
Insulin-Like Growth Factor-Binding Proteins in Serum
and Other Biological Fluids: Regulation and Functions*

SUJATHA RAJARAM, DAVID J. BAYLINK, AND SUBBURAMAN MOHAN

Mineral Metabolism Laboratory (D.J.B., S.M.), Jerry L. Pettis Memorial Veterans Administration
Medical Center, Department of Nutrition (S.R.), School of Public Health, Departments of Medicine,
Biochemistry, and Physiology, School of Medicine (D.J.B., S.M), Loma Linda University, Loma Linda,
California 92357

I. Introduction
II. Characteristics of the IGFBPs

III. Target Cell Actions of the IGFBPs
A. To modulate IGF actions
B. To facilitate storage of IGFs in extracellular

matrices
C. To exert IGF-independent effects

IV. IGF-IGFBP Complexes in Biological Fluids
A. Serum
B. Milk
C. Urine
D. Cerebrospinal fluid (CSF)
E. Follicular fluid
F. Amniotic fluid
G. Lymph
H. Seminal fluid
I. Other biological fluids

V. Assays for Circulating Levels of IGFBP
A. Western ligand blotting
B. Western immunoblotting
C. RIA
D. Immunoradiometric assay (IRMA)

VI. Relative Distribution of IGFBPs in Serum
VII. Regulation of Serum IGFBPs

A. Physiological conditions
B. Development and aging
C. Hormonal effects: mechanisms
D. Pathological conditions

VIII. IGFBP Proteases in Circulation
A. Proteases under normal conditions
B. Pregnancy-associated proteases
C. Proteases under catabolic and disease states

IX. Endocrine Functions of IGFBPs in Serum
A. To prevent insulin-like effects
B. To increase the half-lives of IGFs
C. To control the transport of IGFs from the vascular

space
X. Conclusions

I. Introduction

THE insulin-like growth factors (IGFs) are growth-pro-
moting peptides that share significant structural ho-

mology with insulin. However, unlike insulin, IGFs circulate
in plasma complexed to a family of structurally related bind-
ing proteins. These are called IGF-binding proteins (IGFBPs).
Although the existence of IGFBPs in circulation was sus-
pected more than three decades ago, it was not until the mid
1980s to early 1990s that the six known IGFBPs1 were cloned
and sequenced (1–7). Early studies (8–12) in which human
plasma was fractionated according to molecular size by gel
filtration chromatography indicated that the IGFs migrated
in high molecular weight fractions. Subsequently, Burgi et al.
(12) and Hintz and Liu (13) demonstrated that the high
molecular weight fractions containing the nonsuppressible
insulin-like activity (NSILA) could be dissociated into
smaller molecular mass fractions (5–10 kDa) under acidic
conditions. These data suggested that the NSILA or somato-
medin peptides were originally complexed with larger car-
rier proteins in plasma.

In subsequent studies, Zapf et al. (14) incubated plasma with
radiolabeled IGF and detected the somatomedin activity at 40
kDa. This binding was highly specific for the IGFs with no
competition from insulin, suggesting the presence of specific
high-affinity binding proteins for the IGFs. Furthermore, Kauf-
mann et al. (15) showed that the half-life of 125I-labeled NSILA
was reduced when excess unlabeled NSILA was injected into
normal rats, suggesting that NSILA is bound to carrier proteins.
The binding of NSILAs to the carrier proteins in serum pro-
vided a possible explanation for the absence of insulin-like
effects of endogenous NSILA in vivo.

The discovery of the six different binding proteins cur-
rently known to exist did not occur all at the same time (1–7,
16). The first three IGFBPs were purified in the mid-1980s.
The association of [125I]IGF in rat serum initially with a small
molecular binding protein complex and a shift to a larger
complex after a few minutes confirmed the presence of two
binding proteins (14). The first was a major binding protein
in serum identified to be a GH-regulated acid-labile 150- to
200-kDa complex eventually designated as IGF1IGFBP-
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1 Oh et al. (349) have recently shown that purified recombinant human
mac25 protein (termed IGFBP-7), which shares 20–25% identity with
IGFBPs, binds IGFs but with several fold lower affinity than that of
IGFBP-3.
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31acid labile subunit (ALS) complex. The second was a
GH-independent 50 kDa acid-stable protein (2, 17). Later it
was shown that this 50-kDa small molecular binding protein
consisted of IGFBP-1 and IGFBP-2. By the late 1980s and early
1990s, three additional binding proteins, IGFBPs 4 through
6, were isolated and characterized. All six binding proteins
share ;35% sequence identity with each other. Several ex-
cellent reviews on the structure, molecular and cellular as-
pects, and biological actions of these binding proteins are
available (1–7) and therefore will not be the focus of this
review. The recent development of specific assays for mea-
surement of various IGFBPs in circulation and in other bi-
ological fluids has led to significant new information on
serum regulation of IGFBPs and their functions. The main
focus of this review is to present the data regarding the
characterization of the IGF-IGFBP complexes in serum and
other biological fluids and to evaluate their regulation and
functions.

II. Characteristics of the IGFBPs

First, a brief review of the general characteristics of the
IGFBPs will provide the background information necessary
to evaluate the functions of IGFBPs in serum and other bi-
ological fluids. For detailed information on this topic, several
excellent reviews are available (1–7). IGFBPs are produced by
a variety of biological tissues and found in various biological
fluids (18–25). Although all six known IGFBPs belong to the
same gene family, several features distinguish these IGFBPs
from each other. The general characteristics of the six known
IGFBPs are summarized in Table 1. IGFBP-1, a nonglycosy-
lated protein of 30 kDa, was first isolated from mid-term
amniotic fluid (20). This binding protein shares sequence
identity with the placental protein 12 (19, 26), which is syn-

thesized by endometrium and decidua. It is present in the
amniotic fluid in concentrations 100–500 times higher than
in serum. IGFBP-2, originally isolated from rat liver (BRL)-3A
cell line (27), is a nonglycosylated protein of 31–36 kDa and
is found in significant amounts both in serum and cerebro-
spinal fluid (1). The major form of binding protein present in
human circulation is IGFBP-3; its molecular mass ranges
from 38 kDa to 43 kDa depending on the number of sites
glycosylated (28). In circulation, this glycoprotein is associ-
ated with an IGF molecule and an 80-kDa acid-labile subunit
(ALS) to form a 150- to 200-kDa complex (2, 29, 30). This
complex consists of IGFBP-3 and IGF-I 1 IGF-II in an
equimolar ratio, suggesting that most of the IGFBP-3 in se-
rum is likely to be saturated.

IGFBP-4, a nonglycosylated protein of 25 kDa and 32–36
kDa, was first isolated from medium conditioned by human
osteosarcoma TE-89 cells (31) and from adult rat serum (32).
Subsequently this nonglycosylated protein was isolated from
a variety of cell types from different animal species and from
human adult serum (1, 3). IGFBP-5 was first purified from
adult rat serum, from human bone extract, and from medium
conditioned by the U-2OS human osteosarcoma cell line as
29- and 23-kDa fragments (33–35). This binding protein was
later purified as a 31-kDa fragment from the conditioned
medium of T98G human glioblastoma cells (36) and a 22-kDa
fragment from human cerebrospinal fluid (18). IGFBP-6 was
purified as a 34-kDa fragment (37) from human cerebrospinal
fluid and from transformed human fibroblast cell cultures
(38).

Although the IGFBPs differ in their structure and binding
specificity, it is not clear whether these differences contribute
to functional differences among the various IGFBPs. For
example, it is not known whether there is any functional
significance for glycosylation of the IGFBPs and why some

TABLE 1. General characteristics of the human IGFBPs

No. of
amino acids

Core molecular
mass (kDa) Special feature IGF affinity Modulation of

IGF action Source in biological fluids

IGFBP-1 234 25.3 RGD I 5 II Inhibition and/or
potentiation

Amniotic fluid, serum, placenta,
endometrium, milk, urine,
synovial fluid, interstitial fluid,
and seminal fluid

IGFBP-2 289 31.4 RGD II . I Inhibition CSF, serum, milk, urine, synovial
fluid, interstitial fluid, lymph
follicular fluid, seminal fluid,
and amniotic fluid

IGFBP-3 264 28.7 N glycosylation I 5 II Inhibition and/or
potentiation

Serum, follicular fluid, milk, urine,
CSF, amniotic fluid, synovial
fluid, interstitial fluid, and
seminal fluid

IGFBP-4 237 25.9 2 extra cysteine I 5 II Inhibition Serum follicular fluid, seminal
fluid, interstitial fluid and
synovial fluid

IGFBP-5 252 28.5 Extracellular matrix,
hydroxyapatite binding

II . I Potentiation Serum and CSF

IGFBP-6 216 22.8 2 less cysteine
O-glycosylation

II . I Inhibition CSF, serum and amniotic fluid

RGD, Arg-Gly-Asp.
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of the IGFBPs bind IGF-II with preferential affinity (39, 40)
compared with IGF-I. Interestingly, none of the IGFBPs bind
IGF-I with preferential affinity. In any case, the differences in
structure (glycosylation, number of cysteine, RGD sequence),
binding affinity, and tissue-specific expression are consistent
with the general idea that different IGFBPs have discrete
functions. Based on the findings that extracellular fluids of
certain tissues (described in Section IV) are enriched with
specific IGFBPs and that tissues surrounding the body fluid
express the same IGFBPs in high abundance (41, 42), it is
speculated that the IGFBPs may function locally to regulate
IGF actions. However, there is no experimental data to dem-
onstrate that this is in fact true.

