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The physics of manganites appears to be dominated by phase competition among ferromagnetic metallic and

charge-ordered antiferromagnetic insulating states. Previous investigations [Burgy et al., Phys. Rev. Lett. 87,

277202 (2001)] have shown that quenched disorder is important to smear the first-order transition between

those competing states, and induce nanoscale inhomogeneities that produce the colossal magnetoresistance

effect. Recent studies [Motome et al., Phys. Rev. Lett. 91, 167204 (2003)] have provided further evidence that

disorder is crucial in the manganite context, unveiling an unexpected insulator-to-metal transition triggered by

disorder in a one-orbital model with cooperative phonons. In this paper, a qualitative explanation for this effect

is presented. It is argued that the transition occurs for disorder in the form of local random energies. Acting

over an insulating states made out of a checkerboard arrangement of charge, with “effective” site energies

positive and negative, this form of disorder can produce lattice sites with an effective energy near zero,

favorable for the transport of charge. This explanation is based on Monte Carlo simulations and the study of

simplified toy models, calculating the density-of-states, cluster conductances using the Landauer formalism,

and other observables. A percolative picture emerges. The applicability of these ideas to real manganites is

discussed.
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I. INTRODUCTION

The study of manganites—the materials with the colossal
magnetoresistance—continues attracting the attention of con-
densed matter experts.1,2 These compounds are interesting
for their potential technological applications as “read sen-
sors” in computers, as well as for the basic science chal-
lenges that their unusual properties represent for our under-
standing of transition-metal oxides. It is widely believed that
strong correlations are crucial to understand these manganese
oxides, either in the form of large Coulombic interactions or
large electron Jahn-Teller phonon couplings, or both simul-
taneously. Some of their unusual properties include a re-
markable response to magnetic fields, with the dc resistivity
changing by as much as 10 or more orders of magnitude in
some compounds upon the application of fields of order 1
Tesla. Another interesting property is the rich phase diagram
that these materials present, with competition of very differ-
ent states mainly involving ferromagnetic (FM) metallic and
charge-ordered (CO) antiferromagnetic (AF) phases. More-
over, in recent years a plethora of experiments have unveiled
a remarkable tendency to form inhomogeneities, which occur
mainly at the nanoscale but with some investigations report-
ing domains as large as a submicrometer in size.3 This spon-
taneous generation of nanoclusters was predicted theoreti-
cally when phase separation tendencies were unveiled in the
first Monte Carlo simulations of models for manganites in
1998 by Yunoki et al.,4 then confirmed and refined experi-
mentally in dozens of efforts.5 The successful cross-
fertilization between theory and experiment is remarkable in
the area of Mn-oxides, leading to considerable progress in
recent years. These studies may have consequences not only
for manganites, but for a variety of other compounds where
inhomogeneities have been found in experiments, including
the famous high-temperature superconductors.6

Among the leading candidates to understand the CMR
effect is the “phase separation” scenario.2,5,7 In this context,

the state that is believed to be abnormally susceptible to
external magnetic fields is made out of coexisting clusters of
two competing phases. The clusters involving the FM state
have random orientations of their magnetic moments, lead-
ing to an overall vanishing magnetization. However, the
“building blocks” of the FM state (i.e., the FM nano clusters)
are preformed and for this reason the state reacts rapidly to
magnetic fields, aligning the nanocluster moments in the
presence of small fields. Energetically it is quite different to
form a FM state from “scratch,” as opposed to having pre-
formed FM islands that only need to reorient their magnetic
moments to generate global ferromagnetism. The competing
state is also important in the proposed CMR state, since it
provides walls that prevent the alignment of the nanoclusters
in the absence of external fields.5,7

In order to stabilize this type of CMR states, the role of
quenched disorder appears to be important.7 This disorder
prevents the system from being totally ferromagnetic or to-
tally CO-AF, as it occurs in the clean limit where a first-order
phase transition separates the states.2,5 Small amounts of
quenched disorder locally favor one phase over the other,
leading to the inhomogeneous patterns found in simulations,
which are believed to correspond to those in experiments.
These predictions were beautifully confirmed by the group of
Tokura,8 by means of a careful study of a particular Mn-
oxide that spontaneously forms a structure very close to the
clean limit, since all ions order in a regular pattern. This
compound presents a “bicritical” phase diagram, with a first-
order FM-AF transition in excellent agreement with Monte
Carlo simulations.9 When the material is rapidly quenched in
the growing process, such that the disorder is now incorpo-
rated in the distribution of trivalent ions, then a behavior
characteristic of many other manganites is recovered. In par-
ticular, a large CMR is found in the presence of disorder, a
result compatible with the theoretical predictions.5,7 Recent
investigations by Sato, Lynn, and Dabrowski10 arrived to
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similar conclusions studying La0.54Ba0.46MnO3. Other recent
investigations11 have shown that the addition of lattice elastic
effects (due to the cooperative nature of the Jahn-Teller dis-
tortions) makes the disorder strength needed to induce the
CMR phenomenon smaller in magnitude than without elas-
ticity, and avoids limitations in the critical dimension that the
naive use of Imry-Ma argumentations12 would suggest. The
relevance of elastic effects has been remarked extensively in
recent literature as well.13 Other power-law decaying effects,
such as unscreened Coulomb interactions, have also been
proposed as relevant in this context.14 In addition, investiga-
tions of a variety of models of percolation have shown that
“correlated” disorder—to mimic elastic effects—can even
change the order of the transition rendering it first order.15 It
may occur that “infinitesimal” disorder is enough to trigger
and stabilize a phase separation process that is intrinsic to
systems with first-order phase transitions. Nevertheless, in
practice at least small amounts of disorder appear to be cru-
cial to produce the inhomogeneous state that theorists pro-
posed as the key factor to understand the CMR physics.

More recent investigations by Motome, Furukawa, and
Nagaosa16 have provided important information for the the-
oretical understanding of manganese oxides. Monte Carlo
simulations of the one-orbital double-exchange model in-
cluding cooperative phonons have revealed an interesting
transition from an insulator to a metal upon the introduction
of quenched disorder into a CO state. The disorder is in the
form of on-site random energies. Once again, the key role of
disorder is unveiled by these simulations. Independently,
Aliaga et al.9 arrived at similar conclusions studying a two-
orbital model for manganites including cooperative Jahn-
Teller phonons. These authors noticed that disorder drasti-
cally affects the CE charge-ordered state, transforming it into
a “CE glass.” Overall, it is clear that the use of cooperative
phonons (for previous work see Refs. 17 and 18 and refer-
ences therein), as opposed to the simpler case of noncoop-
erative lattice distortions, is important to unveil interesting
effects of manganite models, that may be of relevance to
experiments.

