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Abstract  1 

Objectives: Chronic sleep restriction is highly prevalent in modern society and is in its clinical 2 

form, insufficient sleep syndrome, one of the most prevalent diagnoses in clinical sleep 3 

laboratories, with substantial negative impact on health and community burden. It reflects 4 

every-day sleep loss better than acute sleep deprivation, but its effects and particularly the 5 

underlying mechanisms remain largely unknown for a variety of critical cognitive domains, as 6 

for example risky decision-making.  7 

Methods: We assessed financial risk-taking behavior after 7 consecutive nights of sleep 8 

restriction and after one night of acute sleep deprivation compared to a regular sleep condition 9 

in a within-subject design. We further investigated potential underlying mechanisms of sleep 10 

loss induced changes in behavior by high-density electroencephalography recordings during 11 

restricted sleep. 12 

Results: We show that chronic sleep restriction increases risk-seeking, while this was not 13 

observed after acute sleep deprivation. This increase was subjectively not noticed and was 14 

related to locally lower values of slow wave energy during preceding sleep, an 15 

electrophysiological marker of sleep intensity and restoration, in electrodes over the right 16 

prefrontal cortex.  17 

Interpretation: This study provides for the first time evidence that insufficient sleep 18 

restoration over circumscribed cortical areas leads to aberrant behavior. In chronically sleep 19 

restricted subjects, low slow wave sleep intensity over the right prefrontal cortex - which has 20 

been shown to be linked to risk behavior – may lead to increased and subjectively unnoticed 21 

risk-seeking. 22 

 23 

  24 
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Introduction 1 

The insufficient sleep syndrome is a very prevalent sleep-wake disorder which 2 

negatively impacts health and causes major community burden1, 2. In affected subjects, 3 

excessive daytime sleepiness is caused by behavior, i.e., chronic sleep restriction (SR), and 4 

not by a medical pathophysiology3. Accordingly, the current diagnostic criteria require that a 5 

patient’s sleep time is usually shorter than expected for age3. Chronic SR generally affects 6 

large parts of modern society4-6. Apart from sleepiness, regular sleep durations of less than 7 7 

hours per night causes impairments in cognitive performance involving vigilant attention, 8 

cognitive processing speed, and working memory7.  9 

However, the majority of experimental studies on the behavioral effects of sleep loss 10 

focused on the effects of acute sleep deprivation (SD)8, a term used to indicate the full 11 

absence of sleep for an entire night or a longer consecutive period of time. In contrast to 12 

chronic SR, however, acute SD does not reflect a major socio-medical problem. It is currently 13 

unclear whether effects observed after SD also apply to chronic SR8-10. As a consequence, the 14 

effects and underlying mechanisms of chronic SR, despite reflecting every-day sleep loss 15 

much better than acute SD, remain largely unknown for a variety of critical cognitive 16 

domains.  17 

Decision-making in chronically sleep-restricted people has hardly been studied so far 18 

but is crucial for activities of daily living and particularly essential for economic and political 19 

leaders11, 12. Over 40% of managers of companies and enterprises sleep 6 hours or less per 20 

night13. These figures clearly indicate that we need insights into the effects of insufficient 21 

sleep on decision-making, including financial risk-taking. Some studies investigated risk-22 

taking after acute sleep deprivation. The results on the influence on risk-taking have been 23 

mixed though14-21, probably due to different paradigms and protocols. However, up to date no 24 

paper assessed physiological brain measures related to risk-taking after SR.  25 
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Therefore, the aim of our study was to assess the effects of both chronic SR and acute 1 

SD on risk-taking, i.e., on individual risk-preferences, and to investigate underlying 2 

mechanisms of potential changes after SR. Slow oscillating brain activity, namely slow waves 3 

during non-rapid eye movement (NREM) sleep are thought to reflect sleep intensity and the 4 

restorative function of sleep22. Slow waves are not equally distributed over the cortex but 5 

show local differences that vary between individuals23 and that can be assessed using high-6 

density EEG24. Given that cognitive domains known to be impaired after sleep loss are 7 

processed in specific cortical areas, we hypothesized that local differences in sleep intensity 8 

during the short nights of SR would relate to eventual changes in risk-taking after SR.  9 

 10 

Methods 11 

Experimental Design 12 

We evaluated risk-taking in a controlled cross-over and within-subject protocol that 13 

included SR (7 nights during which time in bed was restricted to 5 hours per night) and SD 14 

(40 hours of continuous wakefulness), compared to a regular sleep condition (RegS) in a 15 

counterbalanced design (Fig 1). Risk-taking was assessed twice a day (afternoon and evening 16 

- to mitigate potential diurnal fluctuations of behavior) after RegS, after SR and after SD.   17 