III. Target Cell Actions of the IGFBPs

The main focus of this review is to present the data on
the characterization of the IGF/IGFBP complexes in se-
rum. However, at this time, we felt that a brief description
of the target cell actions of IGFBPs would be beneficial to
the reader to get a perspective as to the overall functions
of these binding proteins in serum and other biological
fluids. An earlier review by Jones and Clemmons (4) de-
scribes in detail the biological functions of individual
binding proteins in various target cells. A summary of our
current understanding of the biological actions of various
IGFBPs is discussed below.

A. To modulate IGF actions

Studies in a number of laboratories including ours have
shown that IGFBPs are capable of modulating IGF-induced
cell proliferation both in a positive and negative manner (3,
4, 43–45). Several IGFBPs, including IGFBP-1, IGFBP-2,
IGFBP-4, and IGFBP-6, inhibit IGF action by binding to IGFs
and preventing the binding of IGFs to IGF receptors (3, 4). In
contrast to the phosphorylated IGFBP-1 that inhibits IGF
actions, the nonphosphorylated form of IGFBP-1 potentiates
the effect of IGF-I on DNA synthesis in porcine smooth
muscle cells (4). Coincubation of human fibroblasts with IGF
and IGFBP-3 showed an inhibitory effect while preincuba-
tion with IGF had growth-potentiating effect (43). It was
suggested that binding of IGFBP-3 to the cell surface reduces
its affinity for IGF-I and results in a potentiating effect (44).
In contrast to other IGFBPs, IGFBP-5 is stimulatory for a
variety of cell types (45–48).

Thus, the different binding proteins may modulate IGF
action differently, and the same binding protein can have an
IGF-inhibiting or potentiating role under different condi-
tions. The factors that determine these differences include
IGFBP phosphorylation, IGFBP proteolysis, and IGFBP cell
surface association, among others. These variables may mod-
ulate IGF action in target tissues by altering the binding
affinity of the IGFBPs to IGFs.

B. To facilitate storage of IGFs in extracellular matrices

Another important role of IGFBPs may be to help in the
storage of IGFs in the extracellular matrices of certain tissues.
In this regard, Jones et al. (45) provided evidence for fixation

of IGFs via IGFBP-5 binding to extracellular matrix proteins.
We found evidence that IGFBP-5 may help fix IGFs in bone
since the complex of IGFBP-5 and IGFs, but not IGFs alone,
bind to hydroxyapatite (34, 49). In terms of the significance
of fixation of IGFs in extracellular matrices such as bone, it
is speculated that the stored IGFs may be released during the
osteoclastic bone resorption phase of bone remodeling to
stimulate nearby osteoblasts during the bone formation
phase of remodeling (50). Similarly, IGFs stored in extracel-
lular matrices of soft tissues may have a role in wound
healing.

C. To exert IGF-independent effects

Recent evidence suggests that some of the IGFBPs may
mediate their effects on target cells by an IGF-independent
pathway. This concept has evolved from a number of ex-
perimental studies, including the study by Jones et al., which
found that IGFBP-1 stimulated smooth muscle cell migration
by an IGF-independent mechanism involving integrin re-
ceptors (51). IGFBP-3 has been shown to inhibit proliferation
of breast and prostate cancer cells by a cellular signaling
pathway independent of IGFs (52, 53). In addition, Rajah et
al. (54) have recently shown that IGFBP-3 induces apoptosis
of the p53-negative prostate cancer cell line, PC3, through a
novel pathway independent of either p53 or the IGF-IGF
receptor-mediated cell survival pathway. Consistent with
the idea that IGFBP-3 may have IGF-independent effects on
certain types of cells, two recent reports have provided ev-
idence for nuclear localization of IGFBP-3 (55, 56). The sig-
nificance of this finding is not clear. However, this exciting
finding may clarify the direct intrinsic actions of some of the
IGFBPs on cells. We and others have found evidence that
IGFBP-5 may promote cell proliferation in osteoblasts, pos-
sibly through putative cell surface-binding sites (46, 47). Al-
though studies from a number of laboratories support the
possibility that IGFBPs may have IGF-independent effects in
certain cell types, further experimental evidence is needed to
verify this mode of IGFBP action.

Thus, the explosion of IGFBP research during the past
several years has provided evidence that IGFBPs may have
both IGF-dependent and IGF-independent actions. Based on
the complexity of IGFBP functions, it is clear that we cannot
fully appreciate the significance of changes in IGFBP levels
in serum and local body fluids until we know more about the
functions of these IGFBPs.

IV. IGF-IGFBP Complexes in Biological Fluids

A. Serum

As mentioned above, the major pool of IGFs circulate in
human serum as 150- to 200-kDa complexes (28, 57–59). In
addition to the large molecular mass complex, two other
pools of IGFs exist in serum, the free and the 50-kDa IGF pool.
Hardouin et al. (60) were the first to characterize the different
IGFBPs present in adult human serum. These authors found
evidence for the presence of five different molecular forms of
IGFBPs in human serum and showed that the various IGFBPs
were distributed in two complexes in the serum, the 150- to
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200-kDa complex primarily containing the GH-dependent
IGFBP-3 (61, 62) and the 50-kDa complex consisting of other
forms of IGFBPs (1).

Figure 1 shows the relative distribution of various IGF
pools in human serum. In circulation, about 75–80% of the
IGFs are complexed to IGFBP-3 and the acid labile a-subunit
to form the 150- to 200-kDa complex (57, 59, 63). This is
possible because under normal conditions, the total IGFs and
IGFBP-3 in serum are in equimolar concentrations (63). A
smaller percentage (20–25%) of the IGFs are associated with
low molecular mass IGFBPs (57). Less than 1% are found in
the free form in circulation (64, 65).

Studies by Baxter, Martin, and colleagues (28, 58) and
Guler et al. (57) to identify the constituents of the 150- to
200-kDa complex led to the purification of two components
of the complex from human serum: an acid-stable glycopro-
tein of 38–43 kDa (IGFBP-3) with IGF-binding activity and
an acid-labile glycoprotein of 85 kDa that does not bind to the
IGFs (Fig. 2). Subsequently, the reconstitution of the 150- to
200-kDa complex was achieved by using purified acid-labile
subunit (ALS or a-subunit), IGFBP-3 (b-subunit), and IGF-I
or IGF-II (d-subunit). The role of ALS appears to be to in-
crease the molecular mass of the IGF1IGFBP-3 complex so
that the access of the circulating IGF to the extracellular fluid
and thus to the various tissues is limited (57, 58).

Baxter and co-workers (66–69) have shown that the af-
finity constant for the formation of IGF-IGFBP-3 complex
(2–3 3 10210 m) is considerably higher than the affinity of the
ALS for the IGF-IGFBP-3 heterodimer (5 3 1028 m). They

have demonstrated that human IGFBP-3 injected into normal
rats is distributed within a few minutes between a 50-kDa
and a 150- to 200-kDa complex. ALS circulates in its free form
2- to 3-fold molar excess (30) with respect to its ternary
complex and hence is readily available for complex forma-
tion. However, since very little unbound IGF-I is present,
some other source for IGF must be available for ternary
complex formation to occur. It is suggested that there may be
a rapid exchange between IGF-I associated with the small
molecular mass binding protein complex (50 kDa) and the
150- to 200-kDa complex. There is also the possibility that the
IGF-I may be associated with the cell surface or lining cap-
illaries and dissociated by the high-affinity IGFBP-3 (59). The
stabilization of IGFs occurs when it binds to the IGFBP-3 and
then forms a complex with ALS (59). In IGF-deficient ani-
mals, either with diabetes (66) or GH deficiency (GHD) (70),
ternary complex formation is impaired, but restored to nor-
mal after IGF is injected along with IGFBP-3. Based on these
data, Baxter (58) proposed that ALS association with IGFBP-3
requires the presence of IGFs.

The question of whether ALS can form a binary complex
with IGFBP-3 in the absence of the IGF ligand is controversial
at this time based on recent reports by Barreca and colleagues
(71–73) and Lee et al. (74). Barreca et al. (71) demonstrated that
incubation of recombinant human IGFBP-3 and ALS resulted
in the appearance of a 150- to 200-kDa complex in the absence
as well as in the presence of IGF. They also showed that ALS
binding to IGFBP-3 increased the affinity of IGFBP-3 to IGF-I,
possibly by inducing conformational changes in IGFBP-3.
Based on these results, the authors speculate that ALS may
play an important role in regulating the affinity of IGFBP-3
to IGF-I, thus regulating the levels of free IGFs. In addition,
Yang et al. (75) observed that [125I]IGF-II readily bound to the
150-kDa fraction of adult rat serum to sites with a higher
affinity for IGF-II than IGF-I. In subsequent studies, Lee and
Rechler (76) demonstrated two different IGFBP-3 complexes
in the 150- to 200-kDa fraction of the adult rat serum, one with
similar affinity for IGF-I and -II and the other with greater
affinity for IGF-II (77). The latter complex is formed from
proteolytically nicked IGFBP-3 that is present in the native
serum before acidification. The proteolytic cleavage in
IGFBP-3 decreases the affinity of the IGFBP-3-ALS for IGF-I
and increases the binding of IGF-II. Similar proteolytic nick-
ing of IGFBP-3 occurs during human pregnancy, changing
the binding specificity for IGFs (78). In contrast to these
results, Baxter and co-workers (79) demonstrated that pro-
teolyzed IGFBP-3 from maternal serum can bind to IGFs and
form a ternary complex with ALS with normal affinity. Thus,
they speculated that the altered binding affinity of the
IGFBP-3 fragment during Western ligand blotting is an ar-
tifact resulting from breakage of a labile peptide bond after
prolonged acidification or exposure to SDS.