It is our purpose in this work to provide an intuitive un-
derstanding of the results of Ref. 16, mainly addressing the
transition from an insulator to a metal upon the introduction
of disorder, a result which seems counter-intuitive at first
sight. Here, it is argued that the transition occurs through an
interesting percolative-like process due to the effect of ran-
dom on-site energies over a charge-ordered state. The sites of
the lattice that had an effective “negative energy” in the CO
state—namely those that were populated with localized elec-
trons in the checkerboard arrangement—may acquire a
nearly zero total energy due to the influence of that type of
disorder. The “nearly zero energy” sites can contribute to
form a metallic state which is highly inhomogeneous in in-
stantaneous Monte Carlo snapshots, although it slowly
evolves with time (dynamical) as the Monte Carlo simulation
progresses. It is concluded that the case found in Refs. 9 and
16 provides another very interesting example where a com-
bination of explicit quenched disorder and charge-ordering
tendencies leads to nontrivial physics, including insulator-
metal transitions. The main merit of the present manuscript is
to clarify the key role of disorder in a very simple model,

with easy-to-understand qualitative argumentations. This
adds extra support to the idea that quenched disorder is cru-
cial in CMR manganites.

The organization of the paper is as follows. In Sec. II, the
model with cooperative phonons and disorder is discussed.
The main results of the Monte Carlo analysis are in Sec. III,
including the phase diagram, density-of-states with and with-
out disorder, and the calculation of conductances. A simpli-
fied model that captures the essence of the main model is
introduced in Sec. IV. Both models behave very similarly.
Our proposed explanation of the insulator-metal transition is
presented in Sec. V, where the inhomogeneous nature of the
metallic state is described. Simulations with random hop-
pings and by freezing the localized spins are also reported in
this section. Conclusions are presented in Sec. VI.

II. MODEL

The Hamiltonian used in this study contains Mn eg itiner-
ant electrons coupled to the t2g Mn core-spins, and also to
phonons according to18

H = − t o
ki,jl,s

scis
†

cjs + h.c.d − 2JHo
i

si · Si

− lt o
i,a,s

sui,−a − ui,adcis
†

cis. s1d

Here, the first term represents the kinetic energy of the car-
riers hopping between Mn atoms on a d-dimensional cubic
lattice, with t the hopping amplitude for the process. ki , jl
denotes nearest-neighbor pairs of sites, and the rest of the
notation is standard. The second term is the Hund interaction
between itinerant si and localized Si spins, with JH the Hund
coupling constant. The third term describes the energy cor-
responding to the lattice-carrier interaction, with l denoting
the electron-phonon coupling. The appropriate redefinitions
of variables allow us to have the energy unit t explicitly in
this term (see Ref. 18). The distortions of the six oxygens
surrounding Mn at site i are given by the classical numbers
ui,±a, where in 3D (2D) a runs over three (two) directions x,
y, and z sx ,yd. Quantum phonons are much harder to study

numerically, and their analysis is postponed to future publi-
cations. One widely-used simplification to the above Hamil-
tonian, without losing essential physics, is to take the limit
JH=`, since in manganese oxides the Hund interaction is
experimentally known to be large. In this limit, the
eg-electron spin perfectly aligns along the t2g-spin direction.
This allows us to reduce the first two terms of the double
exchange Hamiltonian to5

HDE = − o
ki,jl

fTsSi,Sjddi
†
dj + h.c.g , s2d

where

TsSi,Sjd = − tFcos
ui

2
cos

uj

2
+ sin

ui

2
sin

uj

2
eisfi−fjdG . s3d

ui and fi are the spherical coordinates of the core spin Si at
site i. The new operators di

† create an electron at site i with
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spin parallel to the core spin at i. Within this large Hund-
coupling approximation, the third term that produces lattice
distortions becomes

He-ph = − lto
i,a

sui,−a − ui,addi
†
di. s4d

This tendency is balanced by an opposite crystal elastic en-
ergy that represents the stiffness of the Mn-O bonds:

Hph = to
i,a

sui,ad2. s5d

In the present investigations, it is important to also consider
a disorder term of the form

HD = o
i

Dini, s6d

where Di is chosen randomly from some distribution (box,
bimodal, Gaussian) and ni=di

†di. Hence, the full Hamiltonian
used in the present study is given by

H = HDE + He-ph + Hph + HD. s7d

In this paper, we have considered two types of disorder: (i) a
binary or bimodal distribution where Di= ±D, with D being a
constant, and (ii) a box distribution where D can take any
value in some interval f−D8 ,D8g. In order to compare the

results between these two distributions, one should establish
a relation among them. This can be done by requiring that
the standard deviation Dx should be the same for both. Since
kxl=0, one has

sDxd2 = kx2l = E
−`

`

dxx2Psxd , s8d

where Psxd=dsx+Dd+dsx−Dd for the binary distribution and

Psxd=1 in the interval xP f−D8 ,D8g for the box distribution.

This gives kx2l=2D2 for the former, and kx2l=2D8
3 /3 for the

latter. Hence, the relation between D and D8 should be D8

= s3D2d1/3.

The model used in this paper contains only one orbital in
the eg sector, instead of the more realistic case of two active
orbitals. Since using two orbitals increases substantially the
CPU time, in this first analysis the focus is on the one-orbital
situation. Also note that Motome and collaborators have
studied a similar model,16 as remarked in the Introduction,
but they implemented the cooperative effect between oxy-
gens (namely the effect by which a given oxygen is shared
by two octahedra) in a different manner. This does not rep-
resent a problem since our results for the phase diagram and
density-of-states are very similar to those of Ref. 16. Finally,
the technique to be used involves the exact diagonalization
of the fermionic sector, while for the classical degrees of
freedom, a standard Metropolis is used. Additional details of
the numerical methods are not presented here since they have
been extensively discussed in previous literature.2,5

III. INSULATOR-TO-METAL TRANSITION INDUCED BY

QUENCHED DISORDER

A. Phase diagram

The phase diagram of the model discussed in the previous
section was investigated using spin-spin and density-density
real-space correlation functions, as well as spin and charge
structure functions in q-space, which are defined, respec-
tively, as follows:

Ssxd =
1

N
o

i

kSi · Si+xl , s9d

nsxd = o
i

knilkni+xl −
1

NSo
i

knilD2
, s10d

Ssqd = o
i,j

kSi · Sjle
iq·sri−rjd, s11d

nsqd = o
i,j

knilknjle
iq·sri−rjd. s12d

In all of the correlations, kOl stands for the thermal average

of the operator O and is defined by

kOl =
TrfOe−bHg

Trfe−bHg
, s13d

where b is the inverse temperature, N is the total number of
sites, and the rest of the notation is standard.19 In the follow-
ing sections, results are given in units of t, unless otherwise
stated. In addition, all the results shown in this manuscript
correspond to the case of half-filling n=0.5, where on aver-
age there is one electron for every two sites. This was the
electronic density studied in Refs. 9 and 16, and typically
such density is easily analyzed numerically (contrary to other
cases where more complicated charge patterns occur, requir-
ing larger lattices). Moreover, many real manganites have n