Both SR and SD were preceded by one week of regular sleep-wake rhythm at home (eight 18 

hours in bed per night adapted to each subject’s habitual bedtime). The interval between SR 19 

and SD was at least two weeks. SD was performed in the sleep laboratory under constant 20 

supervision. The first 4 nights and days of the SR protocol were performed at home, the last 3 21 

nights in the sleep laboratory, which was achieved by delaying the bedtime by two hours and 22 

advancing the time of getting up by one hour. Compliance outside the laboratory was ensured 23 

by wrist actigraphy25 (on the non-dominant wrist; light sensor data included, ActiWatch, 24 

Respironics), sleep diaries, and phone calls (mean ± s.e.m. actigraphy derived time in bed 25 
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during SR nights at home: 4.94 ± 0.01 h, in the sleep lab: 5.01 ± 0.03 h). Daytime napping 1 

was not allowed throughout the protocol. All actograms were therefore checked by an expert 2 

and no indication of unplanned sleep has been detected in any of the subjects. Subjects were 3 

further asked to abstain from caffeine, alcohol, and medication intake, starting 3 days prior to 4 

SR and SD and lasting throughout the protocol. Smokers were requested not to increase their 5 

habitual cigarette consumption, and to not smoke at least 30 minutes prior to each assessment. 6 

This 30-minute restriction also applied to food intake.  7 

To evaluate repetitive test effects, we performed a task validation with another group 8 

of male subjects. This task validation group, which was different from the participants in the 9 

main experiment, maintained a regular sleep-wake rhythm with eight hours in bed per night 10 

for two weeks in total, controlled by wrist actigraphy and sleep diaries. Behavioral 11 

assessments took place during the second week at the same times as during RegS followed by 12 

SR in the main experiment (cf. Fig 1B). All study-related restrictions were identical to the 13 

main experiment. 14 

 15 

Participants 16 

Fourteen healthy, right-handed, male participants, aged between 18 and 28 years (21.9 17 

± 3.0, mean ± s.d.) were recruited from a student population. The sample size was chosen in 18 

accordance to previous studies investigating sleep loss-induced changes in behavior (e.g.10) 19 

and alterations of risk-taking behavior due to brain stimulation (e.g.26). The reported regular 20 

sleep duration ranged from seven to eight hours per night (7.7 ± 0.4 hours per night, mean ± 21 

s.d.). Female subjects were not included in this study, as for example sleep deprivation-22 

induced cognitive impairments have been shown to vary in response to the phase of the 23 

menstrual cycle and the intake of oral contraceptives27. Confounds related to different time 24 

points of the menstrual cycle would have been unavoidable due to the lengthy study protocol. 25 
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Subjects were carefully screened for exclusion criteria that may potentially affect brain 1 

functioning, sleep physiology, or risk-taking. These encompassed clinically relevant diseases, 2 

regular medication intake, history of a seizure or moderate to severe traumatic brain injury, 3 

history of sleep-wake disorders or complaints (including excessive daytime sleepiness and 4 

irregular sleep-wake rhythm), drug or alcohol abuse, long (>9 hours per night) or short 5 

sleepers (<7 hours per night), recent travelling across more than two time zones, more than 6 

five drinks or food items containing caffeine per day, more than ten cigarettes per day, and 7 

subjects studying mathematics, physics, computer science, economics, or psychology as these 8 

students might be familiar with behavioral test settings or their analyses. A screening night 9 

was further performed to exclude any undiagnosed sleep disorders, to assess sleep efficiency, 10 

and to let the subjects adapt to the lab environment. The same inclusion and exclusion criteria 11 

applied to the subjects recruited for the task validation group (n = 14, aged between 18 and 29 12 

years; 22.5 ± 3.1). Sleep disturbances were only excluded based on questionnaires but no 13 

sleep EEG was recorded in the inclusion procedure. Although, we cannot fully exclude the 14 

presence of any undiagnosed sleep disorders without a sleep EEG in the subjects recruited for 15 

task validation, none of the well-established questionnaires indicated disturbed sleep (range of 16 

scores Pittsburgh Sleep Quality Index: 0 – 4; Sleep Apnea scale of the Sleep Disorders 17 

Questionnaire (SAS-SDQ): 17 – 28; Ullanlinna Narcolepsy Score: 3 – 8; Epworth Sleepiness 18 

Scale: 0 – 10).  19 

All subjects received fixed and variable (depending on task outcomes) monetary 20 

compensation for study participation. The local ethics committee approved the study 21 

(cantonal ethics commission Zurich, KEK-ZH-Nr. 2012-0496; registration at 22 

clinicaltrials.gov: NCT02305225) and written informed consent was obtained from all 23 

participants. 24 

 25 
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Assessment of Risk-Taking 1 