If human IGFBP-3 must first bind to IGF-I before it can
form the ternary complex, then the amount of IGF-I associ-
ated with the 150- to 200-kDa complex in rats injected with
hIGFBP-3 should be twice that of normal rats. However, Lee
et al. (74) did not observe an increase in the mobilized IGF and
thus concluded that IGFBP-3 and ALS can form a binary
complex independent of IGF both in vivo (80) and in vitro (71,
76). Thus the question of whether IGF is required for the

FIG. 1. Relative distribution of various IGF pools in human serum.
The distribution of IGFs between the 50-kDa, 150-kDa, and the free
pool, as determined before and during continuous subcutaneous in-
fusion of 30 mg/day of rhIGF-I in healthy men (82).

FIG. 2. Proposed model of the forms in which IGFs circulate in hu-
man serum. The 150-kDa complex consists of 7.5 kDa IGF-I or IGF-II
plus 38–43 kDa IGFBP-3 and a 80- to 90-kDa non-IGF-binding acid-
labile component called ALS. The 50-kDa complex consists of IGF-I
or IGF-II bound to one of the remaining five IGFBPs.
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formation of a complex between IGFBP-3 and ALS remains
controversial. One possibility is that there may be two
IGFBP-3 pools, one with a higher binding affinity for ALS
after first binding to IGF, and the second, which binds ALS
even in the absence of IGF but with lower affinity. With
differences in binding affinities, the functional roles of ter-
nary complexes of ALS1IGFBP-31IGF and binary complex
of ALS1IGFBP-3 may also be different. Future studies are
required to elucidate the extent to which IGFBP-3 forms a
binary complex with ALS and if so, whether these binary
complexes play a physiological role in modulating the
actions of IGF.

One of the proposed functions of plasma IGFBPs is to
increase the half-life of IGFs in circulation. When IGF-I and
IGF-II are injected into normal rats, they bind to IGFBP-3,
increasing their stability and half-life to 4 h compared to 20
min in hypophysectomized rats (81). Guler et al. (57) deter-
mined the half-lives of free and IGFBP-bound [125I]IGF-I and
-II after bolus injection of the tracers in two normal adults.
Apparent half-lives of [125I]IGF-I and -II in each of the three
IGF serum pools (150 to 200 kDa, 50 kDa, and free IGF),
calculated from the respective disappearance rates of the
tracer, are shown in Fig. 3. These results demonstrate that the
150- to 200-kDa complex is responsible for the relatively long
half-life of IGFs and that the 50-kDa and the free IGF pool
have a rapid turnover and account for most of the daily IGF
production (82). Another important role of IGFBP binding to
IGF is in modulating IGF action. The ternary complex does
not permeate the capillary endothelial barrier, but the
smaller IGF-IGFBP complexes can easily do so and facilitate
tissue-specific IGF action (3, 4, 57, 59). On the other hand, the
endocrine actions of IGFs bound to IGFBP-3 may be achieved
by specific proteolytic enzymes that dissociate the
ALS1IGFBP-31IGF complex, and it is suggested that this
may increase the bioavailability of IGFs. An additional mech-
anism altering IGF bioavailability has been proposed by
Yamamoto and Murphy (83). They identified the presence of
a protease in rat serum that cleaves IGF-I into des(1–3)IGF-I.
Since this form dissociates from the binding proteins easily,
it may serve to increase IGF bioavailablity. The role of pro-
teases in modulating IGF bioavailability is discussed in detail
in Sections VIII and IX.

Different forms of IGFBPs have been identified in a variety

of biological tissues other than serum. Although their exact
source and role are not clearly known in many of these
systems, if the production of these binding proteins is tissue-
specific, it could imply a local paracrine or autocrine role for
IGFBPs in regulating IGF-I and -II actions. The binding pro-
teins identified in the other biological fluids are discussed in
the section below.

B. Milk

Human milk contains IGFBP-1, -2, and -3 (84), the func-
tions of which remain unclear. In addition, IGFBP-4 has been
identified in rat, porcine, and bovine milk (85, 86). As with
serum, IGFBP-3 is the major binding protein of IGFs in milk.
Although maternal serum is the source of rat milk IGFBP-3
(21), the 150- to 200-kDa complex is not translocated from
serum into milk. It is suggested that IGFBP-3 may enter milk
from circulation in the free form or complexed to IGF-I. On
the other hand, IGFBP-2 and -4 are produced locally by the
mammary gland as shown by expression of their respective
mRNA in the mammary tissue (21). IGFBP-1 in human milk
(87) parallels the level of IGF-I in that immediately after birth,
both milk IGF-I and IGFBP-1 decline. The exact role of
IGFBPs in milk remains to be explored, but it is possible that
they protect against the degradation of milk IGF-I or that they
modulate the local mitogenic activity of the IGFs.

C. Urine

IGFBP-1, -2, and -3 have been detected in healthy adult
urine by Western ligand blot analysis (25), and the concen-
tration is approximately 3 orders of magnitude less than that
in serum (88). Previously, IGFBP-2 was shown to be the
predominant form in dialyzed adult urine, but when urine
is not dialyzed, IGFBP-3 is the major binding protein (88).
The reason for this discrepancy is not known. It appears that
urinary IGFBP-3 originates mainly from the kidney and/or
the urinary tract and (89), unlike the serum, is not found as
a 150- to 200-kDa complex in the urine. Quantification by RIA
show that urinary IGFBP-3 is age dependent, with an in-
crease at approximately age 9–11 yr that corresponds to the
pubertal rise in serum IGFBP-3 and is followed by a decline
until it plateaus at approximately age 26 yr (89). Although the
antiserum used in the RIA recognizes both intact and pro-
teolyzed fragments of IGFBP-3, there is no evidence for the
presence of urinary protease in normal individuals from age
4–45 yr (25, 89). It is suggested that urinary IGFBPs may have
diagnostic utility, but this has not been established.

D. Cerebrospinal fluid (CSF)

Although several different binding proteins have been
identified in human CSF, IGFBP-2 is the major form present
(22). The CSF contains high concentrations of IGF-II (90),
which binds IGFBP-2 with 10- to- 20-fold greater affinity than
IGF-I (91). Also purified from the CSF is IGFBP-6, which is
present at slightly lower concentrations in the CSF than se-
rum (92), but also has a preferential affinity for IGF-II over
IGF-I. Both IGFBP-3 and -5 have been identified in the CSF
at lower concentrations than IGFBP-2 and -6. It is suggested
that the IGFBPs found in the CSF may be synthesized locally

FIG. 3. Apparent half-lives of various IGF pools in human serum.
Apparent half-lives of [125I]IGF-I and [125I]IGF-II in each of the three
IGF serum pools (free, 50-kDa, and 150-kDa) were calculated from the
respective disappearance rates of the tracer after intravenous bolus
injection (82). Values are mean estimations from two healthy men.
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by glial cells and neurons and not derived from plasma by
crossing the blood-brain barrier (93). A 30-kDa IGFBP, cor-
responding to IGFBP-2, was demonstrated in rat CSF (94). By
analogy with other transport proteins synthesized by the
choroid plexus, it is suggested that this IGFBP may facilitate
the secretion of IGF-II to the CSF and modulate its biological
action at distant sites within the brain (94). In a number of
disease states related to the central nervous system (CNS)
(95, 96), changes in IGFBP concentrations have been docu-
mented, suggesting a possible diagnostic utility for the mea-
surement of these binding proteins. Thus IGFBPs are thought
to modulate the biological actions of IGFs (39, 94, 97) in-
cluding a possible regulatory role in growth and differenti-
ation of the CNS. However, the mechanisms remain to be
investigated.

E. Follicular fluid

IGFBPs 1–4 (41, 98–104) were identified by Western ligand
blotting in human follicular fluid, suggesting that the regu-
lation of IGF action in the ovary is probably under the control
of regulatory binding proteins (98). In women with normal
menstrual cycles, after ovulation, progesterone stimulates
the endometrium to release IGFBP-1 (105), which mediates
the cell differentiation effects of IGF-I on the endometrium.
IGFBP-1 is synthesized by granulosa cells and is secreted into
the follicular fluid (101, 103, 106–109), where the concentra-
tion is 4- to 5 times higher than that found in the serum (110).
The preovulatory rise in serum IGFBP-1 is not regulated by
insulin or ingestion of a meal, nor is it associated with diurnal
variation (111). This implies that during the preovulatory
phase, IGFBP-1 detected in serum is primarily of follicular
origin. IGFBP-1 is thought to inhibit the biological activity of
free IGF on androgen-producing theca cells, since that might
lead to atresia and anovulation (112).

Changes in the various IGFBPs during atresia and follic-
ular growth have been reported. The levels of IGFBP-2 and
-4 are higher in atretic follicles (99, 113) compared with
healthy developing follicles of serum, suggesting a role for
them in inducing atresia. A decrease in proteolytic activity
degrading IGFBP-3 and an increase in IGFBP-2, -4, and -5
protease were observed during follicular growth in ovine
follicular fluid, and an increase in IGFBP-3 protease and a
decrease in IGFBP-4 and -5 protease were observed during
atresia (100, 101, 114, 115). These observations suggest that
changes in intrafollicular IGFBP proteolytic activity could be
responsible in part for the changes in IGFBP levels seen
during growth and atresia (114). Since the expression of
various IGFBPs is altered during follicular development and
atresia, it is speculated that the changes in IGFBP levels may
regulate follicular growth by modulating the local IGF bio-
availability.

F. Amniotic fluid

The binding protein isolated from amniotic fluid (AFBP)
is a small molecular mass binding protein that is both heat
and acid stable (42, 116) and was later identified to be the
same as IGFBP-1. It is the major IGFBP in the amniotic fluid
and is present in concentrations 100–500 times higher than

that found in the serum (117). During pregnancy, a surge in
the concentration of amniotic fluid IGFBP-1 reflects its local
production in decidual tissues (42, 118). The amniotic fluid
IGFBP-1 contributes to the increase in serum IGFBP-1 levels
during the second trimester of pregnancy (117). IGFBP-1 is
twice as high in preterm amniotic fluid as in term amniotic
fluid, suggesting a role for this binding protein in growth and
development.

