s
name matches methodNameSpec.

ReportMethodEnd String methodNameSpec name, and return value, of method
exited, who’s name matches method-
NameSpec.

ReportMethodCall String methodNameSpec name of method that is called, who’s
name matches methodNameSpec.

ReportField String fieldNameSpec
boolean onlyUpdates

name of field that is accessed, who’s
name matches fieldNameSpec. If on-
lyUpdates is true, only write ac-
cesses are matched.

ReportLocal String varNameSpec
boolean onlyUpdates

name of local variable that is ac-
cessed, who’s name matches var-
NameSpec. If onlyUpdates is true,
only write accesses are matched.

ReportSyncStart String classNameSpec identity and class (name) of object
that is locked, where the class name
matches classNameSpec.

ReportSyncEnd String classNameSpec identity and class (name) of ob-
ject that is released, where the class
name matches classNameSpec.

ReportTimeStamp the current time.

ReportProgramPoint the current line number.

ReportExpression String expressionName
String expressionBody
byte expressionType
String parameters

the value of expressionBody, and an
identifer expressionName. parame-
ters and expressionType indicate the
expression’s free parameters and the
result type.

Fig. 2. Examples of Actions

two points during execution must be the same, and this is not within the scope
of serialization.

Unfortunately we do not have a completely satisfactory solution for con-
structing such an external reference. Our approach is to transmit as an ex-
ternal reference the hash code of the object, when viewed as an instance of
java.lang.Object. This value is computed by the method
java.lang.System.identityHashCode(Object o). There is the remote chance
that two distinct objects are assigned the same hash code. We decided that this
imperfect solution is preferred to disallowing the transmission of object values.
We treat strings as a special case, transmitting the whole object when requested.

An additional feature of JSpy is that actions can be conditionally executed.
A conditional action is specified by providing a boolean-valued Java expression
that gets compiled using the same mechanism as described for ReportExpression.
The target is instrumented so that a call is made to a method at execution time,
whose body uses the boolean expression to guard the logging action. In some



5

class LogLockAcquisitions{

...

public void instrument(){

InstrumentSpecification spec = new InstrumentSpecification();

Rule rule = new Rule();

rule.addPredicate(new AtSyncStart());

rule.addAction(new ReportTimeStamp());

rule.addAction(new ReportSyncStart("*"));

spec.addRule(rule);

Instrumenter ins = new Instrumenter(spec);

ins.instrumentTheCode();

}

}

Fig. 3. Example Instrumentation Specification

simple cases encapsulation can be avoided in favor of a low-overhead conditional
placed directly in the code.

Some actions do not make sense in certain contexts. For example the ac-
tion ReportMethodStart only makes sense instrumenting the first statement of a
method. Consequently such actions will only be inserted at appropriate program
points.

3 Implementation

In this section we discuss some implementation issues and how an instrumented
program is run.

3.1 JTrek

JSpy is built using Jtrek [7]. Jtrek is a lower level bytecode modification tool
with monitoring being one of the intended applications. JTrek was developed at
COMPAQ SRC. Jtrek iterates through the bytecode instructions of the target
and uses callbacks to perform user-specific instrumentation. JTrek allows inser-
tion of certain types of code, but does not allow definition of new local variables,
fields, or methods. Since calls to arbitrary methods are supported, it is possible
to encapsulate any instrumentation action into a method that is inserted into
the code.

Iteration may be at the level of Java statements or individual bytecode in-
structions. Jtrek limitations have made it difficult or impossible to cleanly imple-
ment some of the features of JSpy, but overall, it is a stable and well-designed
software package.

As described above Jtrek provides an idiom of use based on an iteration, or
trek, over the bytecode. JSpy is structured as such a trek; for each bytecode



6

translation of a Java statement the predicate of each rule of the instrumentation
specification is tested. The actions of all rules whose predicates are true are
collected, sorted according to a canonical ordering on actions, and inserted into
the code using Jtrek primitives. In most cases the inserted code is a call to a
method that generates an entry into the event stream. For example, consider
the implementation of the ReportLocal action for a field of type boolean. The
code inserted will invoke a static method called reportLocalBoolean with three
parameters, a string holding the name of the class and method in which the
variable is defined, a string containing the local variable name, and the (boolean)
value itself. This method will write a log entry.

