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Insulin as a Growth Factor
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ABSTRACT. Insulin is a potent mitogen for many cell
types in vitre. During tissue culture, supraphysiclogical
concentrations of imsslin are necessary to promote cell
replication in connective or musculoskeletal tissues. Insulin
promotes the growth of these cells by binding, with low
affinity, to the type 1 insulin-like growth factor (IGF)
receptor, not through the high affinity insulin receptor. In
other cell types, such as hepatocytes, embryonal carcinoma
cells, or mammary tumor cells, the type I IGF receptor is
virtually absent, and insulin stimufates the growth of these
cells at physiological concentrations by binding to the high
affinity insulin receptor. Both receptor systems activate
phosphorylation reactions within the cell which extend to
ribosomal proteins. Insulin acts synergistically with other
factors, such as platelet-derived prowth factor and epider-
mal growth factor, to stimulate the progression of cells
through the cycle of proliferation, Almormal insulin secre-
tion or action, before or after birth, often is associated with
disordered growth suggesting that insulin may function as
a growth factor in vive. Poor growth follows impaired
insulin secretion in diabetes mellitus, This is associated
with reduced circulating levels of 1GE"s which may be
partly responsible for the growth failure. Insulin has 2
direct action on release of IGF's from the liver in vitro,
but during experimental diabetes there is a reduced number
of hepatic somatotropic receptors which could limit the
ability of growth hormone to regulate IGF release. Diabetic
children, treated conventionally, have normal circolating
IGF levels, but both growth rate and serum IGF concen-
tration may increase dramatically when diabetic control is
optimized. Hyperinsulinaemia in the human fetus of a
disthetic mother may result in somatic overgrowth as well
as adiposity, whereas experimental fetal (animal) hyper-
insulinaemia does not result in skeletal overgrowth, and
promotes IGF release only at extreme levels. Conversely
hypoinsalinemia, with or without nutritional deprivation,
is associated with fetal growth retardation accompanied by
low circulating 1GF levels. It can be concluded that insulin
functions as a growth factor in both normal and abnormal
development. Insulin promotes the growth of sclected tis-
sues by a direct action; in others, such as the musculoskel-
etal system, the actior is indirect via the regulation of IGF
release. { Pediatr Res 19: 879886, 1985)

Abbreviations

IGF, insulin-like growth factors
MSA, multiplication-stimulating activity

Although insulin is mitogenic for most cell types during tissue
culture. its role as a peptide growth faclor has attracted less
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atlention than its well known, acute metabolic actions. Insulin
also can influence growth ir vive. The poor growth of a child
with diabetes (1) contrasts with the overgrowth of the hyperin-
sulinemic infant of a diabetic mother {2}. The growth-promoting
effect of insulin in vive was demonsirated experimentally by
Salter and Best in 1953 {3} these investigators restored growth
to hypopliysectomized rats by treatment with insulin and a high
carbohydrate diet. Rats given insulin grew as well as those given
growth hormone but consumed substantially more food. Any
analysis of the action of insulin in promoting growth must clearly
separate those cffects which are due to anabolism resulting [rom
increased nutnent availability and utilization [rom those effeets
which are due to insulin being a member of a family of growth-
promaoting peptides.

The mechanisms by which insulin can act as a growth lactor
have become ¢learer with the discovery of the structure and
biological actions of related molecules, the somatomeding or
iGl. Two IGF have been isolaled from human serum. IGE 1 (or
somatomedin-{7) and IGF II. Both molecules show greater than
a 40% similarily In aming acid structure with insulin and are
potent mitogens both ju vitre and in vivo (4, 5). Rat serum
contlains IGF malecules showing a strong homology to human
IGF I and Il, the latter molecule in the rat is commonly known
as MSA (6). In postnatal lifc the release of IGF, in particular 1GE
T which is the more potent growth-promaoting peptide in vive, are
largely dependent on circulating growth hormone (4). However,
disordered growih consequent to insulin dysfunction is fre-
quently associated with a parallel change 1n crreulating levels of
IGF. suggesting a direct or indirect modulation of IGEF produc-
tion by insulin. Additionally, the similanty in structure betwecn
insulin and IGF's allows low-affinity binding between insulin
and IGF cell membrane receplors and vice versa (7). Insulin
may. therefore, exert dircet mitogenic actions through cither
insulin or IGF receptors.

In this paper experimental evidence is reviewed which supports
the concept that insulin has both direct and indirect roles in the
control of normal body growth. Possible mechamisms of action
are discussed in relation to clinical disorders of growth involving
abnormal insulin release or action before and after hirth.

DIRLCT ACTIONS OF INSULIN

Insulin is added to hormone-supplemented culture media for
a wide vaniety of cell types to achieve optimal cell replication (8},
Supra-physiological concentrations, in excess of 1 pM, are re-
guired for the maximal proliferation of many cells, including
those of the mesodermally derived connective tissues which
contribute to much of the musculoskeletal system. At such high
concentrations, insulin may mimic the growlh-promoting ac-
tions of the IGF due to the strong structural homology between
these peplides and limited cross-reactivity with their respective
cell membranc receplors.