=0.5.
As a criterion to decide whether a particular ordered

phase is stable, namely whether long-range order is present,
the equal-time spin and charge correlation functions were
used. More specifically, a charge-ordered (CO) phase is here
defined as stable if (i) the real-space charge correlation nsxd
at the maximum distance possible in the finite-size clusters
studied is at least 5% of the maximum value found at dis-
tance zero ns0d. The 5% criterion is certainly arbitrary, nev-

ertheless it is qualitatively representative of the physics un-
der investigation here. Other criteria, i.e. 10% or 1%, simply
lead to phase diagrams slightly shifted up or down in tem-
perature. In addition, (ii) max nsqd must have its maximum

value at q= sp ,pd, for a checkerboard charge-ordered state

to be defined as stable. These two criteria give very similar
results in practice. For the ferromagnetic (FM) phase, a simi-
lar definition was used: in this case a FM phase is said to
exist when Ssxd at the maximum distance is larger than 1%

of Ss0d, which is already normalized to one. In addition, the

spin correlation in momentum space must have a robust peak
at (0,0). The excellent agreement found here with previous
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investigations9,16 leads us to believe that our criteria for the
determination of the phase diagram is robust, and variations
around this criteria will not change qualitatively the main
conclusions.

In the actual Monte Carlo simulations, the spin and
phononic configurations, both assumed to be classical de-
grees of freedom, are updated according to the Metropolis
algorithm. For the 838 lattice, the number of Monte Carlo
sweeps per site is taken as 104 for thermalization, typically
followed by another 104 sweeps or more for measurements.
The simulations were done in a two-fold way. In the first
case, the starting configuration of classical spins and oxygen
coordinates was chosen to be random, namely a high tem-
perature configuration is selected, followed by a slow cool-
ing down. In the second case, simulations started with an
ordered stated at low temperatures, which is followed by a
slow heating up. It was observed that both procedures gave
fairly consistent results, and the fluctuations in the values of
critical temperatures are contained in the error bars shown.

Using the criteria outlined in the previous paragraphs, the
phase diagram of model Eq. (7) is shown in Fig. 1. In the
clean limit, two phases compete: a charge-ordered phase
with a checkerboard arrangement of charge (to be expected
in the large l limit), and a ferromagnetic phase at small l
which is caused by the double exchange mechanism.2 The
existence of these phases and shape of the phase diagram is
in excellent agreement with the results of Ref. 16 (see also
Refs. 9 and 18) although different criteria to define long-
range order were used, independent programs were written,
and even the actual models differ in the form in which co-
operation is introduced. In the clean limit there is a region
where both orders coexist at low temperature, leading to tet-
racritical behavior. Other investigations of alternative models
for manganites produced first-order transitions between com-
peting phases with AF and FM characteristics.5,9,11 In the
present analysis, an AF state is not present and phase com-
petition is probably not so intense as in more realistic cases.

The most interesting results arise upon the introduction of
disorder in the form of random local energies. In this case, it
was observed that the FM correlations are not much affected
by disorder, but the charge correlations are drastically modi-
fied. At l in the range 0.6 to 0.8 and low temperatures, a CO
state in the clean limit becomes a charge-disordered state for
nonzero D (strength of the on-site disorder). This is sugges-
tive of an insulator to metal transition. The phase diagram
and prediction of insulator to metal transition based on the
study of the density-of-states was previously discussed in
Ref. 16 (see also Ref. 9) and our investigations confirm their
results. In addition, studies of conductances discussed in the
rest of the paper confirm the prediction of an insulator to
metal transition triggered by disorder. It is interesting to re-
mark that the FM state does not seem to play any important
role in this study, it is the insulating CO-state that is highly
susceptible to the introduction of disorder. Thus, the actual
competition at the heart of the phenomenon discussed here
appears to be among charge-ordered and charge-disordered
states, as explained more extensively in the discussion below
using a model where the spin degree-of-freedom is removed.

Figure 2 illustrates some of the evidence gathered for the
construction of the phase diagram, Fig. 1. In parts (a) and (b)

the spin correlations are shown, at two different values of l,
as indicated. In both cases, the behavior of the spin correla-
tions is quite similar before and after disorder is introduced.
It appears that this degree of freedom is not crucial for an
understanding of the phenomena, since it barely changes
with disorder. More relevant is the study of charge ordering,
since its associated critical temperature TCO is substantially
modified at nonzero D. One typical example is shown in Fig.

FIG. 1. Monte Carlo phase diagram of the JH=` one-orbital

model as given by the Hamiltonian in Eq. (7), for an 838 lattice,

and overall density n=0.5. Results at the values of disorder indi-

cated are shown. The error bars are representative of the different

critical temperatures obtained using different starting configura-

tions, as discussed in the text. The number of quenched disorder

configurations used for the averages varies from point to point, but

the smoothness of the results indicates that there is no crucial de-

pendence with that number.

FIG. 2. (Color online) The criteria used for the determination of

the Curie temperature Tc: spin-spin correlation function at maxi-

mum distance for the cluster studied vs temperature, for l=0.6 (a)

and l=1.2 (b). The Ssxmaxd=0.01 line is 1% of its maximum value,

the criteria used here to determine FM critical temperatures (indi-

cated by the arrows). For TCO, nsp ,pd vs temperature for l=1.0 is

shown in (c), for two strengths of disorder D, and the approximate

critical temperatures of the CO-state are indicated. The figures show

results for one disorder configuration.
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2(c): here the charge structure factor at wavevector sp ,pd is

shown. There is a clear difference between the cases with
and without disorder, with a reduction of the critical tem-
perature by roughly a factor two. With hindsight based on the
discussion that is presented in the next section, it is under-
standable that on-site random energies will affect severely a
CO state. If these random energies are negative at some of
the sites that were not originally populated in the CO state,
likely a transfer of charge to those sites will be induced. The
reciprocal occurs with positive random energies in sites that
were populated in the clean limit. Thus, the phenomenon
presented here is expected to be basically related to charge
ordering (not spin) and also to depend on the particular form
of quenched disorder used, as confirmed later in the discus-
sion.

For completeness, results for just one quenched-disorder
configuration of random energies are shown in Fig. 3. Part
(a) corresponds to a temperature where both with and with-
out the disorder (strength indicated), a CO state is stabilized.
The charge staggered pattern is robust, even with disorder
incorporated. This is caused by the cooperative nature of the
lattice distortions. On the other hand, at T=0.30 [part (b)] the
charge staggered pattern is substantially distorted with disor-
der. This fact is also very clearly shown in the charge struc-
ture factor [part (c)] where a robust sp ,pd peak is replaced

by a fairly featureless background at T=0.30 and D=0.4. For
each individual configuration of disorder, the charge appears

to order following a complicated pattern (b). However, the
average over disorder produces a featureless state.