Immunoreactive IGFBP-3 is present in amniotic fluid but
at a much lower concentration than that in serum. Western
ligand blot analysis of amniotic fluid failed to reveal evidence
for the presence of IGFBP-3 in amniotic fluid. This could be
due to the presence of IGFBP-3 protease capable of degrading
intact IGFBP-3 into fragments that do not bind [125I]IGF
tracer. Consistent with this interpretation, incubation of am-
niotic fluid with radiolabeled IGFBP revealed the presence of
a protease(s) specific for IGFBP-3, -4, and -5 (119). These
proteases alter the binding affinity of the IGFs for their bind-
ing proteins and thereby could modulate the bioactivity of
IGFs (119). The role of IGFBP-6 in the amniotic fluid is not
yet known, although the levels present are similar to those
seen in serum (92).

G. Lymph

The concentration of both IGFs and IGFBPs in lymph are
lower than that found in serum (120, 121). Using gel filtration
chromatography, it was shown that the IGFBPs present in
lymph eluted in the 40- to 50-kDa size range. The finding that
little IGF activity eluted as a 150- to 200-kDa complex from
lymph is consistent with the fact that the IGF1IGFBP-3 com-
plex does not cross the capillary endothelial barrier. IGFBP-2
is believed to be one of the major binding proteins in the
lymph tissue and may originate from both the serum and
surrounding local tissues (3).

H. Seminal fluid

IGFBP-1-like immunoreactivity was detected in human
seminal plasma (122), with levels similar to those found in
human adult serum. Intact IGFBP-3 could not be detected in
seminal fluid by Western ligand blot analysis, but Western
immunoblot analysis using IGFBP-3 antiserum revealed the
presence of immunoreactive IGFBP-3 fragments (122). Since
the amounts and ratio of these binding proteins do not cor-
relate with those present in the serum, it is likely that the
source of these proteins are specific to the cell population
within the local tissues, such as Sertoli cells. Human seminal
plasma also contains intact IGFBP-2 and IGFBP-4, while
IGFBP-3 is present in the fragmented form (123–126). The
prostate-specific antigen (PSA) has proteolytic activity for
not only IGFBP-3, but also for IGFBPs -4 and -5. In addition
to the PSA protease, an IGFBP-5-specific protease has been
identified in seminal plasma (125–127). Since IGFBP proteo-
lytic activities in seminal fluid from normal volunteers, va-
sectomized patients, or patients with idiopathic azoospermia
were not significantly different, the role of IGFBPs and IGFBP
proteases in the male reproductive system and male infer-
tility remains to be established.
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I. Other biological fluids

The presence of IGFBPs 1 through 4 has been detected in
interstitial fluid obtained from human skin blisters caused by
high negative pressure in healthy volunteers (128). The IG-
FBP-3 concentration was lower than that present in the cir-
culation and was due to increased IGFBP-3 protease activity.
Several IGFBPs have been identified in vitreous and aqueous
humors (129), but the predominant serum carrier protein
IGFBP-3 was not detected in these fluids. This may be due
to the presence of increased amounts of IGFBP-3 protease
activity in vitreous and aqueous humors (129). Vitreous hu-
mor from diabetics had a higher amount of IGFBP-3 pro-
teolytic fragment compared with healthy controls, suggest-
ing that the rate of IGFBP-3 proteolysis is different in vitreous
humor of normal and diabetic individuals. Western ligand
blotting and immunoprecipitation of normal synovial fluid
revealed the presence of IGFBPs 1 through 4, with levels
higher in synovial fluid of patients with rheumatoid arthritis
(130) compared with controls. These findings suggest that
understanding the normal IGF/IGFBP axis in physiological
states and the alterations that occur in pathological condi-
tions may provide clues to our understanding of the patho-
physiology of different disease states.

Although the enrichment of certain biological fluids with
one or more IGFBPs, together with the increased expression
of the same IGFBP in the local tissues surrounding the body
fluid (Table 2), suggests that these IGFBPs may function
locally to regulate IGF actions, more work is required to
understand the specific role of these binding proteins in
modulating IGF action in various biological fluids.

V. Assays for Circulating Levels of IGFBP

A. Western ligand blotting

Western ligand blotting, originally developed by Hossen-
lopp et al. (131), has been used extensively in detecting the
different IGFBPs in biological samples. This technique in-
volves transfer of proteins to nitrocellulose after separation
by SDS-PAGE, hybridization with radioligand tracer, and,
ultimately, autoradiography. Although not very quantitative
or specific, this technique allows for identification of the
IGFBPs differing in molecular mass by as little as 1 kDa.
Western ligand blotting gives a measurement of the intact
IGFBP (5, 25) since the IGFBP proteolytic fragments do not
bind IGFs or bind with reduced affinity. Although Western
ligand blotting can be used to quantitate certain IGFBPs with
more accuracy than others, this assay is not highly quanti-
tative for many of the IGFBPs for the following reasons: First,
the transfer of the IGFBPs during electroblotting technique is
not always complete and may vary for different IGFBPs
(132). Second, the sensitivity of detection is different for the

various IGFBPs. For example, IGFBP-6 at lower concentra-
tions could not be detected by Western ligand blotting (133,
134). The reason for the poor detection of IGFBP-6 by ligand
blotting may be due to either incorrect folding of IGFBP-6
after transfer to nitrocellulose or the close proximity of the
epitopes for the IGF ligand and nitrocellulose in IGFBP-6,
which could hinder nitrocellulose-bound IGFBP-6 when
binding to IGF tracer (134). Third, it is difficult to accurately
quantify certain IGFBPs (e.g., IGFBP-5) by ligand blotting
since the molecular masses of glycosylated and nonglyco-
sylated forms of several IGFBPs are too similar for proper
separation (3). Despite the above problems, Western ligand
blotting has been widely used by researchers in the IGF field
and has proved to be an invaluable tool for detection and
characterization of the molecular size of the various IGFBPs
present in biological fluids.

B. Western immunoblotting

Antibodies specific for a IGFBP can be used to quantitate
IGFBPs in a conventional Western immunoblotting, after size
separation by SDS-PAGE. Western immunoblotting can be
improved by optimizing protein transfer, antibody binding,
and detection systems (e.g., chemiluminescence). In general,
immunoblot analysis using polyclonal antiserum usually de-
tects both intact and fragmented forms of the IGFBPs (25). For
example, when pregnancy sera were analyzed using the
Western ligand blot technique (25, 135), there was no evi-
dence of IGFBP-3, while both immunoblot and RIA detected
the presence of fragmented IGFBP-3 that arose from protease
activity. In subsequent studies, Baxter and co-workers (79)
demonstrated that the proteolyzed IGFBP-3 fragment from
maternal serum can bind IGF with normal affinity and that
the lack of detection by Western ligand blot analysis is an
analytical artifact resulting from using [125I]IGF-I for bind-
ing. Another example of the usefulness of the immunoblot
assay was shown in diabetics. Patients with untreated insu-
lin-dependent diabetes mellitus (IDDM) showed lower lev-
els of IGFBP-3 compared with healthy controls (136, 137).
While the Western ligand blot could only detect the intact
fragment, immunoblot assay was able to show a decrease in
intact IGFBP-3 and also an increase in fragmented IGFBP-3
compared with controls. This finding led to subsequent in-
vestigation of proteolytic activity in these patients. IGFBP-3
protease activity was found to be higher in the serum of
untreated IDDM patients compared with age-matched con-
trols (137). The usefulness of Western immunoblotting in the
identification of IGFBP fragments has fostered studies on
characterization of IGFBP proteases in a variety of biological
fluids.

C. RIA

One of the major problems with Western ligand blot and
Western immunoblot analysis was the lack of precision,
which was overcome by the development of RIA (92, 138–
144). At present RIAs for IGFBP-1, -2, and -3 are commer-
cially available. Recent success in purifying IGFBPs from a
variety of sources to homogeneity and recombinant expres-
sion of various IGFBPs has led to the development of specific

TABLE 2. Distribution of IGFBPs in biological fluids

Fluid Major IGFBP

Serum IGFBP-3
Amniotic fluid IGFBP-1
Follicular fluid IGFBP-3
CSF IGFBP-2, IGFBP-6
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antibodies suitable for establishment of RIAs for accurate
measurement of the various IGFBPs. These RIAs have al-
ready provided important new information on the physio-
logical and hormonal regulation of the various IGFBPs. The
RIAs for the various IGFBPs do not require an extraction
procedure as in the case of the IGFs since endogenous IGFs
do not interfere with the assay (138–144). Thus, the various
biological fluids can be assayed directly for IGFBPs. The
majority of IGFBP RIAs thus far developed utilize polyclonal
antiserum, which reacts with both intact and fragment forms
of IGFBPs. Although measurement of both intact and frag-
mented forms of IGFBPs may provide useful information in
various clinical settings, one of the disadvantages with the
use of polyclonal antisera is that the antisera developed in
various laboratories may recognize different fragments. This
could lead to inconsistent quantitative results using antisera
that recognize dissimilar epitopes for similar biological sam-
ples. For example, it is known that serum from children with
end-stage renal disease contains increased amounts of frag-
mented forms of various IGFBPs (145, 146). The quantitative
measurements of various IGFBPs in serum from children
with end-stage renal disease may depend on whether a par-
ticular antiserum used for measurement of a given IGFBP
recognizes only selected fragments or all of the forms of that
particular IGFBP.