Insulin initiates biological responses by interaction with a high
aflinity insulin reeeptor on the cell membrance leading to inter-
nalization of the hormonc-receptor complex and subseguent
degradation of insulin by lysozomes {9). [l appears that receptor
occupation. ratfter than the insulin molecule 1tsell] provides the
initial impulse for a cellular response, since noninsulin ligands
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such as lectins and antiinsulin receplor antibodies also possess
insulin-itke activity (10, 113,

The insulin receplor has been highly conserved throughout
evolution and between different tissues, and has a tetrameric
structure consisting ol two « subunits of molecular weight ap-
proximaltely 135 K daltons and two 8 subunits of 93 K daltons.
The subunits arc linked by disulphide bonds (12}, Affinity cross-
linking of radiolabeled peptides to membrane proteins revealed
two classes of receptors for the IGF. The type [ receptor has a
higher affinity for 1G17 1 than IGF II, and binds insulin with low
affinity (13). This receptor showed a close homology with the
high affinity insulin receptor, but probably is a distinct gene
product, the o« subunit of the type I EGF receptor being 8 K
daltons smaller than that for insulin {14). The IGF also interact
with a second class of receptor, called type II, which binds IGE
11 with higher allinity than IGF I and binds insulin very poorly.
The type T receptor is a single chain glvcoprotein of molecular
weight approximately 250 K daltons which is apparently unre-
lated to the type [ orinsulin receptor (14},

The supraphysiological concentrations of insulin necessary to
induce the growth of connective tissues iz vitro suggest that the
hiological response may be mediated by the type T IGE receptor.
This was originally deduced from the observation that insulin
competed with IGF's for binding to chick embryo {ibroblasts,
whilc the actions of the lwo peptides were nonadditve during
the growth of these cells {15, 16). Furthermore, when the high
aflinity insulin receptor on human dermal fibroblasts was
biocked with FFab fragments [rom antiinsulin receptor antibodies
derived from a patient with exireme insulin resistance, it still was
possible to demonstrate an insulin-dependent uptake of [*H]
thymidine (17}. Human fibroblasts contain tvpe [ IGE receptors
which, presumably, mediated the actions of insulin on growth
{13). This conclusion was supported by a failure of intact antiin-
sulin receptor IgG to promote thymidine uptake by fibroblasts
ir vitre despite its ability to mimice the acute metabolic aclions
of insulin which are mediated via the insulin receptor (17).

Conversely, insulin is mitogenic at much lower concentrations
(less than 5 nM which are in the physiological range) for a variety
of ¢cell types, including human mammary tumer cells, GH3 rat
pitultary tumoer cells, F9 embrvonal carcinoma cells, and rat
hepatocyles (18-22). The F9 embryonal carcinoma line grew in
response to low concentrations of insulin or MSA (21, 23). These
cells are rich in tvpe I1 IGF receptors and high affinity insulin
receplors, bul lack the type I IGF receptor (20, 21). Since the
tvpe I receptor binds insulin poorly, it is likely that the growth
response to insulin in these celis 1s mediated by the insulin
recepior. Accordingly, the actions of insulin could be reproduced
by an antiinsuhn receptor antibody (20). Similarly, the H35 rat
hepatoma cell line muluplied with a hall-maximal response in
the presence of less than 200 pM insulin (24), These cells also
are rich in tvpe I IGT receptors and lack type 1 receptors {25).
An antibody 1o the tvpe 1T receptor did not abolish the growth
response to insulin or MSA reinforcing the opinion thal the
cellular message was mediated via the insulin receptor (20},

Since the relative distribution of receptors to the insulin-like
family of peptides is similar on normal hepatocytes and the H35
hepatoma line (27), a direcl growih-promoling action by phys-
iological levels of insulin has relevance to liver regeneration.
Although (he hepatc portal circulation was shown 1o contain a
hepatotrophic factor, liver regeneration was not seriously im-
paired by diabetes in the rat (28). When partially hepatlectomized
rats were eviscerated of all portally drained organs and main-
tained on an intravenous diet, the resulting hepatic DNA syn-
thesis was only 20% of that in noneviscerated animals; however,
the level of DNA synthesis increased toward control values after
infusion of eviscerated rats with a combination of insulin and
glucagon (29). Moreover, these hormones did not stimulate DNA
synthesis in the intact rat liver suggesting that their role was to
potentiate, rather than induce, liver regencration. Studies in vitro
showed insulin to be a nutogen for isolated rat hepatocytes at
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concentrations from 4 nm to 4 uM. and that insulin acted
synergistically with epidermal growth factor (30). In the presence
of both epidermal growth factor and glucagon, al concentrations
of 3 and 7 nM insulin was half-maximal in increasing DNA
synthesis and cell number, respectively, in cultured hepatocytes
{22). IGF | was half maximal at 1 and 5 nM, respeclively, for
the same parameters. Since rat hepatocyles have fow IGI type T
receptors, and the type 11 receptor has not been shown to mediate
an intracellular anabolic signal, it seems likely that physiological
concenirations of insulin or the IGF promote growth of isolated
hepatocytes by interaction with the insulin receptor,