B. Density-of-states

In addition to the equal-time correlations used in the pre-
vious section to establish the phase diagram, in this effort the
density-of-states (DOS) was also calculated. The procedure
to calculate dynamical quantities involves the full diagonal-
ization of the electronic problem for each configuration of
classical spins and phonons. Details can be found in Ref. 2.

Interesting results are shown in Fig. 4, illustrating one of
the main conclusions of the present investigation, and con-
firming the predictions of Ref. 16. As expected, the clean-
limit case D=0 presents a DOS which has a gap at the
chemical potential, in agreement with the results of Fig. 1
that locate l=0.7 and low temperature within the CO phase.
The presence of oscillations at nonzero values of v-m is due
to well-known finite-size effects: a relatively small cluster
with periodic boundary conditions typically has a shell struc-
ture in their ladder of states. These spurious oscillations do
not affect the conclusions of our study. The main result re-
lated with Fig. 4 is the interesting dependence of the DOS
with the magnitude of D. In fact, at D=0.3 and higher the
original CO gap at the chemical potential has simply van-
ished, suggesting the instability of the insulating CO-state
toward a novel state (presumably metallic) induced by
quenched disorder. Understanding the origin of this unex-
pected insulator-to-metal transition, triggered by disorder,
will occupy most of the rest of the present paper.

To convince the reader that the apparently small number
of disorder realization used in Fig. 4 is sufficient for our
purposes, in Fig. 5 results for five independent quenched-
disorder configurations are shown. Qualitatively, the five
present states at the chemical potential as observed in the
average Fig. 4. To analyze the dependence of the results with
the type of disorder introduced, in Fig. 6 results for a box
distribution, instead of bimodal, are shown at the couplings
indicated. Once again, the DOS presents a CO state at small

FIG. 3. (Color online) Breakdown of the charge-ordered state

with disorder: For small temperatures, T=0.10, the CO phase sur-

vives the disorder [(a), (c), and (e)]. However, at larger tempera-

tures, T=0.30, the initial CO state melts with disorder [(b), (d), and

(f)].

FIG. 4. (Color online) Density-of-states obtained with Monte

Carlo simulations at the values of l and temperature indicated. The

lattice is 838 in size, and averages over five disorder configura-

tions are presented (the disorder was generated with a bimodal dis-

tribution in this example). 104 thermalization steps were used, with

104 measurements. Values of D are indicated. Similar results were

also obtained using 434 clusters (not shown).
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D, which is replaced by a metallic-like DOS when D is in-
creased. To study the dependence of the results with D over
a wider range, in Fig. 7 results for D as large as 1.6 are
shown, using a bimodal distribution. At large D, it is natural
to expect that the states at the Fermi level will not be filled,
since this strong disorder must induce localization of charge
at the sites where the on-site random energy happens to be
large and negative. Then, the DOS presents an interesting
nonmonotonic behavior with an insulator at both D small and
large, while the system is metallic at intermediate D.

The situation is different for the box distribution. In this
case, it is expected that large D will not alter the results so
dramatically as for the case of the bimodal distribution, since
there are always random energies that will happen to be
small and they do not lead to localization. This is confirmed

by the results of the simulation in Fig. 8, showing that states
are present at the Fermi level even for large disorder.

C. Landauer conductance

While the presence of weight at the Fermi level in the
DOS is suggestive of a metallic state, it may occur that those
states are not extended but localized. To clarify this issue the
conductance, G, of clusters described by the Hamiltonians
used in this effort was also evaluated. The calculation was
carried out using the Kubo formula adapted to geometries
usually employed in the context of mesoscopic systems.20

The actual expression for G is

G = 2
e2

h
Trfsi"v̂xdIm ĜsEFdsi"v̂xdIm ĜsEFdg , s14d

FIG. 5. The first five figures correspond to the DOS obtained with five different quenched-disorder configurations, at the same l, lattice

size, and temperature used in Fig. 4. A bimodal distribution of disorder was employed and results for D=0.4 are shown. All five results are

qualitatively similar. The last figure is the average over all five.

FIG. 6. (Color online) Density-of-states (averaged over five dis-

order configurations) using a box distribution (instead of bimodal).

104 thermalization steps were used, with 104 sweeps for

measurements.

FIG. 7. (Color online) The “closing” and “re-opening” of the

gap in the density-of-states as the disorder strength D is increased,

using a bimodal distribution. Temperature, l, and D’s are indicated.

ȘEN, ALVAREZ, AND DAGOTTO PHYSICAL REVIEW B 70, 064428 (2004)

064428-6



where v̂x is the velocity operator in the x direction (assuming

current flows along that direction) and Im ĜsEFd is obtained

from the advanced and retarded Green’s functions using

2i Im ĜsEFd= ĜRsEFd− ĜAsEFd, where EF is the Fermi energy.

The cluster is considered to be connected by ideal contacts to
two semi-infinite ideal leads, as represented in Fig. 9. The
current is induced by an infinitesimal voltage drop. This for-
malism avoids some of the problems associated with finite
systems with periodic boundary conditions, such as the fact
that the optical conductivity is given by a sum of Dirac d
functions due to the discrete nature of the matrix eigenval-
ues. Finding a zero-frequency Drude peak with finite weight
corresponds, in principle, to an ideal metal—i.e., a system
with zero resistance—unless an arbitrary width is given to
the zero frequency d-function. In addition, in numerical stud-
ies sometimes it occurs that the weights of the zero-
frequency delta-peak are negative due to subtle finite-size
effects.21 For these reasons, calculations of dc resistivity us-
ing finite closed systems are rare in the literature. All these
problems are avoided with the formulation described here,
which can be readily applied to the Hamiltonians employed
in our study where the fermionic sector is quadratic. The
problem basically amounts to the calculation of transmis-
sions across nontrivial backgrounds of classical spins and
lattice distortions.

In practice, the entire equilibrated cluster, as obtained
from the MC simulation, is introduced in the geometry of
Fig. 9. The ideal leads enter the formalism through self-
energies at the left/right boundaries, as described in Ref. 20.
In some cases a variant of the method, explained also in Ref.
20, was used to calculate the conductance: Instead of con-

necting the cluster to an ideal lead with equal hoppings, a
replica of the cluster was used at the sides. This method,
although slightly more CPU time consuming, takes into ac-
count all of the Monte Carlo data for the cluster, including
the periodic boundary conditions. The final step in the calcu-
lation is to carry out averages over the localized spin con-
figurations and oxygen coordinates provided by the Monte
Carlo procedure. The physical units of the conductance G in
the numerical simulations for 2D are e2 /h as can be inferred
from Eq. (14). In 2D the conductivity s coincides with the
conductance, while in 3D s is simply given by the conduc-
tance divided by the linear size of the lattice, assumed cubic.