To determine individual risk-preferences we used a binary probabilistic decision task 2 

adapted from Levy et al.28. On every trial, subjects had to choose between a specified amount 3 

of money paid out with a given probability or a lower amount of money paid out for sure (Fig 4 

1). This paradigm is a standard procedure in behavioral economics that is routinely used to 5 

measure the individual propensity for risk-taking29, 30. Both options were displayed 6 

simultaneously on either side of the computer screen (spatial position of options was 7 

randomized across trials). We used four different levels of probability in the risky options 8 

(20%, 40%, 60% and 80%) and all of these risky offers were matched with a certain monetary 9 

amount to keep the expected value (EV = p * v, with p = probability, v = value) fixed at 20 10 

Swiss Francs (100, 50, 33.30 and 25 Swiss Francs, respectively). Each probabilistic offer was 11 

paired with 22 linearly increasing certain choice alternatives ranging from 1.75 to 38.30 Swiss 12 

Francs. These ranges had been optimized prior to the study in an independent pilot trial (in 9 13 

healthy, young students who did not participate in the study itself) to capture the risk attitudes 14 

of the targeted participant population. All pairs of options were repeated four times per 15 

session in a random order, adding to a total of 352 trials. Maximal time given to indicate the 16 

choice by left or right key press was 8 seconds, therefore ensuring spontaneous, realistic 17 

answers, but giving enough time to process the displayed information. The next trial appeared 18 

1 second after the preceding choice, or after 8 seconds if no answer had been given (mean ± 19 

s.e.m number of trials without response was 0.0 ± 0.0 after RegS, 0.3 ± 0.2 after SR and 3.2 ± 20 

1.7 after SD). During the task, the subject was monitored by video surveillance. After each 21 

session, subjects were asked to rate how often they thought to have chosen the risky option 22 

using a visual analogue scale, ranging from “never risky” to “always risky”. To ensure that 23 

decisions were taken in an incentive-compatible fashion, we randomly selected one trial at the 24 

end of some sessions (determined by coin flip) and played out the trial according to the 25 
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subject’s decision (for risky options a lottery with the given probability was played by open 1 

dice toss).  2 

The total risk premium was calculated for each session as the main outcome measure 3 

of a subject’s risk-preference. It indicates by how many percent a subject undervalues a risky 4 

option compared to its objective expected value (EV). The risk premium of a specific 5 

probability was defined in % as (EV - CE) / EV * 100, where the certainty equivalent (CE) is 6 

the amount of money that a subject treated as equally desirable as the risky option. We 7 

calculated the CE by sorting trials of each probability level according to their certain amount 8 

(ascending) and determining the choice reversal point at which subjects switched from the 9 

probabilistic option to the certain alternative. If a subject’s behavior is risk-neutral then CE 10 

equals EV, resulting in a risk premium of 0%. Risk aversion is expressed as a positive value, 11 

reflected by a smaller CE than EV. Conversely, risk-seeking is expressed as a negative value, 12 

reflected by a larger CE than EV. Thus, the total risk premium refers to the extent of 13 

“irrational” risk-taking behavior, either in terms of not choosing risky options despite higher 14 

EVs (risk-averse) or choosing risky options despite lower EVs (risk-seeking) compared to 15 

offered amount in the safe option.  16 

We assessed the consistency of observed choices with the inferred risk-preference by 17 

counting how often the subject’s choices were inconsistent with the estimated CE. The 18 

number of deviations (x) was transformed by √x + √(x+1) to approximate a normal 19 

distribution of the data (analogue to the transformed frequency of lapses in vigilance – see 20 

below).  21 

To evaluate potential repetition effects, we administered the risk task repeatedly to a 22 

task validation group (another group of male subjects) at the same time points as during SR in 23 

the main experiment (6 repetitions in total over the course of 8 days, cf. Fig 1B) but while 24 

adhering to a regular sleep-wake rhythm of 8 hours per night. We excluded two subjects from 25 
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the task validation group, one due to acute illness and one due to missing the last assessment. 1 

We found that the risk premium was different from the following assessments up to the third 2 

repetition of the task and was stable afterwards in the task validation group when looking at 3 

the single assessments. When investigating the change of averages across two test sessions – 4 

equivalent to the two test sessions per condition in the main experiment – only the average 5 

over the first two assessments was significantly different from the following ones (Fig 1C). 6 