D. Immunoradiometric assay

The immunoradiometric assay (IRMA) is a noncompeti-
tive assay in which the IGFBP to be measured is “sand-
wiched” between two antibodies. The first antibody, which
needs to be specific, is immobilized to the inside wall of the
tubes. The second antibody is used as a capture antibody
(radiolabeled or enzyme conjugated). Since the two antibod-
ies used for IRMA are typically developed against amino-
terminal and carboxy-terminal ends of the molecule, the
advantage of this assay is that it is often more specific than
RIA (147, 148) and more likely to measure the intact mole-
cule. The disadvantage with IRMA is that it may not reflect
production rate as well as RIA since the analyte measured
may be degraded during storage or during experimental
conditions, resulting in artifactually lower values than that
actually present. At present, IRMA is commercially available
only for IGFBP-3.

VI. Relative Distribution of IGFBPs in Serum

With the development of improved RIAs and validation
techniques for the various IGFBPs, it is now possible to
measure the concentrations of IGF-I, IGF-II, and their bind-
ing proteins in the circulation (Fig. 4). IGFBP-3 is the pre-
dominant form present in serum with levels more than
10-fold higher than the other IGFBPs (59, 149). The concen-
tration of the small molecular mass binding proteins are
found in increasing order (IGFBP-4 . IGFBP-5 . IGFBP-2 .
IGFBP-6 . IGFBP-1) in human serum (92, 138–144, 149, 150).
There is a 50% molar excess of IGFBPs over IGFs in serum,
which implies that a very small percentage of the IGFs re-
main in the free form. Since the antisera used for measure-
ment of various IGFBPs recognize both intact and fragment

forms of IGFBPs, the relative abundance of intact forms of
various IGFBPs in adult human serum is not known at this
time.

Although approximately 75% of IGFs are bound to GH-
dependent IGFBP-3, the relative contribution of non-GH-
dependent small molecular mass IGFBPs to the IGF binding
capacity (the remaining 25% of IGFs) in serum is not known.
If each of the five non-GH-dependent IGFBPs contribute
equally to the IGF-binding capacity of serum, one would
expect all of the IGFBPs to correlate positively with serum
IGF-I and IGF-II levels. Examination of correlation (Table 3)
between IGFs and various IGFBPs reveal that only IGFBP-5,
in addition to IGFBP-3, showed positive correlation with IGF
concentration in normal adult human serum (142). In con-
trast, serum IGFBP-1 and IGFBP-2 levels showed negative
correlation while IGFBP-4 levels did not correlate with IGF
concentration. These data suggest that different mechanisms
may regulate the amounts of various IGFBPs in serum.

Of the two IGFs, the concentration of IGF-II is about 3-fold
greater than that of IGF-I in adult human serum (151, 152).
The mechanisms that could contribute to the observed dif-
ferences in the serum level of IGF-II vs. IGF-I include dif-
ferences in production rate as well as MCR. The daily pro-
duction rate of IGF-II may be higher than that of IGF-I since
the amount of IGF-II produced by several cell types in culture
exceeds IGF-I production by 1 order of magnitude (153–156).
It appears, however, that the production rate could only
contribute to a small extent since Guler et al. (82) showed that
the IGF-II production rate (13 mg/day) was only slightly
higher than that of IGF-I (10 mg/day) in healthy men.

Regarding the MCR, it is known that IGFBPs play a major

TABLE 3. Correlation between IGFs and IGFBPs in normal human
serum

IGFBPs IGF-I IGF-II

IGFBP-1 Negative Negative
IGFBP-2 Negative Negative
IGFBP-3 Positive Positive
IGFBP-4 Not significant Not significant
IGFBP-5 Positive Positive
IGFBP-6 Not known Not known

FIG. 4. Concentrations of IGFs and IGFBPs in adult human serum.
IGF-I, IGF-II, IGFBP-3, IGFBP-4, and IGFBP-5 values were deter-
mined in the author’s laboratory. Data for IGFBP-1, IGFBP-2, and
IGFBP-6 were compiled from published literature. Values are mean 6
SD.[Reproduced with permission from S. Mohan and D. J. Baylink:
J Clin Endocrinol Metab 81:3817–3820, 1996 (149). © The Endocrine
Society.]
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role in extending the half-life of IGFs in the circulation (see
Section IX). In this regard, the half-life of IGF-II in serum may
be longer than that of IGF-I since human serum contains
IGFBPs with selective affinity for IGF-II over IGF-I (1, 3). For
example, human IGFBP-6 has 50- to 100-fold higher affinity
for IGF-II over IGF-I. IGFBP-2 and IGFBP-5 have slightly
higher affinity for IGF-II than IGF-I. In addition, Lee and
Rechler (76) showed that the 150- to 200-kDa protein com-
plexes in the rat serum have higher affinity for IGF-II than
IGF-I. They propose that these 150- to 200-kDa complexes in
the adult rat serum contain proteolytically nicked IGFBP-3
and ALS that bind to IGF-II preferentially. Based on these
data, it is speculated that the presence of IGFBPs with higher
affinity for IGF-II over IGF-I could contribute to a greater
half-life of IGF-II over IGF-I. This explains some of the ob-
served differences in the greater abundance of IGF-II vs.
IGF-I in human serum. However, it appears likely that the
differences in IGF-binding affinity of IGFBPs is not the only
mechanism that contributes to the greater abundance of
IGF-II over IGF-I, since 75% of IGF-II is bound to IGFBP-3 in
the form of ternary complex and the intact IGFBP-3 binds
IGF-I and IGF-II with similar affinity (3).

Indeed, inasmuch as the differences in production rate and
IGFBP affinities to IGFs cannot account for the observed
differences in the serum levels of IGF-I and IGF-II, it would
seem that some aspect of metabolic clearance, such as the
degradation rate, is higher for IGF-I than for IGF-II, thereby
contributing to the lower level of serum IGF-I compared with
IGF-II in adults. Based on the above analysis, it seems rea-
sonable to conclude that three mechanisms may contribute
to the greater serum level of IGF-II than IGF-I in humans: 1)
greater production rate of IGF-II than IGF-I; 2) the prefer-
ential binding of minor IGFBPs for IGF-II as compared with
IGF-I; and 3) a lower degradation rate of IGF-II than IGF-I
(the latter two mechanisms would lead to a greater MCR for
IGF-I than IGF-II).

If we assume that the actions of IGF-I and IGF-II are similar
(i.e., both act via the Type I IGF receptor), then the structural
differences between IGF-I and IGF-II would serve some other
mechanism than functional activity. This raises the possibil-
ity that the differential structure of the two IGFs could lead
to differences in MCR. Accordingly, we can speculate that
serum contains two pools of reserve IGFs — a smaller IGF-I
pool, which is rapidly turning over, and a larger IGF-II pool,
which is slowly turning over. If so, the differential structure
of the IGFs may produce differential three-dimensional
structures with the IGFBPs and, therefore, could lead to a
lower proteolysis rate of IGF-II than IGF-I. In this regard,
recent studies have shown that exogenous addition of IGF-II
to cell-free conditioned medium derived from a number of
cell types, including human osteoblasts and fibroblasts, in-
creases the rate of IGFBP-4 proteolysis (157–160). Since
IGFBP-4 proteolysis is not induced by the addition of insulin,
des(1–3)IGF-I, or des(1–6)IGF-II, all of which bind IGFBP-4
with extremely low affinity, it is speculated that the binding
of IGF-II to IGFBP-4 may alter the conformation of the pro-
tein and enhance the susceptibility of IGFBP-4 to proteolytic
degradation (159). Although these data are consistent with
the possibility that the binding of ligand to binding protein
may result in altered proteolysis of the ligand and/or the

binding protein due to conformation changes, further studies
are needed to establish whether or not there are, in fact,
different MCRs for the serum IGF-I pool and the serum IGF-II
pool. If this proved to be the case, this would open the
possibility that the two reserve serum IGF pools provide a
metabolic advantage to maintain overall body economy in
the face of dramatic changes in functional demands, such as
during growth, pregnancy, and starvation. Regardless of
whether or not this concept has merit, the findings that IGF-II
circulates in greater abundance than IGF-I in human serum,
and that IGF-II is produced by several adult tissues in large
amounts, are consistent with an important role for IGF-II in
human physiology.

The finding that IGFBP-3 is the most abundant IGFBP
present in adult human serum does not necessarily mean that
the production rate of IGFBP-3 is more than that of other
IGFBPs. In this regard, the higher abundance of IGFBP-3 in
serum may be due to the fact that the half-life of IGFBP-3 is
considerably longer (15–20 h) since it is bound to the 80- to
85-kDa ALS. In contrast, the half-lives of IGFBP-1 and
IGFBP-2 have been estimated to be on the order of 1–2 h (161),
which suggests that these binding proteins must be pro-
duced at a higher rate than that of IGFBP-3 to achieve similar
serum levels based on the differences in their half-lives. Thus,
it is essential to understand not only the regulation of
IGFBP-3 and other IGFBPs in serum, but it is also necessary
to know the regulation of different IGFBPs in various extra-
cellular body fluids since the relative levels of these IGFBPs
and their corresponding proteases in local body fluids may
play a role in regulating the local actions of IGFs depending
on the needs of local tissues.

VII. Regulation of Serum IGFBPs

If IGFBPs in serum play an important role in regulating the
actions of IGFs (see Section IX), then the levels of various
IGFBPs should be regulated during various physiological
and pathological conditions. Recent studies demonstrate that
IGFBPs are regulated during exercise, surgery, pregnancy,
and aging and that hormones modulate the levels of one or
more IGFBPs in serum and other biological fluids (see be-
low).