A representative result of our effort is shown in Fig. 10,
where G vs temperature is shown at an electron-phonon cou-
pling and disorder strength where the DOS study of the pre-
vious section revealed the insulator to metal transition. In the
clean-limit, the nearly vanishing value of G at low tempera-
tures reveals the presence of an insulator, which it is known
to be a charge-ordered state. The transition to a disordered
state occurs with increasing temperature at approximately T

=0.08–0.10 sD=0d, a value compatible but slightly lower

than that found through the charge correlations (this may
simply be due to the different lattice sizes used). The most
remarkable result is shown at D=0.4. Here, the conductance
is very similar to the clean-limit result at temperatures above
the transition, but at low temperatures they are drastically
different. Compatible with the finite DOS at the Fermi level
found in the previous section, the system with nonzero
quenched disorder has a finite conductance at low-T, which
actually increases with decreasing temperature as in a metal-
lic state. The inverse of the conductance (i.e. the resistivity in
2D) vs T is shown in Fig. 11, using a logarithmic (base 10)

scale to amplify the nearly vanishing conductance of the in-
sulating state of Fig. 10. The change of several orders in the
resistivity between the clean and dirty limits is in agreement
with typical CMR experiments. The introduction of
quenched disorder transforms an insulator in the clean limit
to a metallic state in the dirty case. As a consequence, the
states at the Fermi level induced by disorder that were ob-
served in the previous section indeed correspond to extended
states that transport charge, a very interesting result. Note,
however, that the conductance in the metallic state is sub-
stantially smaller than its maximum value (10 for a 12312

FIG. 8. (Color online) Analog of Fig. 7 but for a box distribu-

tion. In this case, the gap that closes at intermediate D does not

form again for larger values of the disorder strength.

FIG. 9. Geometry used for the calculation of the conductance.

The interacting region (cluster) is connected by ideal contacts to

semi-infinite ideal leads. The configurations of classical localized

spins and phonons are produced by Monte Carlo simulations.

FIG. 10. (Color online) Conductance se2 /hd vs temperature for

the one-orbital model with cooperative phonons at l=0.7 and using

a 12312 cluster, in the geometry shown in Fig. 9.
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cluster), indicative of a dirty metal. This result is also com-
patible with experiments in manganites that have revealed
similar characteristics.1,2 Then, the metallic state is far from
perfect and there must exist sources of scattering that pre-
vents the smooth flow of charge. In subsequent sections, it
will be argued that this metallic state is percolative-like, a
result compatible with its relatively high resistance.

In Fig. 12, results for the conductance at low temperature
as a function of D are shown for two different cluster sizes.
The size effects appear to be very small, although the clus-
ters studied are not sufficiently large to show convincingly
that a metallic state was indeed stabilized. The behavior as a
function of D reveals a range of insulating behavior at small
D, followed by a well-defined peak in the conductance at
intermediate values—where D is comparable to the gap, as
explained later in the text—followed by a subsequent de-
crease of G at D of order 1 or larger. This large-D behavior
can easily be understood due to strong localization of carriers
in that limit. However, the presence of a metallic state at
intermediate D—as opposed to a smooth interpolation be-
tween the two insulating limits at small and large D—is puz-
zling. Its understanding is the main goal of the next section.

IV. RESULTS FOR A SIMPLIFIED MODEL

The results presented in the previous section have re-
vealed an insulator to metal transition induced by on-site
random-energy disorder, when the clean limit starting state is
charge ordered. This conclusion appears clearly both in the
DOS and in the conductance, and it is already evident in
lattices as small as 434. Then, the mechanism must be easy
to understand since it cannot depend on subtleties related
with the bulk limit or large correlation lengths. In order to
clarify the origin of the insulator-metal transition, here a “toy
model” involving only electrons will be introduced, and
shown to behave quite similarly as the actual “real model”
that has electrons, localized spins, as well as lattice degrees
of freedom. The definition of the model is

H = − o
ki,jl

tijsdi
†
dj + h.c.d + o

i

aini + o
i

Dini. s15d

This simplified toy model includes a hopping term for
spinless fermions (first term), as in the realistic case at large
Hund coupling. The hopping amplitude tij will first be con-
sidered constant and equal to t in this section, but later a
random hopping will also be studied for completeness. The
most important simplification of Eq. (15), as compared to
Eq. (7), is the following: instead of lattice distortions to in-
duce charge ordering, a mere modulation of the chemical
potential is introduced “by hand” [the second term in Eq.
(15)], where ai= +a and −a are located on a checkerboard
arrangement. This is sufficient to generate the analog of the
CO state induced by phonons, namely a charge modulation
leading to a checkerboard pattern. In all the toy model simu-
lations reported in this paper a was kept equal to 0.5: for
computational simplicity it was not modified to mimic dif-
ferent values of l and concomitant charge gaps. However,
the qualitative results emerging from the analysis are suffi-
ciently clear, that there was no need to further consider a as
a tuning variable. Finally, to incorporate the quenched disor-
der, an on-site random-energy term as in the realistic case
was included as well.

The calculation of conductances vs disorder strength, as
well as other observables, proceeds straightforwardly for the
toy model as a special case of the realistic one. There is no
need to carry out any Monte Carlo simulation for the toy
model; the results are exact. A remarkable result is shown in
Fig. 13, where G vs D is shown for both the realistic and the
toy models, on the same lattice and at the same temperature.
Besides a harmless shift in the location of the peak feature,
the shape of the curve is basically the same, revealing
insulator-metal-insulator characteristics with increasing D in
both cases. Then, the simplified toy model is sufficiently ro-
bust to have the same properties as the real model, and its
analysis will likely unveil the origin of the effect. This is
confirmed by a study of the DOS as well (Fig. 14), since the
gap in the clean-limit caused by the staggered-modulation in
the local-energy induced by the second term of Eq. (15) is
filled by the introduction of disorder.

The analysis of the real model—i.e., including phonons
and localized spins as active degrees of freedom—was lim-
ited to 12312 lattices and a few realizations of disorder.

FIG. 11. (Color online) Logarithm (in base 10) of resistivity

(inverse of conductivity) vs temperature for the same lattice and

couplings used in Fig. 10. Note the similarity of the results with

those obtained varying magnetic fields near AF-FM first-order tran-

sitions (see Ref. 9).

FIG. 12. (Color online) Conductivity vs disorder strength for

model Eq. (7), at l=0.7 and T=0.05. 10,000 thermalization and

2000 measurement Monte Carlo sweeps were used. Results for two

lattice sizes are shown, suggesting that finite-size effects could be

small.
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With the toy model, a far better study can be conducted. For
example, in Fig. 15 an analysis of G vs D at several lattices
is shown. All of the curves have the same shape, and the size
effects are moderate. However, there is a slow decrease in
the conductance at the peak. Given the error bars of the
simulation (the oscillations in the results between subsequent
D’s can provide a crude estimation of these error bars), and
the rapid growth of CPU time with increasing size, an even
more careful analysis cannot be carried out. As a conse-
quence, it is not possible in this early investigation to be
conclusive about the metallic nature of the state in the bulk
2D limit, particularly in view of the subtleties that are some-
times related with similar studies in the case of Anderson
weak-localization effects (this particular issue is quantita-
tively discussed in the Appendix). Nevertheless, the qualita-
tive analysis to be discussed below will be sufficient to un-
derstand the nature of the metallic state in finite-size clusters,
as a first step toward applications to real compounds.