Results were comparable when examining the first five assessments including the subject in 7 

which data for the sixth assessment was missing (data not shown). As a result, we included 8 

two habituation test sessions in the main experiment before starting the first sleep 9 

manipulation (either before SR or SD, Fig 1B). Along the counter-balanced design, half of the 10 

subjects in the experiment performed SR before RegS followed by SD and the other half 11 

performed first SD before RegS followed by SR (cf. Fig 1B), allowing also to test for 12 

potential order effects.  13 

 14 

Assessment of Vigilance and Sleepiness 15 

To exclude that changes in risk-preferences are merely a result of impaired vigilance 16 

we also acquired the psychomotor vigilance test31 (PVT-192, Ambulatory Monitoring Inc.). 17 

The PVT is a sustained visual vigilance reaction-time task lasting ten minutes. We 18 

investigated the number of lapses which corresponds to trials for which the subject was not 19 

able to respond within 500 ms. The number of lapses (x) was transformed by √x + √(x+1) to 20 

approximate normal distribution of the data32. In addition, we assessed subjective excessive 21 

daytime sleepiness before and after the seven nights of SR with the Epworth sleepiness scale. 22 

 23 

Assessment of Sleep 24 
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Sleep was recorded in the sleep laboratory at the Department of Neurology, University 1 

Hospital Zurich, using a high-density EEG net (Electrical Geodesics Inc. Sensor Net for long-2 

term monitoring) consisting of 128 electrodes. Impedances of all electrodes were kept below 3 

50 kΩ, and data was recorded with a sampling rate of 500 Hz.  Offline data processing, 4 

including filtering (0.5 Hz high-pass, 40 Hz low-pass filter), artefact and bad quality channel 5 

rejection, sleep stage scoring, re-referencing of data to the average of all electrodes, spectral 6 

analysis and interpolation of previously excluded channels was conducted in MATLAB as 7 

reported previously (e.g.33). We quantified the extent of slow waves during sleep by slow 8 

wave energy (SWE), i.e., the summed the whole-night mean spectral power in the range of 9 

0.75 – 4.5 Hz of all artefact-free NREM 2 and NREM 3 epochs. As in previous studies 10 

assessing topographical differences23, 33, we normalized the obtained power values resulting in 11 

individual topographical distributions indicating relative SWE values at every electrode 12 

(expressed as % of average SWE over all electrodes of a subject). Without the excluded 13 

channels below the ears (which were excluded from further analysis to avoid artefacts induced 14 

by facial and neck muscles), our topography finally consisted of 109 electrodes. 15 

 16 

 17 

Statistical Analysis 18 

We performed a mixed analysis of variance (ANOVA) for the risk premium and 19 

subjective risk-taking measures after testing for normal distribution (Shapiro-Wilk test) with 20 

within-subject factors condition (RegS, SR, SD) and daily time point (1, 2) and the between-21 

subject factor order (SD-RegS-SR, SR-RegS-SD) to test for any potential interactions. As our 22 

main interest was to contrast the two sleep conditions to the condition of RegS, we performed 23 

a-priori defined simple contrasts, comparing the SR and SD conditions to RegS, in case of a 24 

significant main or interaction effect. We excluded one subject from the analysis of subjective 25 
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risk-taking measures due to missing data in the SD condition (order of conditions in this 1 

subject: SD, RegS, SR). However, results were not different for SR and RegS when all 2 

subjects were included (data not shown). 3 

 For the consistency of choices in the risk-task and the lapses in the PVT, we 4 

performed a repeated-measure Friedman’s ANOVA with all six assessments (both time points 5 

at RegS, SR and SD) as factor levels since the variables were not normally distributed in at 6 

least one condition even after transformation. To stay consistent with the parametric 7 

procedure, we performed a-priori defined post-hoc comparisons according to the contrasts in 8 

the parametric procedure with the Wilcoxon Signed Ranks Test. Having only one factor did 9 

not allow us to restrict the number of post-hoc comparisons in case of a significant result in 10 

Friedman’s ANOVA. Hence, in this case we controlled for multiple testing by applying 11 

Bonferroni correction to P-values (multiplying the P-values by 5, corresponding to the 12 

number of performed post-hoc comparisons). Correspondingly, we calculated 99% confidence 13 

intervals (CI) for non-parametric comparisons (while in comparisons without Bonferroni 14 

correction of P-values, 95% CI are reported). To test for any order effects, we performed a 15 

post-hoc between-group comparison on the above mentioned differences using the Mann-16 

Whitney U-test with the same Bonferroni correction.  17 

Frequency distributions across categories were compared using Pearson’s chi-square 18 

test and related changes with McNemar’s test.Relationships between measures were assessed 19 

by Pearson’s correlation coefficients, which were tested for significance by permutation 20 

testing (5000 permutations of the subject order in the data) whenever one variable were not 21 

normally distributed. Electrodes were only considered significant when forming a cluster of at 22 

least 5 neighboring electrodes for SWE data (as with 109 electrodes tested and an alpha level 23 

of 0.05 this number corresponds to the number of expected false-positives). By restricting the 24 

possible location of the electrodes, the actual probability of false-positives is much lower. 25 