A. Physiological conditions

1. Diurnal variation. Plasma IGFBP-1 values are subject to
diurnal variation with the levels reaching the lowest during
the afternoon and midnight, and highest in the morning (61).
In circulation, IGFBP-1 has a free IGF-binding site, suggest-
ing that it is unsaturated in contrast to GH-dependent
IGFBP-3, which is normally saturated. It appears that the
increase in IGFBP-1 during the morning hours coincides with
an increase in IGF-I level, thus reducing insulin-like activity
(20). However, this is independent of both IGF and GH (61).
In contrast to IGFBP-1, IGFBP-2 and -3 are more stable and
do not exhibit diurnal variation nor are they subject to post-
prandial changes (143, 144). Diurnal variations have not yet
been studied for IGFBPs 4–6.

2. Nutrition. Nutritional regulation of IGFBP-1, -2, and -3 has
been discussed briefly in a recent review by Thissen et al.
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(162), but little is known regarding the nutritional regulation
of IGFBP-4, -5, and -6 (163, 164). The metabolic state of an
individual is reflected by insulin level, which influences the
circulating concentration of IGFBP-1. Insulin-dependent di-
abetic patients have higher serum IGFBP-1 levels than non-
diabetic controls (136, 165). Further, acute steady state hy-
perinsulinemia reduces the serum IGFBP-1 concentration to
values that are 40–70% lower than baseline values in normal
individuals and also in diabetic and insulinoma patients
(166), suggesting that insulin is involved in the regulation of
serum IGFBP-1 levels (167). Serum IGFBP-1 levels fluctuate
acutely in response to dietary food intake, with a marked
increase (3- to 4-fold higher than baseline) after an overnight
fast (168) or long-term dietary restriction (169), and a decline
immediately after a meal. This decline in serum IGFBP-1 may
be attributed to the direct effect of insulin or insulin-induced
changes in glucose transport.

The effect of calorie and protein restriction on the con-
centrations of the serum IGFBPs is different for adults and
children. A 50% calorie reduction for 6 days increased
IGFBP-1 levels in healthy adults but not in children. Levels
returned to normal after refeeding (170, 171). The differences
in these responses were not due to differences in insulin
secretion, since both adults and children had a significant
decline in fasting C peptide levels. Although insulin is the
major regulator of IGFBP-1 concentration (165, 172, 173), this
study showed that IGFBP-1 changes in children may not be
linked to changes in insulin secretion.

Long-term dietary deprivation decreases plasma IGF-I
and IGFBP-1 and may modify the tissue response to IGF by
increasing IGF receptor synthesis (174). Another interesting
finding is the role of glucagon as a stimulator of plasma
IGFBP-1 independent of insulin levels (175). This is evident
in healthy subjects, patients with GHD, and IDDM patients
who have increased levels of IGFBP-1 when glucagon is
administered in spite of an increase in plasma glucose and
insulin levels. Based on these data, it is speculated that the
nutritional regulation of serum IGFBP-1 level is complex and
may be dependent on changes in the level of hormones such
as insulin and glucagon, in addition to metabolic changes.

The serum IGFBP-2 level is more stable than IGFBP-1 level
and is not influenced by postprandial changes (141). How-
ever, serum IGFBP-2 increased markedly in both adults and
children on protein restriction (170). Similar observations
have been made in patients with anorexia nervosa (171),
chronic protein-calorie malnutrition (170), and in prolonged
fasting that lasted more than 1 week (172). This increase in
serum IGFBP-2 follows a cellular increase in the expression
of the IGFBP-2 mRNA in rat liver (174, 176). Although pro-
tein refeeding normalized the serum IGFBP-2 levels of un-
dernourished children, high-protein intake is required to
achieve complete normalization (177). Thus, nutrition-
induced changes in serum IGFBP-2 level appear to be the
direct effect of dietary protein on IGFBP-2 expression in liver.

Serum IGFBP-3 levels declined slightly but significantly
with calorie restriction in both children and adults (170), but
protein restriction caused a decrease in IGFBP-3 only in
adults. However, this was normalized after protein refeeding
(177). Although serum IGFBP-3 levels are regulated by IGF-I
and GH under normal conditions (140), the decrease seen in

undernourished children is more likely due to the presence
of IGFBP-3-specific protease levels (177). The presence of
similar proteolytic activity accompanying a low IGFBP-3
level is seen in other catabolic states (135, 178), pregnancy
(135, 179), and in postsurgical patients (180). Age appears to
influence changes observed in IGFBPs as a result of dietary
modification. The response to calorie restriction among chil-
dren and adults differs more so than during protein restric-
tion, which may be due, in part, to an overestimation of the
energy requirements for children (169).

Weight loss or long-term moderate energy restriction does
not alter IGFBP-3 (181). Serum IGFBP-3 was not influenced
by a very low calorie diet (VLCD) consumed by normal and
obese subjects, while IGFBP-1 increased markedly in controls
on VLCD and not in obese subjects (182). The increase in
IGFBP-1 is suggested to inhibit the IGF-I feedback regulation
of GH secretion, while a similar response is absent in obese
individuals. Thus, GH secretion is increased in normal sub-
jects on VLCD, but this response is abolished in obese indi-
viduals. The impaired GH secretion in obese subjects re-
sulted in a lowered IGF/IGFBP-3 molar ratio, but this was
reversed after weight loss by these subjects (183). Thus,
changes in serum levels of IGFBPs induced by VLCD appear
to be different between normal and obese subjects.

Based on the observations that serum levels of IGFBPs
change depending on the nutritional status, two general con-
clusions can be made: 1) serum IGFBP-1 and IGFBP-2 levels
are regulated differently than IGFBP-3 by nutrition, and 2)
the decrease in serum IGFBP-3 with corresponding increases
in serum IGFBP-1 and IGFBP-2 levels during malnutrition
would decrease the half-lives of IGFs but tend to increase the
transport of IGFs across the vascular endothelium and
thereby could modulate the bioavailability of IGFs to target
tissues (see Section IX). Further studies are needed to deter-
mine whether nutrition regulates IGF action by altering the
ratio of IGFs bound to the 150- to 200-kDa and 50-kDa com-
plexes.

3. Exercise. Exercise increased IGF-I and IGF-II in human
adults (184, 185) with the degree of response influenced by
the intensity of exercise (186). This increase in IGF level in
serum appears to be GH independent, since the increase in
serum IGF-I occurred earlier than the increase in serum GH.
In addition, GH secretion increased only in high-intensity
exercise while IGF increased under both low and high in-
tensities. Circulating IGF-I levels are also influenced differ-
ently by different types of exercise. Weight-bearing exercise
caused no change in the IGF system (186, 187), while endur-
ance-type exercise induced significant increases in serum
IGF-I level (185). Exercise is also accompanied by changes in
some of the IGFBPs (increase in IGFBP-1 and IGFBP-3) with
or without changes in IGFs, with an overall change in the IGF
to IGFBP ratio.

Prolonged exercise increased the need for plasma glucose
because of depleted muscle glycogen or increased hepatic
glucose output. Prolonged exercise increased serum IGFBP-1
(188, 189), and this was inversely related to serum insulin and
IGF-I levels (188). This raised the possibility that serum in-
sulin was the main regulator of IGFBP-1 in circulation during
exercise. However, another study (189) showed that serum
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IGFBP-1 increased in response to prolonged exercise even
when normal plasma glucose and insulin levels were main-
tained, suggesting that factors other than insulin levels, e.g.,
muscle glycogen, may be involved in the regulation of serum
IGFBP-1 during exercise.

Increased serum IGFBP-3 levels have been reported in
adults after exercise (184, 190). This increase paralleled an
increase in IGFBP-3 proteolytic activity. It is speculated that
the proteolysis was induced by activation of calcium-depen-
dent protease (191) and might be responsible for the IGF-
induced anabolic effect of exercise on muscle tissue. These
changes in the IGF system components are observed imme-
diately after exercise and are of short duration (,1 h). It is
not known at this time whether the alterations in the IGF
system components in circulation play a role in mediating the
anabolic effects of physical activity or whether the exercise-
associated changes in circulating levels of IGFs and IGFBPs
reflect processes that occur in the exercising tissue itself (191).

4. Glucocorticoid. Glucocorticoids inhibit somatic growth in
humans in part by suppressing GH secretion and IGF ac-
tivity. When dexamethasone was administered to healthy
male volunteers, it suppressed IGFBP-1 and IGFBP-2 levels
while increasing IGF-I and IGFBP-3 levels (192, 193). The
mean IGF bioactivity was reduced by 60% over the sampling
period (192). This decrease in bioactivity could be due to the
induction of serum inhibitors, alteration in IGFBP activity,
and/or alteration in secretory profiles of GH. Recently it was
shown that the negative effects exerted by glucocorticoid on
bone formation may be mediated, in part, via changes in
endocrine and local action of IGFs (194). In this study, the
reduction in bone formation after glucocorticoid therapy of
chronic obstructive pulmonary disease patients was accom-
panied by a decrease in stimulatory IGF system components
including IGFBP-3. Whether or not other stimulatory and
inhibitory IGFBPs are also affected remains to be determined.

B. Development and aging

1. Fetal and neonatal development. It is possible that IGFBPs
play a major role in regulating the mitogenic and differen-
tiation-promoting effects of IGFs in fetal tissues. IGFBPs 1 to
6 are expressed in the different organ systems of the devel-
oping fetus (12–16 weeks) as shown by Northern blot anal-
yses (195, 196). Of the IGFBPs seen in the serum of a human
fetus, IGFBPs 1, -2, and -3 originate predominantly from the
liver, while only small amounts of IGFBPs 4, -5, and -6 are
expressed in the liver. IGFBP-5 mRNA was detected in sev-
eral cell types during early postimplantation stages of the
developing rat, suggesting that IGFBP-5 has a role in the
development of different organ systems (197). These binding
proteins either cause inhibitory or stimulatory effects on IGF
action, depending on the amount of IGFs bound to each of
the IGFBPs and the pattern of distribution of these binding
proteins in the various fetal tissues.