The binding of insulin to the insulin receptor on intact cells
or isolaicd membranc preparations leads to phosphorylation
reactions in serine, threonine, and tyrosine residues of several
membrane proieins including the receptor glvcoprotein (31), It
appears that the insulin receptor contains within iis structurc a
tvrosine-specific protein kinase which activates aulopliospho-
rylation of the receptor (32). The two functions of insulin binding
and protein kinase activity are in different subunits: the « subunit
containing the binding site and the 3 subunit the kinase activity
{33). The two subunits are linked by two disulphide bonds and
readily communicale with one another, presumably by confor-
mational changes, such that the binding of ATP to the 3 subunil
regulates the hinding of insulin to the « subunit (34). Since the
@ subunit 1s transmembranal, the induction of autophosphory-
lation by the binding of insulin to the « subunit may provide the
first intracellular molecular signal. Similar tyrosine-specific kin-
ases have been identified within the receptors for other peptide
growth factors, including IGF, plaielet-derived growth factor,
epidermal growth factor, and the pp 60 transforming protein
present following the infection of cells with Rous sarcoma virus
{35-38).

It is hypothesized that many of the biclogical actions of insulin,
including cell growth, may be mediated by phosphorylation
cascade reactions (39), but the precise signals have vet to be
determined, The stimulation of growth in mammalian fibroblasts
leads to a rapid increase in cytoplasmic pH due to activation of
a sodium/hydrogen ion cxchange channel in the plasma mem-
branc (40}. This ionic cxchange mav be necessary before DNA
synthesis can commence, and is initiated by the activity of a
calcium and phospholipid-dependent protein kinase known as
c-kinase (41). The c-kinase normally is activated by diacyl-
glveerol, the final product in a cycle of membrane phosphoryla-
tion/dephosphorylation reactions commencing with phosphati-
dyl inosital (42). The introduction of phorbol esters, which are
tumior promoters, into cell systems leads to an activation of c-
kinase and the phosphorylation of the 3 subunits in both the
insulin and IGF type [ receptors, and 1o their subsequent inter-
nalization (43). Hence, both tumor promoters and peptide
growth factors such as insulin may precipitate & change in
intracellular pH by the activation of the PI ¢ycle and ¢-kinase.

The stimulation of cell proliferation in quiescent cells afier
exposure to inulin, the IGF, epidermal growth factor, or plaicict-
derived growth factor is accompanied by the phosphorylation of
a ribosomal protein 86 (44}. The phosphorvlation of 86 has been
suggested to be necessary for the transition of cells from a
quuiescent Gy phase to the Gy phase of the cvele of cell replication,
and may cause an alteration in the affinity of ribosomes for
messenger RNA, The pathway by which insulin and other pep-
tide growth factors phosphorylate the 86 protein involves a cyclic
AMP-independent protein kinase-promoting phosphate incor-
poration at serine residues (45}. Since the same kinase activity
also is activated by phorbol esters, the phosphorylation reactions
directed at translational events following insulin stimulation may
be linked to initial receptor occupancy and internalization by
the phosphatidy! inositel evele and c-kinase activation.

For many cells, the actions of insulin on growth are potentiated
by the presence of other peptide growth factors. This was con-
vincingly demonsiraled for the BALB/c 3T3 cell where growth-
promoting peptides could be classified as “competence”™ and
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“progression” faclors (46). Competence factors, such as platelei-
derived growth factor, induced the biochemical changes neces-
sary to progress from a quiescent Gy phasc to an active G, stage
of the cell cycle. Once cells had been rendered competent they
no longer required the presence of molecules such as platelet-
derived growth factor, but were dependent on peptides such as
insulin or IGF for progression through Gy to S phase and DNA
synthesis. Insulin, IGF I, and MSA fulfilled a similar progression
factor role during the latter part of G,, during which amino acid
uptake and protein synthesis were greatly increased; however, in
BALB/c-3T3 fibroblasts insulin was less active than the IGF (47).
Insulin also appears to act as a progression factor during hepa-
tocyte replication (48). The molecular basis of the concept of
compelence and progression, and hence the synergism between
insulin and other peptide-growth factors, may derive from the
obscrvations that the binding of platelet-denved growth factor to
is own receplor on BALB/¢-3T3 cells induced rapid changes in
the membranal expression of receptors to progression factors.
For the epidermal growth factor receptor this involved a down-
regulation while receptors for the IGE were up-regulated (49,
50).