12 

 

All statistical analyses were performed using SPSS (IBM SPSS Statistics 22.0) or MATLAB 1 

(R2014a).  2 

 3 

Results  4 

Effects of SR and SD on Risk-Preference 5 

The mixed analysis of variance (ANOVA) for the risk-preferences revealed a 6 

significant effect for the factor sleep condition only (F (2, 24) = 3.72, P = 0.04, ηp
2 = 0.24, all 7 

other factors and interactions: all P > 0.25, ηp
2 < 0.12). Planned contrasts comparing risk-8 

preferences both after 7 nights of SR and after SD to RegS revealed that only SR resulted in 9 

significantly increased risk-seeking (Table 1, Fig 2A). Most subjects were risk-aversive after 10 

RegS, which is in agreement with the well-documented risk-avoidance for gains34 (Fig 2B). 11 

This was no longer observed after SR. Compared to RegS, the clear majority of subjects, i.e., 12 

11 out of 14 showed an increase in risk-seeking after SR (Fig 2B), and 6 of them changed 13 

from being risk-aversive after RegS to being risk-seeking after SR (red dots in Fig 2B; risk 14 

premium in those subjects after RegS: 6.3 ± 3.3%, after SR: -12.3 ± 6.2%, difference from 15 

RegS to SR: -18.6 ± 6.4%). That is, subjects moved towards a more risk-seeking attitude after 16 

SR. The extent of increase in risk-seeking after SR was independent of the individual baseline 17 

level of risk-preference after RegS (r (12) = 0.04, P = 0.90, two-sided). This means that both 18 

risk-averse and risk-seeking subjects increased their preference for risk after SR. Furthermore, 19 

individual preferences after SR were not closer to risk-neutrality (i.e., zero) than after RegS 20 

(absolute difference to risk-neutrality after RegS: 14.4 ± 4.0%, after SR: 17.5 ± 4.2%; 21 

difference from RegS to SR: +3.2 ± 3.8%, t (13) = -0.82, P = 0.43, two-sided paired-samples 22 

t-test, r = 0.22, CI (-11.4%, 5.1%)). Hence, SR does not lead to risk-neutral behavior but 23 

rather to a significant increase in risk-seeking. Assessing the subjective ratings of risk-taking 24 

behavior revealed that participants were not aware of their increased risk-seeking after SR, as 25 
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the mixed ANOVA showed no significant effect for either factor (all P > 0.26, ηp
2 < 0.13, 1 

Table 1, Fig 2C). Hence, altered risk-taking behavior did not reflect a conscious intentional 2 

reaction to the SR and was not even perceived by the subjects.  3 

 4 

Effects of SR and SD on Vigilance and Consistency of Choices 5 

After chronic SR, subjective excessive daytime sleepiness as assessed with the 6 

Epworth sleepiness scale increased markedly compared to pre-SR conditions (median 7 

[interquartile range] pre-SR: 5.5 [3.8, 7.3], after SR: 10.5 [6.8, 13.5], z = -3.1, median 8 

difference from pre-SR to after SR: +4.5, P = 0.002, two-sided, r = 0.59, CI (2.0, 7.0)).  9 

Following a significant result in Friedman’s ANOVA for the number of lapses in the 10 

PVT (χ2 (5) = 35.94, P = 0.000), planned post-hoc comparisons revealed that sustained 11 

attention was only significantly impaired after SD but not after SR (Table 1, Fig 3A; all other 12 

planned comparisons were non-significant: all P > 0.55, r < 0.30). The impairment in 13 

vigilance was further not associated with changes in risk-preferences after SR or SD (SR: r 14 

(12) = 0.19, P = 0.51; SD: r (12) = -0.04, P = 0.87, both P-values: two-sided, permutation 15 

testing). Parallel to vigilance, we evaluated how consistent the choices in the risk task were 16 

with the inferred risk-preference (i.e., how stable the estimated risk-preferences were 17 

expressed across trials for each subject). Following a significant result in Friedman’s ANOVA 18 

(χ2 (5) = 24.50, P = 0.000), post-hoc comparisons revealed that choice consistency was 19 

significantly reduced after SD but no significant change was observed after SR (Fig 3B, Table 20 

1; all other planned comparisons were non-significant: all P > 0.07, r < 0.47). Furthermore, no 21 

association between changes in consistency with changes in risk-preferences was detected 22 

(SR:  r (12) = -0.24, P = 0.41; SD: r (12) = -0.31, P = 0.26, both P-values: two-sided, 23 

permutation testing). This again indicates that SR merely affected risk-preferences but not 24 

general behavioral variability that may reflect attentional lapses. 25 
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 1 

