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Enhanced fatty acid uptake may lead to the accumulation of lipid intermediates. This
is related to insulin resistance and type 2 diabetes mellitus. Rodent studies suggest
that fatty acid transporters are acutely regulated by insulin. We investigated
differences in fatty acid transporter content before and at the end of a
hyperinsulinemic euglycemic clamp in skeletal muscle (m. vastus lateralis) of obese,
glucose-intolerant men (IGT) and obese normal glucose tolerant controls (NGT).
The fatty acid transporter FAT/CD36 protein content increased 1.5-fold (P < 0.05)
after 3-hrs of insulin stimulation with no difference between IGT and control
subjects. No change was seen in cytosolic fatty acid binding protein (FABPc) protein
content. The increase in FAT/CD36 protein content was positively related to insulin
resistance as measured during the clamp (r = 0.56, P < 0.05). An increase in
FAT/CD36 protein content in skeletal muscle may result in a higher fractional
extraction of fatty acids (larger relative uptake) after a meal, enhancing triglyceride
accumulation in the muscle. We conclude that also in obese humans the FAT/CD36
protein content in skeletal muscle is dynamically regulated by insulin in vivo on the
short term. 

K e y w o r d s :  skeletal muscle, obesity, impaired glucose tolerance, lipid metabolism,
FAT/CD36, insulin action
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INTRODUCTION

An imbalance between elevated plasma long-chain fatty acid (LCFA)
availability, uptake and oxidation results in intramyocellular accumulation of
LCFA metabolites, such as fatty acyl-CoA, ceramides, and diacylglycerol (1-4).
Elevated levels of these LCFA metabolites are likely to induce defects in the
insulin signalling cascade and are associated with the development of skeletal
muscle insulin resistance and type 2 diabetes (1-5). Impaired utilization is not
only reported in type 2 diabetic patients (6), but also in subjects with impaired
glucose tolerance (7, 8), a �prediabetic� state, suggesting that impaired fatty acid
utilization may be an important early factor in the development of type 2 diabetes.
It is not clear under which metabolic conditions the accumulation of triglycerides
in skeletal muscle takes place, but increased storage can be due to increased
circulating concentrations of LCFA and triglycerides (TG), as well as to an
impaired suppression of plasma LCFA after a meal (9). Previously, it has been
shown in type 2 diabetic patients that triglycerides can accumulate after high fat
meals during the day (10). Not only an increased supply of lipids, but also an
increased fractional extraction (relative uptake) of LCFA (plasma LCFA or TG-
derived LCFA) can enhance the accumulation of fatty acids. Fatty acid
transporters play a critical role in fractional fatty acid uptake, in particular when
the fatty acid: albumin ratio is low, as is the case after a meal (11, 12). Indeed, the
fatty acid transporter CD36 is sensitive to insulin, and a recent study in
cardiomyocytes has shown that insulin can rapidly, within hours, increase CD36
mRNA expression as well as protein content, which contributed to an increased
fatty acid uptake capacity (13).

MATERIALS AND METHODS

Nine obese men with impaired glucose tolerance (IGT) and eight obese men with normal
glucose tolerance (NGT), matched for age and BMI, participated in the study. Inclusion criteria
were obesity (BMI > 30 kg/m2), diastolic blood pressure < 100 mm Hg, no major health problems,
and no use of medication that could influence the measurements. The NGT men had no family
history of diabetes. Subjects were screened for glucose metabolism with a standard oral glucose
tolerance test (75 g glucose) with capillary blood sampling at baseline and after 2 hrs. Subjects were
included according to the WHO criteria of 1999 for capillary plasma (IGT: fasting < 7.0 mmol/l,
2hr postload > 8.9 and < 12.2 mmol/l). Three subjects with glucose values (fasting < 8.0 mmol/l
and 2hr postload < 14.8 mmol/l) above the cutoff points were included as well. The experimental
protocol was approved by the local Medical Ethical Committee of the Maastricht University. All
subjects gave written informed consent. 

The NGT and IGT men underwent measurements for body composition using hydrostatic
weighing, aerobic capacity using an incremental exhaustive bicycle test and insulin sensitivity using
a hyperinsulinemic euglycemic clamp (1 mU*kg BW-1*min-1). The glucose infusion rate (GIR,
mmol glucose/min) per kg fat free mass (FFM) was determined during a steady state of 30 min.
after at least 120 min of insulin infusion. Muscle biopsies were taken before and after insulin-
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stimulation at the end of the steady state of the clamp, freed from any visible fat and blood and
immediately frozen in liquid nitrogen or for immunofluorescence in isopentane at its melting point. 