MEDIATION OF GROWTH-PROMOTING ACTIONS OF
INSULIN BY IGF'S

The induction of severe diabetes in the rat by treatment with
slreptozotocin 15 associated with a cessation ol growth and a
negative nitrogen balance, both of which are reversible by insulin
therapy. The growth retardation is associated with a rapid decline
in the circulating levels of IGF, which can reach the low values
found in hyvpophyscctomized rats within 72 h of B-cell destrue-
tion. Although the initial observations were obtained by bicassay
and were due, in part, to an increase in the circulating levels of
an inhibitor of 1G17 action (51), an actual decrease in serum 1GI7
I was confirmed by radioreceptor and radicimmunoassay (52-
54).

Although it has been suggested that the growth retardation
scen i ihe diabetic rat s associated with normal levels of
circulating growth hormone and prolactin, two major regulators
of 1GT release from rat liver (55, 56), a more detailed analysis of
GH release indicaied a depression in amplitude of growth hor-
mone pulses within 18 h ol sireptozolocin administration {57).
This was alleviated by treatment of diabetic rats with antlisoma-
tostatin antiserum, suggesting that an increase in somatostatin
release from the hypothalamus may have contributed o the
altered growth hormonc secretion. However, treatment with
growlh hormone did nol resull in growth or an mcrease of
circulating IGF levels in the diabetic rat {51) or the pancreatee-
tomized dog {58), whereas insulin therapy resulted 1n an increase
in both (51, 53, 58).

One possible mechanism by which insulin may regulate growih
i a direct modulation of tissue IGF release. Exposure to insulin
resulted in an increase in [GF production from isolated rat
hepatocytes (39), from liver slices (60, 61), and from the isolated,
perfused rat liver (62}, Although supraphysiological levels, in
cxcess of 7 oM, generally were required, studies ulilizing liver
slices showed IGF release with as little as 10 pM insulin. Perfu-
sion of the liver from diabetic rats showed a deficieney in IGF
refcase which was partly restored by pretreatment of the animal
with insulin /7 vivo (63).

Insulin also may mediate 1GF release from the liver indirectly
by an alteration i the growth hormone/IGFE axis, since both
acute and mild nonketolic diabetes in the rat arc accompanied
by a severe reduction in the numbers of high affimity hepatic
somatotropic receptors (54, 64). This was reversed by insulin
treatment. Superfcially this is analogous to the disruption in the
growlth hormone/1GF pathway that occurs in malnutrition,
where hypoinsulinenua is accompanied by low circulating IGF
levels despite, in the human, increased secretion of growth hor-
mone (65-67). However, in the diabetic rat, the decline in
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circulating IGF and the reduction in hepatic growth hormone
receptors may nol be causally relaied. in the mildly diabetic rat,
circulating IGF I levels were significantly reduced | wk after the
induction of diabetes, vet the hepatic binding capacity for growlh
hormone did not fall significantly for another 3 wk (54). Follow-
ing treatment with insulin, serum IGF levels were quickly re-
stored, but the somatotropic receptor population only partly so.
Growth hormone has been reported to down-regulate its he-
patic recepior site (68), but recent cvidence by Baxter ef al. (69)
suggests that the opposite may occur. Hencee a reduction in the
amplitude or frequency of the episodes of growth hormone
relcase in the diabetic rat may reduce the number of high affinity
somatotropic reeeptors in the liver. Both this and a directly
mediated decline in insulin-dependent IGF release would result
in a lowering of circulating IGF in response to hypoinsulinism
and a failure to grow. However, the relative unimportance of zn
extended pathway involving pituitary growth hormone in the
relationship between serum IGF and insulin status was revealed
by the experiments of Heinze et al {70). Hypophysectomized
rats were injected with glibenclamide, a sulphonylurea, which
enhanced the release of pancreatic insulin, This was accompanicd
by an increase in serum levels of IGE, relative to those found in
intact rats, and to an increase in the width of the tibial epiphysis,
clearly showing that insulin could modulate IGF release inde-
pendently of growth hormone, Probably this is the predominant
mechanism for the growth retardation in experimental diabetes.
Tissue anabolism during chemically induced diabetes 1s 1m-
paired not only by a failure of IGF release, but also from the
presence of inhibitory factors which oppose the biological actions
of both IGF and insulin. Sera from rats in scvere catabolic states
resulting from diabetes, mainutrition, or hypophyscctomy con-
tained proteins which inhibited the IGF-dependent stimulaticn
of glycosaminoglycan synthesis in cartilage explants as well as
the ability of insulin to stimulate glucose uplake into isolated rat
diaphragm muscle (71-73). The inhibitor is not specific to insulin
and insulin-like peptides but has a gencral depressive effect on
all aspects of cartilage metabolic function; it has been partial’y
purified as a heat-labile protein of 21-24 K daltons molccular
weight with an acidic isoelectric point (72, 74). In the diabetic
rat this inhibitor appears to originate mainly in the liver (75).