Association of Changes in Behavior with the Restorative Function of Sleep  2 

 To examine whether the observed significant shift towards risk-seeking was 3 

associated with differences in local sleep intensity we correlated all-night SWE during the last 4 

night of SR (Fig 4A) with the increase in risk-seeking after SR (risk premium after RegS 5 

minus risk premium after SR). Production of less SWE in a right prefrontal cluster of 6 6 

electrodes was linked to increased risk-seeking the following day (Fig 4B). Low levels of 7 

right prefrontal SWE were highly specific for predicting an increase in risk-seeking after SR 8 

(Fig 4C).  9 

 10 

 11 

Discussion 12 

This study provides first-time evidence that chronic SR as it occurs in the prevalent 13 

insufficient sleep syndrome negatively affects decision-making behavior in association with 14 

locally decreased sleep restoration over circumscribed cortical areas. In chronically sleep 15 

restricted subjects, low slow wave sleep intensity over the right prefrontal cortex - which has 16 

been shown to be linked to risk behavior – may lead to increased and subjectively unnoticed 17 

financial risk-seeking - while no major effects on vigilance or the consistency of choices with 18 

the subject’s risk-preference were detected. On the other hand, SD did not significantly affect 19 

a subject’s preference for risk but lead to reduced choice consistency paralleled by 20 

significantly impaired vigilance. While these latter effects of SD are in line with previous 21 

results18-20 and may mostly reflect behavioral instability, the divergent findings imply that not 22 

all aspects of acute SD can be generalized to other forms of sleep loss such as chronic SR. 23 

The increase in risk-seeking after SR was subjectively not noticed, indicating a misperception 24 

of altered decision-making, which fits the previously reported underestimation of cognitive 25 
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impairments after SR10. Up to date, only one study investigated impulsive-risk taking after 1 

mild chronic sleep restriction35, but found no effects on risk-taking, yet on impulsive action. 2 

However, it has been shown before that sleep deprivation leads to increased effort 3 

discounting36, which can mask effects on risk-preferences when no forced choice paradigm is 4 

used, as it is the case in the task applied in that study, i.e., in the balloon analogue risk task 5 

(BART)37. Furthermore, the study did not include any physiological brain measures - 6 

including sleep parameters per se – which made it impossible to investigate by what 7 

mechanisms chronic sleep loss might have altered decision-making. Considering that the 8 

cause for the insufficient sleep syndrome, i.e., chronic SR is a highly prevalent condition in 9 

modern societies, with 30% or more of the population in various countries reporting 10 

inadequate sleep durations4-6, our findings further emphasize the importance of investigating 11 

the effects of chronic SR.  12 

We found that lower SWE over the rPFC during SR relate systematically to the 13 

increase in risk-seeking after SR. Hypo-activity of the rPFC during rest is a dispositional 14 

indicator of risk-seeking38. Hence, insufficient restoration during chronic SR might have an 15 

impact on rPFC function, resulting in effects similar to those of experimental rPFC 16 

disruption26. While it has been shown before that consequent increases in slow waves are 17 

linked to plastic processes occurring during learning39, we show here that the local extent of 18 

slow waves during restricted sleep periods is linked to sleep-loss induced changes in behavior. 19 

To the best of our knowledge, such a direct link between local electrophysiological correlates 20 

of the restorative function of sleep and changes in behavior resulting from insufficient sleep 21 

has not been shown before. 22 

Slow waves result from synchronous activity of neuronal populations40, 41. The 23 

intensity of slow waves varies due to differences in strengths of connections or their relative 24 

regional density22. The topography of slow waves is highly stable within an individual and 25 
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thus is thought to reflect individual traits of functional anatomy23. Hence, SWE might not 1 

only indicate how much restoration is obtained during the night but could also reflect stable 2 

degrees of a brain structure’s functional integrity, with higher levels of integrity making a 3 

structure more robust against function deterioration when challenged by SR. Future studies 4 

manipulating slow waves in the rPFC could help to determine whether functional 5 

deterioration after sleep loss is determined by the extent of sleep-related restoration or by 6 

more stable neuro-anatomical differences.  7 

Our results imply that the insufficient sleep syndrome might come along with further, 8 

until now unrecognized alterations of behavior, beside the defining and up-to now identified 9 

secondary symptoms, like for example dysphoria or reduced motivation3, with potentially 10 

negative consequences. As the current findings are based on a carefully selected study sample 11 

including only healthy, young men, future studies are needed to assess whether the findings 12 

generalize to other parts of the population. A further increase in risk-seeking due to 13 

insufficient sleep might be particularly problematic in individuals who already have a high 14 