In order for optimal fetal growth, a constant interaction
between the maternal host and the developing embryo/fetus
is required. The presence of IGFs, IGFBPs, and fragments of
IGFBP-3 in human extraembryonic cavities provide support
for maternal-fetal exchange of IGF system components (115).

It is suggested that the altered affinities of the proteolyzed
IGFBP-3 for IGF-II in extraembryonic cavities may play a role
in regulating the bioavailability of IGF-II in the chorion
and/or the amnion (115). However, the role of IGFBP-3 pro-
tease in modulating IGF bioavailability remains controver-
sial.

There is also a developmental switch during transition
from fetal to neonatal life in the IGFBPs present in circulation.
In a fetus of less than 27 weeks of gestation, serum contains
IGFBP-1, while cord serum contains mainly IGFBP-3 (198).
The level of IGFBP-1 is higher in the fetal and cord blood than
in adult plasma. In normal weight fetuses, the IGFBP-3 and
IGFBP-1 concentration in serum is 15% and 50% of maternal
serum levels, respectively (199). Low cord serum IGFBP-1
and elevated IGFBP-3 concentrations were reported in large-
for-gestational age fetuses at term birth (200). Since these
infants also had elevated cord serum insulin levels, it was
suggested that the changes in IGFBP-1 were mediated by
insulin, mainly by directing greater delivery of the IGF/
IGFBP complex to the target tissue, resulting in the acceler-
ated growth as seen in large-for-gestational age fetuses.
IGFBP-3 levels increase significantly during the last trimester
of intrauterine life. This is supported by a study (201) that
showed an increase in serum IGFBP-3 in preterm infants
from birth (3 months preterm) to 2 months past appropriate
term age. Thus IGFBP-1 and IGFBP-2 are the predominant
binding proteins during fetal life, but they decline during the
early neonatal period, with IGFBP-3 becoming the predom-
inant binding protein.

In intrauterine growth-retarded (IUGR) fetuses, there is a
marked elevation in cord serum IGFBP-1 and -2 compared
with normal fetuses (199, 200, 202). Giudice et al. (200)
showed that serum IGFBP-3 levels were decreased in IUGR
fetuses, but this is in contrast to the results of Lassarre et al.
(203), who showed that fetal cord serum had higher IGFBP-3
than normal cord serum. Typically, serum IGFBP-3 declines
in cord serum due to a specific protease that degrades this
protein to increase the amount of IGFs available for stimu-
lation of growth in the target tissues. Thus, in fetal circula-
tion, the increased availability of IGF is due to a molar excess
of IGF-I and -II, an increase in IGFBP-2, and a decrease in the
ternary IGFBP-3 complex formation. It is therefore specu-
lated that IGFBP-3 protease is less likely to play a significant
role in fetal serum in contrast to maternal or neonatal serum
(204).

During fetal life, not only is the total plasma IGFBP-3 lower
than in the adult circulation, but the amounts of IGF-I and
IGF-II bound to this binding protein are also low compared
with amounts of IGFs bound to IGFBP-3 in adults. IGF-I
levels are depressed in infants with IUGR, suggesting that
IGFs play a significant role in promoting growth. However,
the majority of IGFs are bound to IGFBP-3 as a 50-kDa ALS-
independent complex in infant serum, which is capable of
crossing the endothelial barrier, thus increasing the bioavail-
ability of the IGFs (203). The role of IGFBP-4 in neonatal
development has not yet been explored, but given the in-
hibitory effect of IGFBP-4 on IGF action, it is possible that
serum IGFBP-4 levels are higher in children with slow
growth compared with normally growing children (205).
However, future studies need to confirm these speculations.
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2. Puberty. Although low at birth, the serum IGFBP-3 con-
centration rapidly increases during the first years of infancy
(206–208), reaches a peak at puberty (207), and declines dur-
ing adulthood (208). Girls have higher serum IGFBP-3 levels
than boys of comparable age throughout childhood, and
levels peak a year earlier than boys during puberty (207, 208).
In addition, IGFBP-3 increases with the increasing stage of
pubertal maturation. Both the height and body mass index
of an individual correlates positively with IGFBP-3 levels
independent of age, sex, and pubertal stage. The molar ratio
between IGF-I and IGFBP-3 is increased during puberty,
suggesting that more biologically active IGF is available in
the free form during the pubertal growth spurt. Serum levels
of IGFBP-2 show marked age-dependence with high levels at
birth and senescence and low levels during puberty (144).
Serum IGFBP-1 declines progressively with age, with the
lowest concentration observed during puberty (207, 208).
The height variability seen among pubertal children corre-
lates with the concentration of IGF-I and IGFBP-3, with lower
values in short stature children and higher values in tall
children (209). Also, in patients with acromegaly and those
with high serum GH levels, circulating IGFBP-3 and IGF-I are
increased. Under normal physiological conditions, most of
the serum IGFs are bound to IGFBP-3, with an approximate
1:1 molar ratio of total IGF (IGF-I 1 IGF-II) and IGFBP-3 (60,
63). However, this ratio seems to vary with developmental
age, with a greater increase in circulating IGF-I than IGFBP-3
during puberty (208). Changes in serum concentrations of the
various IGFBPs during puberty (Table 4) have been proposed
to play a role in inducing the growth spurt during puberty.

Changes in the IGF system components may also mediate
the increase in bone size associated with puberty (210). An
up-regulation in the IGF system as measured by an increase
in serum IGF-I, IGFBP-3, and IGFBP-5 was reported in 65
girls belonging to Tanner stages (TS) II-IV. The increase in
skeletal width occurred between TS II and III, the same time
when the IGF system was up-regulated, suggesting a role for
the IGFs and their binding proteins in skeletal growth. The
role of GH vs. sex steroid hormones in mediating these
changes in the IGF system components needs to be explored.

3. Pregnancy. Several changes in the IGF system occur in
maternal and fetal circulation during pregnancy, suggesting
an important role for the IGF system components in pro-
ducing the anabolic effects on maternal and fetal tissues. Both
serum IGFBP-1 and -2 are found in the maternal serum
during the initial weeks of gestation. However, serum
IGFBP-2 levels are lower toward the latter part of gestation
due to the presence of IGFBP-2-specific protease (179). Serum

IGFBP-1 levels are higher during early gestation and plateaus
from week 12 through the end of gestation (118).

Serum IGFBP-3 is the major binding protein for the cir-
culating IGFs (211, 212) in pregnant and nonpregnant
women. Binoux et al. (213), using competitive binding stud-
ies, showed that IGFBP-3 derived from maternal serum had
10 times lower affinity for IGF-I than IGFBP-3 derived from
normal human serum and half the affinity for IGF-II. An
apparent decline in the acid-stable IGF-binding subunit of
IGFBP-3 in the latter part of gestation and the presence of
smaller molecular forms of IGFBP-3 in term maternal serum
provide strong evidence that specific proteases that cleave
the IGF-IGFBP-3 complex (78, 135, 179) are present. The
protease detected in the serum of pregnant women is sug-
gested to cause a functional change (78, 214) resulting in a
redistribution of IGF-I. This would increase the proportion of
free IGF-I (215) at the expense of IGF-I bound to the 150 to
200 kDa complex. Both the intact and fragmented forms of
IGFBP-3 have greater affinity for IGF-II than IGF-I (3), a role
that could be related to the established importance of IGF-II
in fetal development.

On the other hand, Baxter and co-workers (67, 216, 217)
demonstrated that IGFBP-3 derived from human maternal
serum is not functionally altered. Baxter et al. (67) reported
that this proteolyzed IGFBP-3 circulates in a ternary complex
that is normal in molecular mass and IGF-carrying capacity.
IGFBP-3 derived from maternal serum appears similar in size
to the IGFBP-3 from serum of nonpregnant women dissoci-
ated from ternary complex by acid treatment with normal
binding affinity for ALS (217). Ternary complex formation
measured by radiolabeled a-subunit binding was identical in
serum from pregnant and nonpregnant women after acid
treatment of serum that destroys endogenous a-subunit.
Based on these data, Baxter and co-workers (79) concluded
that IGFBP-3 in native maternal serum is functionally nor-
mal. Thus, to date, the functional significance of IGFBP-3
protease in maternal serum remains controversial.

IGF biological activity is modified in situations in which
fetal growth is abnormal, such as in multiple or abnormal
pregnancies. Maternal IGFBP-3 increases with gestational
age and is higher in multiple pregnancy compared with
gestational age-matched twin or single pregnancies (218).
IGFBP-3 protease activity also increases with increasing fetal
number, but is not reversed by embryo reduction. This im-
plies that the protease activity is activated early on in preg-
nancy and remains irreversible. A similar increase in
IGFBP-3 protease activity has been observed in both appro-
priate-for and small-for-gestational age fetuses with utero
placental insufficiency. Based on this evidence, the concept
has been advanced that in both multiple pregnancy and
under utero placental insufficiency, the increase in protease
activity may be an adaptive mechanism to counteract the
threat to fetal growth (218).