The situation in 3D is similar, since the results for the
conductivity (G /L, where the lattice size is L3) of the toy
model seem to converge with increasing size of the cube
used for the simulation, as shown in Fig. 16. While it is not
impossible that the conductivity could slowly decrease to
zero as L→`, the results are suggestive that a metallic state
could indeed be found in the bulk 3D limit. More work is
needed to fully confirm this assumption.

V. UNDERSTANDING THE METAL-INSULATOR

TRANSITION

A. Proposed explanation

The essence to understand the insulator to metal transition
found with increasing disorder-strength appears to be very
simple, and a starting point is illustrated in Fig. 17. Suppose
that in the clean-limit case, D=0, the Fermi level is in be-
tween two states separated by a gap (and, as a consequence,
the state is an insulator). It is natural to expect that with
increasing on-site energy disorder those two states will in-
crease their respective widths—since the on-site random en-

FIG. 13. (Color online) Conductivity vs disorder strength D,

comparing results for the “real” phononic model, Eq. (7) at l=0.7

against the “toy” model. In both cases a bimodal distribution is

used, and results are shown using a 12312 lattice at T=0.05. In the

calculation of the conductance G for the real model, 10,000 sweeps

for thermalization and 2000 for measurements were used. For the

toy model the curve shows an average over 100 configurations of

disorder, and a is 0.5. The different locations of the conductance

peaks can be brought to the same value by modifying a, an unnec-

essary task in our qualitative study.

FIG. 14. (Color online) Density-of-states of the toy model, Eq.

(15), for several values of the disorder strength D. The lattice is

16316 and temperature T=0.05. At the Fermi level states are gen-

erated, as it occurs in the realistic model studied in previous

sections.

FIG. 15. (Color online) Conductivity vs disorder strength for the

toy model, averaged over 100 disorder configurations at T=0.05.

Results for several cluster sizes are shown. In 2D, conductivity and

conductance are the same. The size effects appear to be mild, but

the slight reduction of G with lattice sizes in the central region

could still lead to an insulating state in the bulk limit. More work is

needed to fully understand this subtle issue.

FIG. 16. (Color online) Conductivity (in e2 /hL units) vs disor-

der strength for the toy model in 3D, averaged over 100 disorder

configurations. L is the size length of a L3 cube.
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ergies directly affect the energy location of the state—and
there will be a value of D (of the order of the clean-limit gap)

where a robust number of states will be located at the Fermi
energy. The results we have found in our investigation are
compatible with this simple picture for the generation of
weight at the Fermi level. In this respect, increasing tempera-
ture in the clean-limit at fixed large l or increasing D at fixed
small T and large l appear to be analogous procedures to
transform an insulator into a metal. However, Fig. 17 can
only be a rough starting point to rationalize the metallic con-
ductance since the presence of states at the Fermi energy is
not sufficient to guarantee that the systems is indeed metal-
lic. In fact, Fig. 17 applies even in the limit of vanishing
hopping, where the charge is localized.

The most revealing procedure to understand the I-M-I
transition with increasing D found in the real and toy models
involves the study of Monte Carlo “snapshots” of the charge
configurations. This is useful in the real model because the
classical degrees of freedom freeze at low temperatures, and
snapshots are representative of the physics (a state with
strong quantum fluctuations may have many configurations
with equal weight, complicating the analysis). Typical snap-
shots are shown in Fig. 18, where results for the electronic
density of both the real and toy models are contrasted. It is
clear that in the three regimes of relevance—small, interme-
diate, and large D—there is an excellent agreement between
the two cases, and the toy model appears to capture the es-
sence of the behavior of the more realistic model, Eq. (7).
Let us now analyze the results. At small D, the checkerboard
pattern certainly prevents the transmission of charge, and the
system is insulating in both cases. At large D, the sharp
color-contrast between the sites occupied and those empty
are indicative of a strong localization of charge. Energeti-
cally this occurs to take advantage of the regions with large
and negative D, where at every site either occupancy zero or
one is favored. This regime is insulating as well.

The most interesting result occurs at intermediate values
of D, in the metallic regime. Here the density is closer to its
mean value 0.5 in several lattice sites, in spite of the a
modulation of the toy model. To understand the results, con-
sider for instance the case of a bimodal distribution for the
quenched disorder, as in Fig. 18. Considering the second and
third terms of Eq. (15) in the toy model, then locally the
effective chemical potential can take four values, namely D

+a, D−a, −D+a, or −D−a. The case of interest for metal-
licity is obtained at D,a or larger—in excellent agreement
with the numerical results—where approximately half the
sites have a small effective on-site energy, and these sites are
now available for the transport of charge with average den-
sity 0.5 [while the other sites either have a very large or very
small chemical potential, favoring either minimum (zero) or
maximum (one) local occupancy, with both cases not useful
for charge transport]. The sites with small effective on-site
energy would not contribute to a metal if they were isolated
(for instance if they were regularly spaced), but for a random

distribution of locations a metallic state can be formed if
there is a large enough number to induce percolative-like
phenomena. Figure 19 further clarifies this issue. The calcu-
lations of conductances appear to imply that indeed such
percolation has occurred at the densities considered here.
This appears to be the essence of the insulator to metal tran-
sition. The state that conducts appears to be highly inhomo-
geneous, compatible with the low value of its conductance.
Clearly, insulating regions survive. The elastic cooperative
nature of the oxygen coordinates enlarges the regions that are
either charge ordered or disordered.

To clarify further the poor nature of the metallic state, a
frequently-mentioned issue in the study of conductances is
their distribution. Sometimes the mean value, as the one dis-
cussed thus far, is not representative due to the large width of
the distribution. However, an example of G-distributions is
shown in Fig. 20, for the toy model at a value of D where G

indicates a metallic state. The result shows that the distribu-
tion is not abnormally wide, but the only values that visibly
appear are 0, 1, and 2, while its full possible range of values

FIG. 17. A cartoonish view of the generation of weight at the

Fermi level by disorder. If in the clean limit the system is insulating

(with no states available at the Fermi level), the mere broadening of

these states by disorder certainly introduces states at EF after some

D strength similar to the gap is reached. However, it remains to be

investigated whether the states at the Fermi level generated by dis-

order are truly metallic, or whether they are insulating.
FIG. 18. Monte Carlo “snapshots” obtained using a 12312

cluster and temperature T=0.05 showing the electronic density at

each site in tones of black and white. Results are shown for both the

“real” and “toy” models [Eqs. (7) and (15), respectively]. In the

former, l=0.7 is used. In the three cases, results for the clean limit

D=0, as well as intermediate and large values of D are presented.