INSULIN BYSFUNCIION AND POSTNATAL GROWTH
DISORDER

Diabetes meellitus in childhood is the most commeon clinical
example of disturbed growth due 1o abnormal insulin secretion.
Growth may be subnormal for months before the diabetes is
clinically manifest (1), and after treatment has been initiated,
growlih is closely linked to the guality of diabetic control {76).
Excess dietary carbohydrate coupled with excess insulin can
result in brittle control and Mauriac’s syndrome in which the
child is short, obese, and has a large liver due mainly to fatty
infiltration. Growth retardation also may occur in conditions
such as leprechaunism {77) and lipoatrophic diabetes (78} in
which there is a resistance to the action of insulin due to a deficit
of insulin receptors.

Winter et af. (79) clarified the endocringpathy of Mauriac’s
svndrome by a careful study of a 7-yr-old boy. The patient had
a normal plasma growth hormone response to insulin hypogly-
cemia, but his circulating 1GF levels were in the hypopituitary
range. The serum IGF rose on cach of two occasions when
metabolic control was improved. The authors speculated that a
block in the growth hormone/IGF axis existed in uncontrolled
diabeles; this view was supported by failure of exogenous growth
hormone administration to raise a low secrum IGF in a second
patient with Mauriac’s syndrome.

Whether the less severe metabolic abnormalities that often
occur in relatively well controlled, insulin-dependent diabetics
are detrimental to growth potential is nol clearly understood.
Diabetic members of identical twin pairs consistently had a lower
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adult height than their nondiabetic brothers or sisters (80). Using
various bicassay techniques, circulating IGF in insulin-depend-
ent diabetics was demonstrated to be higher (81), similar to (82),
or lower {76) than that in normal adults. The interpretation of
these findings s difficult because of the possible interaction of
circulating inhibitor in the bicassay. Winter et af. (76) reported
that there was an inverse correlation between the serum IGF
determined by bioassay and the glycosylated hemoglobin fevel
in 40 insulin-dependent diabetic children, and suggested that
poor melabolic control may adversely attect growth endocrinol-
ogy. When IGT 1 and [I were measured by radicimmunoassay
in insulin-dependent children, adults, and control subjects, no
differences in mean circulating levels were observed, despite the
plasma growth hormone levels being raised 1n the diabetic chil-
dren (83, 84). The authors sugeested that the IGE response to
growlh hormone may be blunted in the diabetic child, but they
falled to take into account that many of their patients werc
pubertal, a time when both 1GI and growth hormone levels may
be higher than in adult life.

A most informative study on the growth potential of the
relatively well-controlled diabetic child was provided by Rudolf
et ad {85) who measured growth velocity in nine insulin-depend-
ent children before and after 6 months of intense 1nsulin treat-
ment using pumps or mutiple injections. During conventional
therapy {once ot twice daily injections of insulin) the mean
growth velocity was 3.3 cm/yr, e.g within the normal range,
despile evidence of spasmodic hyperglveemia. After a period of
intense management, in which the overall dose of insulin was
not increased, mean plasma glucose fell from 270 to 105 mg/dl
and glycosylated hemoglobin from 12.4 10 8.4%:; mean growth
velocity increased sharply 1o 9.4 cm/yr as the serum IGF I level
increased 2-fold. The rate of skeletal maturation did not increase.
It was concluded that improved metabolic centrol, even for
children who were not obvicusly short, could substantially in-
crease adult height potential. A recent follow-up study examined
the circulating IGF Tand I levels in diabetic children by specific
radicimmunoassays (86), during conventional therapy [GEF 1 was
lower, bul IGF [ was gencrally unaltered in 19 insulin-dependent
diabetics compared 1o nondiabetic controls. Following 1 wk of
intensive insulin therapy, [GF 1 values increased by 25% despite
a decrease in the mean 24-h levels of growth hormone. Circulat-
ing 1G¥ 1l did not alter during intensive therapy. This study
provided further evidence that the normal control of IGE 1 by
growth hormone is disrupled during diabetes and that this can
be partially corrected by improved metabolic control. In contrast.
endogenous hyperinsufinemiain childhood is not associated with
a serious disturbance of growth endocrinology. Blethen et wf. (87)
described seven children aged below 3 yr with severe fasting
hypoglycemia duc 0 hyperinsulinemia. Neither IGF T nor 11
differed frem the valucs for age-matched control children.

Disorders arising from insulin resistance are helerogeneous
and can involve both receptor and postrecepior abnormalities.
Those resulting in growth relardation arce scen at thewr most
extreme in leprechaunism. This condition is Lypified by severe
intrauterine and posinatal growth retardation with decreased
subcutaneous fat and decreased muscle mass. Fyperinsulinism
and 3 cell hyperplasia sometinmes may be present. Tavlor ef af.
{88) described a patient with extreme insulin resistance whose
lymphocytes bound insulin with high affinity bul showed abnaor-
mal binding in response to changes ol temperature and pH. A
defect in the affinity of the insubin receptor was postulatled.
Kaplowilz and D’Ercole (89) cultured skin fibroblasts from a
leprechaun infant and obscrved apparently normal binding of
insulin and 1GF T but reduced prolileration in vifrg. The uplake
ol glucose and amino acids and the incorporation of thymidine
into DNA were abnormally low in response to both insulin and
IGF T as well as to cpidermal growth [lactor, suggesting thal a
common postreceplor defect existed for a variely of anabolic
hormones.