Muscle type FABPc was measured by means of ELISA (Hycult Biotechnology, Uden, the
Netherlands) (14), while CD36 protein was analysed with a in-house developed sandwich-type
ELISA (15). Biopsy lipid content was analysed using Oil Red O staining (16). Slides were
incubated with a primary antibody against adult human slow myosin heavy chain (A4.951,
Developmental Studies Hybridoma Bank, Iowa City, USA) to determine fibre type and a rabbit
polyclonal antiserum against human laminine (pLam, Sigma) to visualize myocyte membranes.
Images were captured using a Nikon E800 fluorescence microscope (Uvikon, Bunnik, the
Netherlands) and a colour CCD camera (Basler A101 C) with 240 times magnification. Per biopsy,
at least 50 different cells were analyzed using Lucia 5.49 software. 

Plasma FFA and glucose were analyzed in EDTA plasma using standard enzymatic techniques
automated on the COBAS Fara centrifugal analyzer (for FFA: FFA-C test kit, Wako chemicals,
Neuss, Germany; for glucose: Roche Unikit III, Hoffman-la-Roche, Basel, Switzerland). Insulin
was analyzed using a fluoroimmunometric assay (autoDELFIA Insulin, PerkinElmer, Turku,
Finland) with no cross-reactivity with proinsulin or split forms of proinsulin. 

Results are given as mean ± sem. A two-tailed Student�s t-test for independent samples was
used to compare groups. Correlations were tested using Pearson�s correlation coefficient (r). P <
0.05 was considered statistically significant. Statistical analysis was performed using SPSS 10.0 for
Macintosh. 

RESULTS AND DISCUSSION

No differences in CD36 or FABPc content were found between the obese IGT
men and obese controls (Table 1). Skeletal muscle CD36 protein increased 1.5
fold after 3 hours of insulin-stimulation (p < 0.05, figure 1A), the change in CD36
protein content was comparable between NGT and IGT subjects (p = 0.62, Fig.
1A). Two men (one IGT and one NGT) showed a decrease. In contrast, skeletal
muscle FABPc protein content did not change (p = 0.22, Fig. 1B). The rapid
increase in CD36 protein content indicates that the uptake of plasma LCFA into
skeletal muscle may be actively regulated by fatty acid transporters at the level of
skeletal muscle itself, and not only in a passive way by plasma lipid supply.
Insulin directly activates glucose transporters, but also appears to activate fatty
acid transport. This can be very relevant, considering that LCFA  from
chylomicrons and VLDL may become available for uptake in a later stage after
meal intake (9). Indeed, Chabowski and coworkers found the same remarkable
dynamic upregulation of CD36 protein content, already after 1 hour of insulin
stimulation in rat cardiomyocytes (13). This was preceded by an increase in
mRNA expression. Insulin also induced the translocation of CD36. In that study,
a large part of the newly synthesized CD36 protein was translocated to the plasma
membrane, suggesting that the new proteins may directly contribute to the fatty
acid uptake capacity of the muscle cell. Also in humans, insulin induces the
translocation of CD36 to the plasma membrane in response to insulin infusion
(17). Apparently, insulin has two fast effects: within minutes, it induces the
translocation of endosomal CD36 protein to the sarcolemma, and within hours
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this is followed by an increase in total CD36 protein, which is also immediately
available for translocation. Both adaptations lead to more sarcolemmal CD36 and
an increased fatty acid uptake capacity after a meal. This may be an important
adaptation for a rapid storage of meal-derived fatty acids.

It is remarkable that despite the increase in CD36 protein, we did not find an
increase in muscle FABPc. If the muscle increases its fatty acid uptake capacity,
would it then not be necessary to also increase the intracellular capacity to
transport fatty acids? Studies with FABPc knock-out mice have indicated the
involvement of FABPc in shuttling LCFA from the sarcolemma to intracellular
sites of oxidation or esterification, but rather in a permissive than in a regulatory
fashion (18, 19). Even a reduction of FABPc protein of 50% is sufficient to
maintain LCFA trafficking. Thus, in comparison to CD36, the need to increase
FABPc protein content is limited.

The increase in CD36 protein content upon insulin stimulation (Fig. 1A) was
comparable between groups (p = 0.62). The change in CD36 protein in relation
to insulin resistance was further investigated in the group as a whole.
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Table 1. General and metabolic characteristics of the impaired glucose tolerant subjects (IGT) and
normal glucose tolerant controls (NGT).