preference for risk per se. While over 70% of business students report to obtain subjectively 15 

insufficient or highly insufficient sleep42, they are also more risk-seeking than the general 16 

public43 and the economic crisis in 2008 is at least partly attributed to risky business 17 

decisions12. Nevertheless, the prevalence of short sleep durations due to extended working 18 

hours and commute time is increasing in modern society6, 8, 44.  An alarming additional result 19 

is our observation that sleep-restricted subjects do not notice their increased drive for risk-20 

taking. While we cannot exclude that individuals in positions that require high-impact 21 

decision-making may be more resilient to the effects of sleep restriction, our results suggest 22 

that all of us, but particularly leaders of companies and countries, are well advised to work 23 

and make decisions only when fully sleep-satiated.  24 
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Figure 1: Study Setup. (A) Schematic study design. Risk-taking behavior was assessed in 1 

the same subjects after 7 nights of regular sleep (8 hours in bed per night) and compared to 2 

behavior after 7 nights of sleep restriction (5 hours in bed per night), and after a night of sleep 3 

deprivation (one night without sleep). High-density EEG recordings were performed during 4 

sleep. In the risk task subjects had to choose between two options represented by two bars (in 5 

this example left reflects the safe and right the risky option). Numbers in the bar: money value 6 

in Swiss Francs. Green bar height: probability level of receiving the money. Red bar height: 7 

probability level of getting nothing (0.00). When the right bar was chosen there was a 40% 8 

chance to win 50 Swiss Francs and a 60% chance of getting nothing, when the left green bar 9 

was chosen the chance was 100% to receive 24.35 Swiss Francs in this trial. (B) Detailed 10 

study design. Regular sleep (RegS, green), sleep restriction (SR, orange) and sleep 11 

deprivation (SD, blue) in a counterbalanced cross-over design (upper and lower line show the 12 

two possible sequences of conditions), with repeated behavioral tests (red and pink 13 

rectangles). Black bars: nights with 8h (broad bars) and 5h (thin bars) time in bed. H (gray): 14 

assessments performed to habituate a subject to the tests. Red rectangles: data points analyzed 15 

in this manuscript, including 2 assessments per day (approx. 2pm and 7.30pm) after the last 16 

night of SR, during SD and RegS. Pink rectangles: data points not included in the analysis. 17 

(C) Risk premium values over six repeated assessments for task validation (n = 12, means ± 18 

s.e.m.). Bars indicate means ± s.e.m. The single assessments are shown in dark grey, the 19 

average over two assessments in light grey. Repeated-measure analysis of variance (ANOVA) 20 

across all assessments and the average over two assessments was significant in both cases 21 

(Assessment 1 to 6: F (2.91, 32.02) = 13.87, P = 0.000; Average over two sessions (3 22 

averages): F (1.47, 16.19) = 16.80, P = 0.000; Huynh-Feldt correction for degrees of 23 

freedom). Planned contrasts (Helmert) were performed for all assessments (first to following: 24 

F (1, 11) = 23.40, P = 0.001, second to following: F (1, 11) = 9.56, P = 0.01, third to   25 

following: F (1, 11) = 10.73, P = 0.01, fourth to following: F (1, 11) = 0.28, P = 0.61.; fifth to 26 
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sixth: F (1, 11) = 0.004, P = 0.95) and for the averages across two assessments (first to 1 

following: F (1, 11) = 19.68, P = 0.001, second to third: F (1, 11) = 0.84, P = 0.38). 2 
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Figure 2: Changes in risk-taking behavior following sleep restriction (SR) and (SD) 1 

compared to regular sleep (RegS). (A) Changes in risk-preferences. * P < 0.05; n.s.: P > 2 

0.05, two-sided. For exact test values see table 1. (B) Difference plot of risk premium values 3 

after RegS and after SR. Deviation from the diagonal indicates the amount and direction of 4 

change in each subject. Different colors indicate whether a subject was risk-aversive or risk-5 

seeking after RegS and after SR: The majority of subjects was risk-aversive after RegS (red 6 

and orange dots; χ2 (1) = 4.57, P = 0.03, sample proportion ± s.e. = 0.79 ± 0.11, CI (0.57, 7 

1.00)) but not after SR (orange and purple dots; χ2 (1) = 0.29, P = 0.59, sample proportion ± 8 

s.e. = 0.43 ± 0.13, CI (0.17, 0.69), change of proportion from RegS to SR: χ2 (1) = 2.29, P = 9 

0.13, difference in sample proportion ± s.e. = -0.35 ± 0.22, CI (-0.78, 0.07)). Compared to 10 