A defect originating from a receptor abnormality also was
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deseribed by Schilling er af. (90} in an infant with hyperinsuli-
nemia and insulin resistance who died at age 7 wk. Although
fibroblasts from the baby were able to bind epidermal growth
factor normally they did not bind insulin, and insulin was unable
to promote intracellular glucose uptlake. The cells of 2 simmlar
patients, reporied by Knight et al. (77), were unable to transport
glucose but did transport amino actds in vitro in response to
either nsulin or MSA. From the handful of case studies so far
reported 1t is clear that insulin resistance, at erther a receptor or
postreceptor level, is seldom isolated from a resistance to the
biological actions of other peptide growth factors, which together
result in intraccllular malnuirition, impaired growth and fre-
quently carly death.

Insulin resistance originating from various lesions at and be-
yond the insulin recepior also underlies the syndrome of lipoa-
trophic diabetes. This syndrome is characterized by a lack of
adipose lissue and abnormalities of carbohydrate and lipid me-
tabolism (78). The molecular basis of one form of insulin resist-
ance was recently described in patients with a type A syndromc
(91}, This occurred in young, nonobese women with extreme
hyperinsulinemia and a resistance to cxogenous insulin. A con-
genital defect was identified in the insulin receptor protein kinase
activity of circulating monocytes and lymphoeytes following
chemical transformation in vitro.

Conversely, increased scnsitivity to insulin has been reporied
for cultured skin fibroblasts from patients with insulin- or non-
insulin-dependent diabetes (92). Cells derived from diabetic pa-
tlents showed a greater sensitivity to insulin than those from
nondiabetics with respect to collagen synthests. This may have
important implications for the ctiology of macroangiopathy in
diabetes, since collagen comprises more than half the total pro-
tein present in human atherosclerotic plaques (93}, Fibrous
deposition 1n diabetic patients may originate from smooth mus-
cle cells which proliferate in the subintima and deposit forms of
collagen chemically distinet from those found in normal subjects
{94). Insulin-dependent diabetic subjects with atherosclerosis
were found to have higher circulating insulin levels than those
without diabetes (95).

INSULIN AS A FETAL GROWTH FACTOR

Abnormal insulin sceretion iz mterp can have profound phys-
ical consequences for the newborn infant, These have been best
documenied 1n the nfant of the poorly controlled diabetic
mother who is abnormally hecavy, obese, may have viscerome-
galy, and be lenger than appropriate controls of the same gesta-
tional age (96). Pedersen ¢ af (97) were the first to suggest that
these somatic changes resulted from maternal hyperglycemia
causing fetal hyperglycemia which provoked increased fetal in-
sulin secretion. The metabolic disturbances in diabetic pregnancy
arc now appreciated to be more complex (98), and other classes
of metabolites, notably amino acids, are thought to exert a
trophic effect on the development of the fetal B-cell as well as
being insulin secretogogues (99).

Although insulin is present in the human fetal pancreas from
10 wk gestation, insulin release remains glucose insensitive until
approximately 28 wk gestation age (100), at which time the
preadipocyte matures into an insulin-sensitive cell that is capable
of accurnulating lipid. Most of the excess weight gain seen in the
infant of a diabetic mother is fat which is accumulated in the
last trimester of pregnancy. The less dramatic but unequivocal
increase in somatic growth occurring concurrently suggests that
insulin has an additional direct or indirect role in protein syn-
thesis and cellular proliferation. Enhanced fetal somatic devel-
opment has been described in infants with nesidioblastosis or the
Beckwith-Wicdemann syndrome, each of which is associated
with hyperscerction of insulin {101, 102). Conversely, in transient
neonatal diabetes (103} and in pancreatic agenesis (104), the
newborn infant is characteristically small-for-dates having poor
muscle bulk and virtually no adipose tissue.
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‘there are several pathways by which insulin can acl as a fetal
growth factor. First, it may alter cellular nutntion o increase
nutrient uptake and utilization. Second, insulin may exert a
direct anabolic action via either the insulin or type [ FGF receptor.
Third, insulin may modulaie the release of IGF or other growth
factors Irom fetal tissues. A direct association between plasma
insulin levels and feta! body weight was reported 1n the rat (105)
and rabbit (106). Insulin and YGF recepiors were identified in
human fetal tissues from at least 15 wk gestation; insulin receptor
number increased with gestational age uniil 25 wk, afier which
time binding capacity was enhanced by an increase in receptor
affinity only (107, In the embryonic chick, ussue receptors for
Insulin were apparent from 3 days of incubation. and insulin
1iself was detectable as early as the 2nd day (108, 109). Hence,
both hormone and receptor are present before the known time
of pancreatic islet development in the chick (about 5 days) (110).