Both the real and toy models at D=0 have densities approximately

0.7 and 0.3 in a checkerboard pattern, while at D=2 the two clearly-

distinguished densities are close to 0.95 and 0.05. A detailed dis-

cussion is in the text, but the reader can already visualize the local-

ized nature of the charge in both limits of small and large D, while

the snapshots at intermediate disorder show a more disordered dis-

tribution of populated sites, leading to a metallic state. The similar-

ity between the results for both models is also to be remarked.
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extends up to 22 in the case of the largest lattice studied. The
distribution shown also indicates that slightly less than half
the disorder configurations used have zero conductance,
while the others have the minimum and next values, border-
line compatible with a metal. Then, the metallic state dis-
cussed in this paper corresponds to a poor metal, and the
snapshots previously discussed indicate that this property
arises from inhomogeneities. The system appears to be near
percolation and, as a consequence, there are only a limited
number of paths for conductance across-the-sample.

Although the use of standard formulas for percolative pro-
cesses could be tempting (for instance to predict the critical
density of metallic sites needed to percolate, and the corre-
sponding critical exponents), here the electronic-density at
each site is not simply found to correspond to just four num-

bers, as the effective on-site energies argumentation would
indicate. The reason is that the kinetic energy of electrons
[the first term in Eq. (15)] must also be considered, and the
electronic density “spills” from favorable to unfavorable
sites if they are close to one another. This proximity or spill-
ing effect is not considered in traditional models of
percolation—where links or sites are sharply either metallic
or insulating—preventing the straightforward use of standard
formulas deduced for classical random-resistor networks to
the case analyzed here.

B. Consequences of the proposed explanation

1. Results with random hoppings

The model used both here and in the previous
investigation16 employs a local random-energy term as a
source of disorder. This form of disorder appears to be cru-
cial for the argumentation discussed in the previous section
to explain the stabilization of a poor metallic state at inter-
mediate D. The notion of an effective site-energy that nearly
cancels at D,a for approximately half the sites is very im-
portant to render those sites conducting. Then, the present
analysis would predict a lack of universality of the disorder-
induced insulator-metal transition upon modifications in the
explicit form in which the disorder is introduced. In particu-
lar, introducing randomness in the hopping amplitudes,
rather than in the on-site energies, should not lead to a metal
according to the previously proposed explanation of the ef-
fect, since the effective site energies will not be affected. To
verify this idea, in the toy model the on-site disorder was
switched off, but now the hopping amplitudes were given an
extra random component. More specifically, the hoppings
were modified such that tij= t+tij, while Di was switched off
in Eq. (15). The random number tij was chosen from a bi-
modal distribution with values ±t.

The results for the density-of-states are shown in Fig. 21
for several values of t. There is a drastic difference when
compared with the case of random on-site energies. For ran-
dom hopping amplitudes the gap present at t=0 is not filled

FIG. 19. An example showing that the sites with densities ap-

proximately 0.5 are correlated with those with small effective on-

site energy, for the particular case D=0.8, and a=0.5, on a 24

324 lattice. On the right panel, sites with small effective on-site

energy are shown in black if D−a=0.3 and light grey if D−a

=−0.3; the rest are in white. On the left panel, results for the toy

model are shown. Here sites with densities between 0.50 and 0.75

are in black, between 0.25 and 0.50 in light grey, and the rest in

white. The agreement between left and right is almost perfect. This

two-color view helps in the understanding of percolation. In two

dimensions the critical percolative fraction is 0.5, precisely the

number of sites with small effective on-site energy. The system is

then only at the verge of percolation. However, in 3D it would be

fully percolated since the critical fraction is 0.25.

FIG. 20. (Color online) A histogram of conductances observed

in the study of the toy model, corresponding to D=0.9, and at T

=0.05, for many values of the disorder. The conductances can only

take integer values; here they have been broadened for a better

illustration. Size effects appear to be small. Several configurations

are insulating sG=0d, while others conducting (although poorly).

FIG. 21. (Color online) Density-of-states for the toy model

where now the disorder is introduced through random hoppings,

rather than random on-site energies. Here, the hopping disorder is

again a bimodal function with values ±t. The results are at T

=0.05 and obtained on a 12312 cluster. The gap does not close

under the influence of disorder in the hoppings.
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by the random hoppings with increasing t. The state remains
insulating at all values of t, small, intermediate, and large.
This is compatible with the explanation for the insulator-
metal transition discussed in the previous subsection, which
relies crucially on the effect of on-site disorder.

2. Simulations with frozen spins

Another important prediction of the proposed explanation
for the I-M transition is the irrelevancy of the spin degree-
of-freedom, and its concomitant FM phase. If the idea is
correct, then the presence of the CO vs FM phase competi-
tion is not crucial, but more important is the competition
between charge-ordered and charge-disordered states. To
verify this idea a simulation was carried out, freezing the
localized spins to a perfectly ferromagnetic state at all tem-
peratures, effectively removing the spin as a degree-of-
freedom. The Monte Carlo phase diagram is shown in Fig.
22 and indeed it shows the expected behavior for the CO
state, before and after including disorder.

The density-of-states for the model with only the charge
as an active degree-of-freedom is shown in Fig. 23, with and
without disorder. The insulator at D=0 and metal at D=0.4
are present qualitatively as in the case with active spins. It
appears that the insulator-metal transition only depends on
the presence of charge ordered and disordered states, and
their competition. The ferromagnetic component is of no
consequence for the effect discussed in this paper.

VI. CONCLUSIONS

In this paper, a simple explanation was proposed for a
recently discovered insulator-to-metal transition induced by
disorder16 in a model for manganites with cooperative
phonons. The transition occurs when the disorder is intro-

duced in the form of random on-site energies. Our effort
presented here confirms the effect, showing that the clean-
limit gap in the density-of-states is filled by disorder. More-
over, a calculation of the conductance was implemented,
with a Landauer formulation borrowed from the context of
mesoscopic physics. This calculation confirms that for inter-
mediate values of the disorder strength D the system is in-
deed metallic, at least for the clusters studied here. A better
finite-size scaling should be carried out to fully confirm the
metallic nature of the state in the bulk limit, but this huge
effort is left for future investigations. Our limited size analy-
sis thus far indicates that the conductivity will remain finite
in the bulk limit, particularly in three dimensions.