NGT IGT P-value

n = 9 n = 8
Age (yrs) 57.1 ± 2.6 58.1 ± 2.7 0.79
Capillary glucose fasting (mmol/l) 5.7 ± 0.6 6.8 ± 1.0 0.035
Capillary glucose 2-hour OGTT (mmol/l) 6.7 ± 1.2 12.97 ± 1.6 0.001
Body mass index (kg/m2) 34.2 ± 1.5 32.6 ± 0.6 0.28
Body fat (%) 34.7 ± 1.5 32.7 ± 1.1 0.51
Fat free mass (kg) 69.5 ± 10.8 62.7 ± 3.8 0.084
Waist-hip ratio 1.02 ± 0.02 1.03 ± 0.01 0.59
VO2max (ml O2* kg FFM-1*min-1) 40.5 ± 2.0 38.9 ± 1.8 0.57
Triglycerides (mmol/l) 1.73 ± 0.29 1.54 ± 0.27 0.65
Glucose - fasting (mmol/l) 5.7 ± 01 6.2 ± 0.2 0.059
Glucose - SS (mmol/l) 4.5 ± 0.1 4.4 ± 0.1 0.40
Insulin - fasting (mmol/l) 16.8 ± 4.1 14.1 ± 1.8 0.092
Insulin - SS (mmol/l) 111 ± 6 108 ± 9 0.76
FFA - fasting (mmol/l) 539 ± 54 696 ± 81 0.64
FFA - SS (mmol/l) 140 ± 19 167 ± 13 0.27
GIR (µmol*kgFFM-1*min-1) 32.2 ± 4.5 21.2 ± 3.7 0.085
muscle CD36 protein  (ng/g wet weight) 20.0 ± 4.1 16.5 ± 4.3 0.57
muscle FABPc protein (µg/g wet weight) 93.6 ± 13.6 83.5 ± 13.8 0.61
IMTG (Oil Red O, lipid stained area fraction) 0.058 ± 0.034(n=5) 0.068 ± 0.041(n=4) 0.85
Fibre type area (% type 1 fibre) 46.5 ± 8.7 (n=5) 51.3 ± 11.6 (n=4) 0.75

Mean ± sem. Student�s t-test for unpaired samples, two-tailed. FFM = fat free mass, GIR = glucose
infusion rate, IGT = impaired glucose tolerance, IMTG = intramyocellular triglycerides, NGT =
normal glucose tolerance, SS = steady state (last half hour) during insulin-stimulation (clamp). n =
9 for NGT and n = 8 for IGT unless indicated otherwise.



Interestingly, a positive association was found between the increase in CD36
protein and GIR (Pearson r = 0.564, p = 0.045). Correction for a possible
confounding by baseline values, by dividing the change in CD36 protein content
by fasting CD36 protein content, did not reduce the association (r = 0.640, p =
0.020). Although this finding seems contra-intuitive, it has been shown that in
insulin resistance, CD36 protein translocation is impaired (20), showing an
increased amount of CD36 at the sarcolemma and a reduced translocation after
insulin stimulation in vitro. A larger increase in CD36 protein may be a
mechanism to compensate for a reduced translocation effect. On the other hand,
an increased fatty acid transporter capacity during the time that meal-derived
LCFA are highly available from chylomicrons and VLDL is likely to increase
intramyocellular lipid storage, and thus these subjects may have become more
insulin resistant.

In conclusion, CD36 protein is regulated in a remarkably dynamic manner by
insulin in vivo in human skeletal muscle of obese subjects. This is a promising
finding because an increase in CD36 protein content in the late postprandial
phase may play an important role in an increased fractional extraction of fatty
acids from plasma, enhancing intramyocellular triglyceride storage. It also
emphasises that the uptake of free fatty acids may be regulated at the level of
skeletal muscle by fatty acid transporters and not only by plasma lipid supply. In
addition, our data suggest that this regulation may depend on the degree of
insulin resistance.
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Fig. 1. Skeletal muscle protein content (µg/g wet weight) of CD36 (1A) and FABPc (1B) during
fasting and after insulin stimulation in obese men. Open diamonds are normal glucose tolerant
controls; filled circles are impaired glucose tolerant subjects; flat object with dotted line is the mean. 
* P < 0.05, paired Student�s t-test, two-tailed.