Al term. both insulin binding and affinity of rat liver mem-
brane cxceeded adult values {107, Addittonally, monocytes from
receplor cord blood of normal human infants had five times the
insulin binding capacity of adult cells, and monocytes taken
from cord blood of infants of diabetic mothers were increased
stil further (111, 112). While we lound no direct mutogemic
action of insulin on human fetal fibroblasts or myoblasts ob-
tained from fetuses less than 20 wk gestation (Hill DJ. unpub-
lished data), it is conceivable thal in later felal development
insulin may exert a direct growth-promoting action. We dem-
onstrated this in 1solated fetal rat myoblasts which incorporate
tritiated thymidine at an enhanced rate in the presence of phys-
iological amounis of insulin during a narrow corridor of devel-
opment at the end of gestation (114), Since the insulin receptor
population may be abnormally clevated in some tissucs from the
infant of the diabetic mother, this coupled with hypeninsulinemia
may result in a direct. pathephysiological stimulation of human
fetal somatic and skeletal growilh,

There have been several atlempls 1o reproduce, in the animal
model. the overgrowth seen in the human infant of a diabetic
mother. Injection of the fetal rat with insulin in lale gestaiion,
aller extension of pregnancy by treatmeni of the dam with
progesterone, resulted in increased fetal weight and nitrogen
content {115). The postmature fetus was capable of laying down
adipose tissue, and this was greater in fetuses exhibiting an
induced hyperinsulinemia than in feluses from control ammals
(116}. However, the model is unavoidably unphysiological since
the rat does not normally lay down subcutaneous fat until after
birth. The induction of hyperinsulinemia in the fetal rat or rabbit,
either by making the mother mildly diabetic or by direct injection
of insulin into the fetus, led to an elevation of circulating HGF
levels and mncrcased tissue metabolic activity (118, 119). In these
short-term experiments no significant increase in fetal body size
was ohserved. Chronic fotal hyperinsulinemia and a carcful
selection of experimental species is necessary to demonstrate an
action of insulin on somauc growih.

Susa ¢f @l (120} implanted osmotic minipumps containing
insulin into monkey fetuses. Three weeks of pharmacological
hyperinsulinemia resulted in a 34% increase in fetal body weight
associated with enlargement of the hearl, hiver, and spleen, but
not the lung. kidoey, or brain. Despite serum insulin levels in
cxcess of 20 nM the fetuses remained cuglycemic. In subsequent
studies {121} a less extreme fetal hyperinsulinemia was produced,
and this caused a 23% increase mr body weight; however, the
only organ found to be enlarged was the heart suggesting that
maost of the excess weight was due to large deposits of adipose
tissue which were observed bul not quantitated. No acceleration
of skeletal development was noted in either group of fetuses, We
used osmotic minipumps to make fotal pigs hyperinsulinemic
for 2 wk late 1n gestation {122). No increase in total body weight
or length was found, but the experimental animals did manifest
an increase in tissue glycogen stores and in the RNA/DNA ratio
of skeletal muscle. The susceptibility of different specics to fetal
hyperinsulinema may be related 1o the stage of development at
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which insulin secretion becomes glucose responsive and fissue
insulin sensitivity occurs. These events happen shortly after birth
in the pig (123) and in late fetal life in the monkey (124).

In the monkey studies, circulating IGF 1 levels were clevated
in animals with gross hyperinsulinemia bul not in those with
moderately elevated levels (123). This was in keeping wilh the
observation that the concentrations of [GF T and Il in the cord
blood of human infants of diabetic mothers did not differ from
those of control infants despite raised levels of cord plasma -
peplide.

Considering the experimental and clinical evidence available
regarding the endocrinology of the overgrowth seen in the infant
of the diabetic mother , two deductions scem reasonable: 1) Body
lengih is increased slightly if at all, even in the presence of
extremely high insulin levels and a raised IGF level, suggesting
that normal fetal growth is taking place close to 118 maximum
potential; 2) modest hyperinsulinemia can result in organome-
raly and obesity despite normal circulating IGF values. These
effects seem likely to be due to direct anabolic and lipogenic
actions of insulin or to be due to another, as vet unidentified,
mediator.