Jtrek iterates over multiple class files; specifying the target classes to be in-
strumented is achieved in a manner similar to Java class loading. A root class,
classpath, and a scope indicator are given. The scope indicator can be “all”,
“user”, or “package”. All files directly and indirectly referenced in the root class
and consistent with the scope designator are instrumented. The “package” des-
ignator restricts instrumentation to files in the same package as the root class,
“user” excludes instrumentation of system files, “all” means all reachable files
are instrumented.

3.2 Execution of the Instrumented Target

As described above, the target is instrumented with calls to methods that con-
struct a log entry and then write the entry to an output stream. In addition,
auxiliary classes are constructed “on the fly” as necessary, and added to user
packages containing the target code. Finally the instrumented target contains
predefined supporting classes where such methods as reportLocalBoolean are
found. Within the supporting classes is an abstract class of log objects and spe-
cializations of this class for each type of action.

The instrumented target is started as usual, e.g. an application is started
by invoking the “main” method of the specified class. When an instrumentation
method is first encountered in the code, the instrumentation class is loaded and a
static initializer for the class is executed. This code attempts to read a property
file that describes where the log output stream is routed. If no such file exists,
then default routing is used. The output stream is routed to either a socket or
file. The output stream consists of serialized log objects. The static initializer
also sets up a shutdown hook (see java.lang.Runtime.addShutdownHook) to
flush and close the buffered output stream when the application completes.

Synchronization occurs at the finest level of granularity, namely writing the
log entry to the buffered output stream. This minimizes the effect of synchro-
nization on performance of multi-threaded targets. However, as a consequence,
events from different threads may be interleaved. To enable re-creation of events
at the receiving end, each log entry contains an external reference to the execut-
ing thread.



7

3.3 Logging Monitor Exit

One of our applications of JSpy is run time analysis of programs for deadlocks
and data races. This requires logging the taking and releasing of synchroniza-
tion locks. At the JVM level, locks are obtained when a synchronized method
or monitorenter instruction is executed. As stated in the JVM specification
[11]: “Normally, a compiler for the Java programming language ensures that
the lock operation implemented by a monitorenter instruction executed prior
to the execution of the body of the synchronized statement is matched by an
unlock operation implemented by a monitorexit instruction whenever the syn-
chronized statement completes, whether completion is normal or abrupt.” Thus
instrumenting all monitorenter and montitorexit correctly tracks the number
of locks held by a thread on an object relating to synchronized statements.
However if a synchronized method abruptly terminates, then the lock obtained
on entry to the method is released by the JVM, but there is no way to instru-
ment the bytecode to record the release of the lock. The not-to-elegant fix to
this problem is to modify the body of each synchronized method to surround
the whole body with as try block that catches all throwables, logs the release
of the lock, and rethrows the exception.

4 Writing Monitors

The Java PathExplorer, JPaX, in which JSpy has been applied, provides a gen-
eral framework for writing program execution monitors. One kind of monitoring
is conformance checking against temporal logic formulas. Temporal logic formu-
las are assertions about a sequence of states, intended to describe properties of
programs [12]. Formulas of temporal logic are constructed from atomic formulas
using Boolean operators and temporal operators such as ¦ (meaning eventually
in some future state). In propositional temporal logic the atomic formulas are
predicates on states. Using techniques such as model checking, a program may
be verified with respect to a temporal logic formula, by showing the all possible
execution traces of the program satisfy the formula. Run time analysis checks
that one execution of the program satisfies the formula. This section examines
practical considerations of mapping the meaning of satisfaction in temporal logic
to Java programs. For propositional temporal logic this concerns how to define
sequences of states and predicates over such states. The “obvious” correspon-
dence is that a state is the computation state of the JVM, i.e. the state of the
heap, invocation stacks and instruction counters for threads, etc. Transition to
a new state is achieved by execution of a JVM instruction. Immediately one
practical problem is clear: state transition at the level of individual instructions
is too fined grained. If at each instruction cycle of the JVM a log entry is trans-
mitted then the instrumented target will execute many times slower than the
un-instrumented target.