A B



Acknowledgements: Antibody MO25 was kindly provided by Dr. N. N. Tandon, Otsuka
America Pharmaceutical, Inc., Rockville, MD, USA. We thank our volunteers without whom this
study would not have been possible. We thank Jos Stegen, Gert Schaart, Joan Senden, Eveline
Peeters-Tielen, Judith Huskens and Dorien Mintjes for their excellent assistance. Supported by
grants from the Dutch Diabetes Research Foundation (DFN 98.901 and DFN 2000.00.020). JFCG
is Netherlands Heart Foundation Professor of Cardiac Metabolism.

REFERENCES

1. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human
muscle is associated with changes in diacylglycerol, protein kinase c, and ikappab-alpha.
Diabetes 2002; 51: 2005-2011.

2. Bachmann OP, Dahl DB, Brechtel K, et al. Effects of intravenous and dietary lipid challenge on
intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes
2001; 50: 2579-2584.

3. Jensen MD. Fatty acid oxidation in human skeletal muscle. J Clin Invest 2002; 110: 1607-1609.
4. van Loon LJ, Goodpaster BH. Increased intramuscular lipid storage in the insulin-resistant and

endurance-trained state. Pflugers Arch 2006; 451: 606-616.
5. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: A

reexamination. Diabetes 2000; 49: 677-683.
6. Blaak EE, van Aggel-Leijssen DP, Wagenmakers AJ, Saris WH, van Baak MA. Impaired

oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity
exercise. Diabetes 2000; 49: 2102-2107.

7. Mensink M, Blaak EE, van Baak MA, Wagenmakers AJ, Saris WH. Plasma free fatty acid
uptake and oxidation are already diminished in subjects at high risk for developing type 2
diabetes. Diabetes 2001; 50: 2548-2554.

8. Turpeinen AK, Takala TO, Nuutila P, et al. Impaired free fatty acid uptake in skeletal muscle
but not in myocardium in patients with impaired glucose tolerance: Studies with pet and 14(r,s)-
[18f]fluoro-6-thia-heptadecanoic acid. Diabetes 1999; 48: 1245-1250.

9. Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia 2002; 45: 1201-1210.
10. Ravikumar B, Carey PE, Snaar JE, et al. Real-time assessment of postprandial fat storage in

liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab 2005;
288: E789-797.

11. Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine cd36 reveals an
important role in fatty acid and lipoprotein metabolism. J Biol Chem 1999; 274: 19055-19062.

12. Glatz JF, Bonen A, Luiken JJ. Exercise and insulin increase muscle fatty acid uptake by
recruiting putative fatty acid transporters to the sarcolemma. Curr Opin Clin Nutr Metab Care
2002; 5: 365-370.

13. Chabowski A, Coort SL, Calles-Escandon J, et al. Insulin stimulates fatty acid transport by
regulating expression of fat/cd36 but not fabppm. Am J Physiol Endocrinol Metab 2004; 287:
E781-789.

14. Wodzig KW, Pelsers MM, van der Vusse GJ, Roos W, Glatz JF. One-step enzyme-linked
immunosorbent assay (elisa) for plasma fatty acid-binding protein. Ann Clin Biochem 1997; 34
(Pt 3): 263-268.

15. Pelsers MM, Lutgerink JT, Nieuwenhoven FA, et al. A sensitive immunoassay for rat fatty acid
translocase (cd36) using phage antibodies selected on cell transfectants: Abundant presence of

82



fatty acid translocase/cd36 in cardiac and red skeletal muscle and up-regulation in diabetes.
Biochem J 1999; 337 (Pt 3): 407-414.

16. Koopman R, Schaart G, Hesselink MK. Optimisation of oil red o staining permits combination
with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 2001;
116: 63-68.

17. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased malonyl-coa levels in muscle
from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased
lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 2006; 55: 2277-2285.

18. Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ. Requirement for the heart-type fatty
acid binding protein in cardiac fatty acid utilization. FASEB J 1999; 13: 805-812.

19. Luiken JJ, Koonen DP, Coumans WA, et al. Long-chain fatty acid uptake by skeletal muscle is
impaired in homozygous, but not heterozygous, heart-type-fabp null mice. Lipids 2003; 38:
491-496.

20. Bonen A, Parolin ML, Steinberg GR, et al. Triacylglycerol accumulation in human obesity and
type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and
increased sarcolemmal fat/cd36. FASEB J 2004; 18: 1144-1146.

R e c e i v e d :  August 23, 2007
A c c e p t e d : January 7, 2008

Author�s address: E. Corpeleijn, PhD, Department of Human Biology, Faculty of Health,
Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The
Netherlands. Phone +31 433881638. Fax +31 433670976; e-mail: E.Corpeleijn@hb.unimaas.nl

83