Whereas hyperinsulinemia, with or without hyperglyeemia,
causes only a modest body overgrowth, cxperimental fotal hy-
poinsulinemia is invariably associated with severely reduced
srowlh. When hypoglyvcemia was produced in the tat fotus cither
by maternal fasting or by ligation of the uterine blood vessels, a
pronounced growth retardation was accompanied by a lowenng
of plasma 1nsulin and IGF levels (126, 127). Since the lack of
nutrent availability may have been the major factor in limiting
growth, it was important to develop an experimental model in
which hypoinsulinemia was produced while maintaining eugly-
cemia. This was achieved by Fowden and Comline {128) who
pancreatectomized the fetal sheep in wiero approximalely 3 wk
before lerm. The mean body weight of the pancreatectomized
animals was approximately 20% below that of controls. but was
not consistent with a total cessation of growth, The closest clinical
observation relates 1o transient neonatal diabetes mellitus, One
affected infant had a low birth weight with low circulating levels
of IGF I and insulin, but with normal levels of IGF I (129).
Following insulin therapy there was an immediale clinical im-
provement with a delayed rise in serum IGF 1. Where a complete
congenilal absence of pancreas has been documented, the human
infant only achieved the size of a normal 30-wk-old fetus by
term (a birth weight of 1.28 kg); there was an absence of adipose
tissue and very poor development of muscle mass (104).

The parallel changes in serum insulin and IGF levels, especially
during fetal growth retardation, suggest that some ol the anabolic
actions of insulin i wero may be mediated by a change in IGF
release (130). In the fetuses of many species, including man,
body growth and circulating IGF levels do not depend on the
presence of pituitary growth hormone, and persist afier expeni-
menilal decapitation or hypophysectomy of the rabbit or sheep,
respectively {131, 132). The immatunty of the growth hormone/
IGF axis may be related to the observations that somatotropic
receptors do not appear in the liver of the sheep or rat until after
birth (133, 134). Any regulation of IGF release by insulin pre-
natally is therefore unlikely to be mediated by changes in growth
hormone secretion or by changes in the nature of the growth
hormonc receptors.

Similarly, 1 the two studies so far reported, insulin did not
directly alter the release of MSA from fetal rat liver explants
{135), or the release of rat IGF 1 from cultured fetal rat myvoblasts
{114). The mechanisms that link insulin and [GF in vive are
therefore obscure, but could perhaps involve nutfdent availability.
In the fetus, IGF are likely to act predominantly in a paracrine
rather than an endocrine mode since multiple, isolated fetal
animual tissues release IGF peptides independently of a central
control by growth hormonc (136-138). The IGF found i the
fetal circulation may represent the spillover (rom IGF synthesis
in a variety of tissues. It s possible that parallel changes in
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circulating IGF and insulin are the consequence of an altered
nutritional environment of the fetal tissues, which may be more
susceptible to hypoglveemia than to hyperglyeenua.

An interesting and novel approach to the control of fetal
growth was provided by Cooke and colleagues (139, 140) who
transplanted paws from 15-day-old rat feiuses under the kidney
capsule of syngencic young host rats, where they continued to
grow and underwent limited ossification. When the host rat was
diabetic, the growth of transplants was reduced by approximately
40% compared to controls, but was almost completely restored
following treatment of the host with insulin. Hypophysectomy
of the host, which greatly decrcased circulating IGF levels, re-
duced paw growth by more than 60%. This was reversed by
trealment of the rat with growth hormone, bul not by the
injection of insulin. When intact hosts were given insulin injec-
tions together with frequent glucose loads to combat hypoglyce-
mia. paw size conld not be further increased. These studies
indicate several mechanisms governing the growth of fetal tissucs
and corroborate the cvidence from whole animal and in vitro
studies. 1) The (etal tissues continued lo grow, although at a
reduced rate, in the IGF-deficient hypophysectomized rat while
the growth of the host animal was completely arrested. This is
consistent with a high endogenous growth capacily in the fetal
tissucs, perhaps mediasted by an endogenous produciion of
growth factors. 2) White the development of the [etal tissue was
suboptimal in the absence of insulin, the major part of growth
was dependent on factors other than insulin, including the IGF,
3) In the absence of these other factors insulin alone could not
promote growth, and excess insulin could net further enhance
fetal growth above that achieved when factors such as the IGF
were optimal, regardless of the availabilily of glucose.

CONCLUSIONS

Insulin functions as a growth factor both at the level of the
cell and in the context of the whole body, yet for many lissues
insulin docs not appear to be the major circulating anabolic
agent. The secondary position of insulin in the endocrine cantrol
of mammalian growth may derive from a diversification of
biological function among the insulin-related family of mole-
cules. In most mammalian species the [GEF and predominantly
IGF 1. have evolved as the more potent mitogenic peptides while
insulin fulfills a more acute metabolic function. Similarly the
tvpe I IGF receptor has become the most utilized initiator of a
positive pleiotypic response rather than the related insulin recep-
tor, However, lhis is a gross generalization and for particular
tissucs, such as the liver, insulin sti{l may act as a potent mitogen
via the insulin receptor. Additionally, insulin may continue to
excrt control of the development of skeletal tissues, in association
with intracellular nutrition, by regulating IGI release. Patho-
physiologically, insulin may assume the role of a major growth
promoting agent if overproduction is associated with exlensive
binding to the type [ IGT receptor, as may occur i the infant of
the diabetic mother.
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