To understand the origin of this transition, an even sim-
pler model without active phononic degrees-of-freedom was
proposed. This new model behaves very similarly as the
original one, with a DOS that is filled by disorder, a quite
similar conductance vs D curve, and similar Monte Carlo
snapshots. Both this model and the original one present a
percolative-like behavior in the metallic region at intermedi-
ate D’s. The reason is that there are sites where the random
energies compensate a dynamically generated on-site energy
induced by the interaction with phonons. This interaction
produces a checkerboard pattern of charge, leading to sites
that are either charge localized n=1 (negative effective en-
ergy) or empty n=0 (positive effective energy). The compen-
sating random energy induces some of the sites to prefer
charge n,0.5, as in a homogeneous metal. It is through
these sites that charge can move from one side of the cluster
to the other. Compatible with this picture—where only a
fraction of the sites have n approximately 0.5—the metallic
state is found to have poor-metallic behavior, and in the his-
togram of conductances for different realizations of
quenched disorder many of them have an insulating charac-
ter. The mechanism here discussed to understand the filling
of gaps by disorder appears general, and it should be valid
beyond manganites. In fact, there are experimental results
and theoretical investigations that have reported similar ef-
fects in the context of disordered insulators (see Ref. 22 and
references therein). In these related investigations random
configurations of disorder were found to provide conducting

FIG. 22. Phase diagram of model Eq. (7) obtained in the limit

where the localized spins are frozen in a ferromagnetic state at all

temperatures. As in the case of nonfrozen spins, 104 thermalization

and 104 measurement Monte Carlo sweeps were typically used at

each temperature and l. The lattice was 838. The criteria used to

determine the transition temperatures are the same as for the simu-

lations with active spins. Results both with and without disorder are

shown, with a behavior similar to that found in Fig. 1. The phase

diagram at very low temperatures is difficult to obtain due to the

rapid increase in CPU time required to remain ergodic (configura-

tions are separated by large energy barriers).

FIG. 23. (Color online) Density-of-states obtained using the

model with frozen spins, leaving only the charge as an active

degree-of-freedom. The clean-limit gap is still found to close with

disorder, even in the absence of CO-FM competition. The lattice is

838.
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resonant electronic channels for tunneling in tunnel junc-
tions, an explanation similar to that provided in the present
investigations. In addition, it is known that several materials
share phenomenological aspects with the manganites,23 and
the investigations of these interesting effects may have con-
sequences in a variety of research areas.

Is this mechanism active in the real manganites? More
work is needed to investigate this issue. Reasons for concern
are the dependence of the results with the form of disorder,
and the irrelevance of the competing FM state in the process.
Disorder in Mn-oxides is believed to arise from lattice dis-
tortions induced by chemical doping with ions that are either
much larger or smaller than those involved in the parent
undoped compound. From this perspective disorder in the
hopping amplitudes would be realistic. On the other hand,
the ionic dopants have often a different valence than the ion
they replaced and that could be represented by on-site ener-
gies. Additional effort is needed to relate this simple
insulator-metal mechanism to those proposed in early inves-
tigations and to experiments. However, even if the immedi-
ate relevance of the idea to Mn-oxides needs further study,
the effort of Refs. 9 and 16 and ours confirms the key role
that disorder plays to render metallic an insulating system, a
somewhat counter-intuitive idea. This adds further evidence
that the most basic aspects of the original scenario by Burgy
et al.7 are essentially correct, namely disorder is needed at
least as a triggering effect to induce insulator to metal tran-
sitions in models for manganites in the vicinity of regions
where FM-AF phase competition occurs. Moreover, the
present effort has shown that the metallic state induced by
disorder is “poor” due to its inhomogeneous characteristics.
All these results provide further support for the mixed-phase-
based percolative explanation of the remarkable dc transport
behavior of the CMR manganites.
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APPENDIX: ISSUES RELATED WITH ANDERSON

LOCALIZATION

It is clear in our figures for the conductivity in 2D and 3D,
corresponding to the simplified “toy” model, that s (or the
conductance) reaches its maximum value at some intermedi-
ate disorder strength D,0.8–0.9 (see Figs. 15 and 16).
However, both in 2D and 3D the conductance maximum
value decreases slowly as the lattice size increases. As dis-
cussed in the text, this prevents a clear statement regarding
the stability of a metallic phase in the bulk limit by the
mechanism discussed in this paper, although the reasons for

the metallicity tendencies were properly clarified. The main
concern about finding a metal in the bulk is related with
issues of Anderson localization, particularly in 2D, as dis-
cussed in this appendix.

In classical transport theory, which relies on weak scatter-
ing, the conductance G of a d-dimensional hypercube of vol-
ume Ld is related with the conductivity s through G

=sLd−2, where L is much bigger than the mean free path, l.
However, Abrahams et al. have shown24,25—based on renor-
malization group ideas and perturbation theory—that there is
no mobility edge in 2D, hence the conductance should van-
ish as L→`, where quantum interference leads to Anderson
localization. According to this picture, the correct scaling
of the conductivity in one, two, and three dimensions is
given by25 s1DsLd=s0− s2e2 /hdsL− ld, s2DsLd=s0

− s2e2 /hpdlnsL / ld, and s3DsLd=s0− s2e2 /hp2ds1/ l−1/Ld,
respectively, where s0=ne2t /m is the Drude conductivity at
scale l and t= l /"kF is the relaxation time. In 3D, it seems
possible to have a nonzero conductance for macroscopic lat-
tice sizes, but not in a lower dimension.

To compare these formulas for localization with our simu-
lations, we proceed as follows. In 2D and 3D, the conduc-
tivity attains its maximum value at the disorder strength D
=0.8 and D=0.9, respectively. We define the difference be-
tween conductivities for two lattices of sizes L1 and L2 as

Ds2D
toysL1,L2d = s2D

D=0.8sL2d − s2D
D=0.8sL1d , sA1d

Ds3D
toysL1,L2d = s3D

D=0.9sL2d − s3D
D=0.9sL1d , sA2d

where “toy” indicates that these are the numerical results for
the toy model. The corresponding “localization” formulas are
given by

Ds2D
locsL1,L2d =

2

p
lnSL1

L2

D , sA3d

Ds3D
locsL1,L2d =

2

p2S 1

L2

−
1

L1

D . sA4d

In all of the above, the units for conductivity are “e2 /h.” The
comparison between these formulas is summarized in Table I
for the 2D case.

The similarity of the numbers leads to the conclusion that

TABLE I. Differences in conductivities between pairs of lattices

in 2D, using data from both the toy model and localization

formulas.

L2 L1 Ds2D
toysL1 ,L2d Ds2D

locsL1 ,L2d

24 20 −0.1167 −0.1161

24 16 −0.1844 −0.2581

24 12 −0.3735 −0.4413

20 16 −0.0677 −0.1421

20 12 −0.2568 −0.3252

16 12 −0.1891 −0.1831
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the numerical results for the 2D toy model in the “metallic
regime” could still lead to an Anderson insulator as the lat-
tice size grows. However, obviously the mechanism dis-
cussed in this paper is mainly to be applied to 3D manganites

(or bilayered systems). It is known that Anderson localiza-
tion is not so severe in 3D, giving confidence that the state
stabilized at intermediate D’s is indeed a metal in the bulk
limit.
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