RegS, the clear majority of subjects showed an increase in risk-seeking after SR (points above 11 

diagonal; χ2 (1) = 4.57, P = 0.03, sample proportion ± s.e.m. = 0.79 ± 0.11, CI (0.57, 1.00)). 12 

(C) Changes in subjectively reported percentage of choosing the probabilistic option. No 13 

planned contrasts performed. Zero represents no change compared to RegS, bars indicate 14 

means ± s.e.m.   15 
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Figure 3: Changes in vigilance and choice consistency following sleep restriction (SR) 1 

and sleep deprivation (SD) compared to regular sleep (RegS). (A) Vigilance, i.e., 2 

transformed number of lapses in the psychomotor vigilance test (PVT). (B) Consistency of 3 

choices over all trials, i.e., transformed number of trials in which the choice deviated from the 4 

inferred risk-preference. Box plots indicate medians (horizontal line), upper and lower 5 

quartiles (box), and extrema (whiskers); outliers are shown as black dots. *P < 0.05, n.s.: P > 6 

0.05, two-sided testing with post-hoc Bonferroni correction. For exact test statistics see Table 7 

1.  8 
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Figure 4: Slow wave energy (SWE) topography and the correlation of SWE with the 1 

increase in risk-seeking after sleep restriction (SR) relative to regular sleep (RegS). (A) 2 

Whole-night SWE topography (average of all subjects) during the last night of SR.  SWE 3 

values at every electrode were normalized in relation to average SWE over all electrodes of a 4 

subject. Dark blue to dark red colors indicate minimal (42%) to maximal (170%) SWE. (B) 5 

Topographical distribution of Pearson’s correlation coefficients between normalized SWE 6 

during the last night of SR and the increase in risk-seeking after SR. White dots: significant 7 

cluster of electrodes (all P < 0.05, permutation testing, two-sided). (C) Relationship between 8 

averaged SWE in the cluster and the increase in risk-seeking after SR (r (12) = -0.76, P = 9 

0.001, Pearson’s correlation coefficient, permutation testing, two-sided). Dotted lines: no 10 

change in risk-seeking or average SWE (relative to the other electrodes of a subject). Red: 11 

subjects with increased risk-seeking and below average SWE. Blue: subjects without 12 

increased risk-seeking and above average SWE. 13 

14 
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Table 1: Assessed variables and statistical comparisons. 1 

 

Mean ± s.e.m 

 

Mean difference ± s.e.m. 

and planned contrasts 

 RegS SR SD  SR vs. RegS SD vs. RegS 

Risk 

premium  
7.8 ±  5.2% -2.3 ±   6.4% 7.6 ±    5.5%  

-10.1 ± 4.1% 

F(1, 12) = 6.04 

P = 0.03 

r = 0.58 

CIa (1.1, 19.1) 

-0.2 ± 3.0% 

F(1, 12) = 0.01 

P = 0.94 

r = 0.02 

CIa (-6.3, 6.8) 

Subjective 

risk 

frequency 

60.0 ± 5.3% 60. 5 ± 3.7% 58.5 ± 4.2%  

+0.5 ± 5.2% 

CIa (-10.9, 11.8) 

 

-1.5 ± 3.2% 

CIa (-8.4, 5.4) 

 

 

Median [interquartile range] 

 

Median difference 

and planned comparisons 

 RegS SR SD  SR vs. RegS SD vs. RegS 

PVT lapses 
2.0 

[1.0, 2.5] 

2.1 

[1.5, 5.2] 

4.5 

[2.8, 7.4] 
 

+ 1.1 

z = -1.87 

P = 0.31c 

r = 0.35 

CIb (-0.7, 3.6) 

+ 3.1 

z = -3.18 

P = 0.01c 

r = 0.60 

CIb (1.3, 5.2) 

Choice 

consistency 

10.2 

[8.2, 11.6] 

10.9 

[10.1, 12.0] 

12.4 

[10.0, 15.3] 
 

+ 1.2 

z = -2.10 

P = 0.18c 

r = 0.40 

CIb (-0.4, 2.9) 

+ 2.6 

z = -2.92 

P = 0.02c 

r = 0.55 

CIb (0.8, 4.8) 

RegS: regular sleep, SR: sleep restriction, SD: sleep deprivation, PVT: psychomotor vigilance 2 

test, a 95% confidence interval (CI), b 99% CI, c Bonferroni corrected P-values; All P-values 3 

are based on two-sided testing, bold values indicate P-values < 0.05. Planned simple contrasts 4 

were conducted following a significant effect in the mixed analysis of variance (ANOVA). 5 

Planned comparisons, i.e., Wilcoxon Signed Ranks Tests, were performed for non-normally 6 

distributed data following a significant result in a repeated-measures Friedman’s ANOVA. 7 