Our objective of limiting the impact of instrumentation on program execution
time leads to our design decision to check satisfaction of temporal formula off-
line. We call the off-line checker an observer. The design of JPaX includes a



8

dispatcher which routes the event stream to one or more such observers. This
architecture implies that atomic predicates are restricted to the information
about the JVM state obtainable from the JSpy log stream. In fact, it is desirable
to define within each observer a data structure which records an observer state
that is updated by the log stream. Thus, the observer state is an abstraction of
the state of the JVM. The predicates of the propositional formula are viewed as
predicates over the observer state, rather than the JVM state.

Propositional temporal logic has expressibility limitations that impact it’s
practical application. For example, it is impossible with propositional tempo-
ral logic to count the number of times a predicate is true within a computation.
However one can add components to the observer state that perform such count-
ing and reference these components in the definition of propositional predicates.
Thus a temporal logic observer is defined by defining

– an instrumentation specification,
– an observer state,
– how the observer state is updated by the event stream,
– predicates over the observer state,
– a temporal logic formula over the predicates

We have defined a simple extension to propositional temporal logic that intro-
duces a binding operator. The binding operator binds a variable in a formula to
a component of the observer state. Predicates within the scope of the binding
operator may be parameterized by the variable.

JPaX furthermore includes an observer that can detect the potential of a
program to contain a deadlock or data race. Such an observer requires an event
stream that includes taking and release of locks and updates to shared objects.
The state of the observer consists of data structures such as lock graphs. Details
can be found in [5,6,10].

5 Comparison with Other Approaches

The intended application for JSpy is JPaX and so our primary concern de-
signing JSpy was insuring that application was well supported. Logging is a
classic application of aspect-oriented programming, but AOP systems like As-
pectJ do not have the needed flexibility for defining code insertion points required
by JPaX. Furthermore AspectJ modifies Java source, rather than bytecode a
significant usability concern, and one that inhibits deadlock and data race anal-
ysis. Java debugging an profiling interfaces are either to slow or too restricted.
Modification of the JVM is another possible approach, but that is a significant
undertaking and one that prevents adoption barriers.

6 Conclusion

We presented an instrumentation package and showed how it is used within our
runtime analysis system JPaX. We are planning to investigate minimizing the



9

impact of instrumentation on the execution time of a program, by instrumenting
different parts of the code for different test executions and then correlating the
results. We also plan to combine dynamic analysis with static analysis.

References

1. 1st CAV Workshop on Runtime Verification (RV’01). In K. Havelund and G. Roşu,
editors, Proceedings of Runtime Verification (RV’01), volume 55(2) of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2001.

2. 2nd CAV Workshop on Runtime Verification (RV’02). In K. Havelund and G. Roşu,
editors, Proceedings of Runtime Verification (RV’02), volume 70(4) of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2002.

3. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

4. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
G. Roşu, and W. Visser. Experiments with Test Case Generation and Runtime
Analysis. In E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract State
Machines 2003, LNCS 2589, Taormina, Italy, pages 87–107. Springer, March 2003.

5. C. Artho, K. Havelund, and A. Biere. High-Level Data Races. In VVEIS’03,
The First International Workshop on Verification and Validation of Enterprise
Information Systems, April 2003. Angers, France.

6. S. Bensalem and K. Havelund. Reducing False Positives in Runtime Analysis of
Deadlocks. Submitted for publication, October 2002.

7. S. Cohen. Jtrek. Developed by Compaq.
8. M. Dahm. BCEL. Compaq, http://jakarta.apache.org/bcel.
9. T. Elrad, R. E. Filman, and A. Bader. Aspect-Oriented Programming. Comm.

ACM, 44(10):29–32, 2001.
10. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In

Proceedings of the First International Workshop on Runtime Verification (RV’01),
volume 55(2) of Electronic Notes in Theoretical Computer Science, pages 97–114,
Paris, France, July 2001. Elsevier Science.

11. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1999.

12. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–77, 1977.