4. Aging. An age-related decline in serum IGF-I level has been
reported by several investigators (219–223). The decrease in
serum IGF-I with advancing age could be explained in part
by the decrease in serum GH levels (221). Recent studies also
demonstrated that serum IGF-II levels declined with age but
to a lesser extent compared with IGF-I (222). In addition to

TABLE 4. Changes in IGF system component levels in serum
during puberty and aging

IGF system components Puberty Aging

IGF-I Increase Decrease
IGF-II Increase Decrease
IGFBP-1 Decrease Increase
IGFBP-2 No change Increase
IGFBP-3 Increase Decrease
IGFBP-4 Not known Increase
IGFBP-5 Increase Decrease
IGFBP-6 Not known Not known
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the IGFs, the serum IGFBP levels were also altered with age.
Both the magnitude and direction of change with age were
different for the various IGFBPs. Serum levels of IGFBP-1,
IGFBP-2, and IGFBP-4 increased with age while those of
IGFBP-3 and IGFBP-5 declined with age (138–144, 190). Se-
rum IGFBP-1 showed an age-related increase (138, 224) in
both men and women. Fasting IGFBP-1 levels increased with
aging (224), but there was no correlation between insulin and
IGFBP-1 with advancing age. Although insulin correlates
inversely with IGFBP-1 (165), this relationship ceases to exist
in aged individuals. This might be due to the development
of age-related insulin resistance among these subjects (225).
Replacing adrenal steroids suppressed the IGFBP-1 levels
while increasing the IGF-I levels and restoring normal mi-
togenic activities in serum of the elderly (226). The age-
dependent pattern of serum IGFBP-2 resembles that of
IGFBP-1 in that it increased with aging (143, 144). After
puberty there is a steady increase in IGFBP-2 in circulation,
and this increase is accelerated at age 60 and above. How-
ever, the mechanism that causes the increase in IGFBP-2 is
unknown at present.

Serum IGFBP-3 declines with age during adulthood, and
this corresponds to an age-related decline in GH secretion
(140, 150). In contrast, serum IGFBP-4 levels increase with
age (139, 222), indicating that different binding proteins are
differentially regulated. The increase in serum IGFBP-4 in
elderly women was in part due to the age-related increase in
PTH, the production of which is stimulated in calcium de-
ficiency states (227). A 30% reduction in the serum IGFBP-5
levels in women aged 23–85 yr was observed when com-
pared with IGFBP-5 in the serum of prepubertal girls (142).
Since serum IGFBP-5 levels show significant positive corre-
lation with age and the treatment of various cell types in-
cluding osteoblasts with IGFs increased production of
IGFBP-5, it is suggested that the decline in IGF production
may contribute to the age-related decrease in IGFBP-5 pro-
duction. Consistent with this interpretation, Nicholas et al.
(49) reported that the decline in skeletal content of IGFBP-5
showed significant positive correlation with skeletal content
of both IGF-I and IGF-II. Whether the age-related decline in
skeletal and serum IGFBP-5 reflects an age-related decline in
synthesis of this protein by bone and other tissues needs
further investigation.

The data in Table 4 demonstrate that multiple deficits in
the IGF system components occur as a consequence of aging.
The underproduction of stimulatory IGF system components
and the overproduction of inhibitory IGF system compo-
nents could lead to an age-related decrease in the hormonal
as well as local actions of the IGFs, all of which could con-
tribute to an impairment in the function of various organs
during aging. Further studies are needed to establish the
cause and effect relationship between changes in IGF system
components and impairment in various body functions with
age.

C. Hormonal effects: mechanisms

If IGFBPs play an important role in regulating IGF actions,
then the regulation of IGFBPs in various physiological sit-
uations would depend on the hormones involved and the

target tissue. Thus, the changes in serum levels of IGFBPs
during normal physiological conditions such as malnutri-
tion, puberty, pregnancy, and aging may be influenced in
part by corresponding changes in the levels of various hor-
mones including insulin, GH, sex steroid hormones, glu-
cocorticoids, and thyroid hormone.

The extent to which changes in the level of a given hor-
mone influences the serum level of a given IGFBP depends
on two main factors: 1) the magnitude of change in the
production of the corresponding IGFBP in the target tissue(s)
and 2) the extent to which the target tissue(s) contribute to
the circulating level of the IGFBP in serum. It is thus possible
that the changes in the production of one or more IGFBPs in
the target tissues in response to hormonal stimuli may be
reflected by corresponding changes in serum levels of these
IGFBPs. Alternatively, the levels of one or more IGFBPs may
change in the local body fluid in response to a hormonal
stimuli, and these local changes may not be reflected by
changes in corresponding levels of the IGFBPs in serum.

Studies on serum regulation of IGFBPs in response to
hormonal stimuli suggest that some hormones may primar-
ily influence the serum level of one IGFBP while other hor-
mones may influence the serum levels of multiple IGFBPs.
For example, the level of insulin changes in response to
alterations in nutritional status. Accordingly, the serum level
of IGFBP-1 changes in response to alterations in insulin level
(59). The finding that insulin is the major regulator of
IGFBP-1 production in liver, one of the target organs for
insulin action, suggests a role for insulin in regulating
IGFBP-1 function depending on the nutritional status. In
contrast to the specific effect of insulin on IGFBP-1, GH
appears to influence the serum level of a number of IGFBPs
(59, 228). Since GH mediates somatic growth in a variety of
organs and some IGFBPs are more abundantly expressed in
certain tissues than in others, it is not surprising that GH
influences multiple IGFBPs.

Studies on the mechanisms by which various hormones
influence the serum level of known IGFBPs provide evidence
for both direct effect of a given hormone on the IGFBP gene
in the target tissues and an indirect effect of the hormone
secondary to changes in the production of local growth fac-
tors. For example, the effect of GH to increase the serum level
of IGFBP-3 is thought to be mediated via the following two
mechanisms: 1) Based on the findings that GH treatment
increases IGFBP-3 expression by a pathway independent of
IGFs in liver cells in vitro (229), it is proposed that GH may
mediate its effects by directly influencing the IGFBP-3 gene
in the target tissues; 2) Based on the findings that many of the
effects of GH on target tissues are mediated indirectly via
IGFs and that changes in the serum levels of IGFBP-3 cor-
relate significantly with changes in serum level of IGFs, it is
proposed that GH effects on IGFBP-3 may be secondary to
an increase in the production of IGFs (59, 228, 230, 231). In
addition to these two mechanisms, GH induces ALS pro-
duction, thus contributing to the prolonged half-life of
IGFBP-3 (66). The extent to which each of these mechanisms
contributes to the GH-induced increase in serum level of
IGFBP-3 is not known at this time.

Similar to GH effects, a number of other hormones, in-
cluding sex steroid hormones and glucocorticoids, may also
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influence serum level of IGFBPs by both direct and indirect
mechanisms. In this regard, studies on regulation of pro-
duction of IGFBPs using serum-free monolayer cell cultures
have provided evidence for the direct effect of estradiol,
testosterone, progesterone, and dexamethasone on the ex-
pression of various IGFBPs (153, 232). In addition, it is also
known that these hormones influence actions of a variety of
locally produced growth factors including IGFs (153, 159,
232). Because many of these locally produced growth factors
also influence production of IGFBPs in a variety of target cell
types, the changes in the serum level of IGFBPs may be a
reflection of not only the direct effect of the given hormone
on IGFBP production in the target tissues but also the indirect
effect of a given hormone on local growth factor milieu.

Studies on the molecular mechanisms by which hormones
influence expression of IGFBPs provide evidence for com-
plex regulation involving both transcriptional and posttran-
scriptional mechanisms (159). Some hormones may regulate
IGFBP level by primarily regulating one control mechanism
while other hormones may regulate IGFBP level by regulat-
ing multiple control mechanisms. In this regard, it is known
that the insulin effect on IGFBP-1 production is regulated
primarily at the transcriptional level in liver cells (233). In
contrast, the IGFBP-3 levels in the conditioned medium of
various cell types in response to various effectors are regu-
lated by mechanisms involving alterations in both synthesis
and degradation (191). In addition, there is evidence of the
release of cell surface-bound IGFBP-3 by certain growth fac-
tors (234). Similarly, IGFs and bone morphogenetic proteins
influence IGFBP-5 levels in human osteoblasts by both de-
creased proteolysis and increased gene transcription (235).
Thus, some hormones appear to modulate the IGFBP level by
regulating one control mechanism (e.g., proteolysis) while
other hormones appear to modulate IGFBP levels by regu-
lating multiple control mechanisms (e.g., gene transcription,
mRNA processing, mRNA stability, proteolysis, release of
cell surface-bound IGFBP). It is speculated that the complex-
ity of IGFBP regulation may provide the required flexibility
for modulating IGF actions by a multitude of systemic and
local effectors in various tissues.

D. Pathological conditions

The following section describes the changes in the IGFBP
axis in serum during various pathological states and how
these changes could be interpreted to explain the corre-
sponding disease states.

1. Diabetes. Serum IGFBP-1 is the only component of the IGF
system that is directly regulated by insulin. Several studies
(229, 236–238) have shown that in adult and adolescent
IDDM patients there is a significant increase in serum
IGFBP-1 level. In normal subjects, serum IGFBP-1 levels pro-
gressively declined throughout childhood and puberty, but
this age dependency did not hold true in diabetic individuals
(239). Although levels of serum IGFBP-1 in IDDM patients
was 7 times higher than in healthy controls before initiation
of insulin treatment (240), the levels were normalized im-
mediately after insulin infusion. Glucagon is known to be a
stimulator of IGFBP-1 production in IDDM patients and is

independent of insulin action (175). The serum IGFBP-1 in
patients with IDDM and severe ketoacidosis was in the phos-
phorylated form (241). This form has 6-fold higher affinity for
IGF-I than the nonphosphorylated form in vitro (242). Based
on these findings, it is speculated that the increase in phos-
phorylated IGFBP-1 leads to a decrease in free IGF available
for stimulating growth in IDDM patients, which may con-
tribute in part to the low lean body mass observed in these
patients (241, 242).

In contrast, in non-insulin-dependent diabetes mellitus
(NIDDM) that results in hyperinsulinemia and insulin re-
sistance, conflicting data (165, 173) have been obtained in
regard to serum IGFBP-1 levels (i.e., both increases and de-
creases in serum IGFBP-1 levels). This discrepancy could be
due to the type of treatment provided to the patients and how
this in turn affects b-cell function and insulin resistance. For
example, sulfonylurea increases endogenous insulin secre-
tion and thereby decreased IGFBP-1 secretion, while multi-
ple insulin injections inhibit endogenous insulin secretion,
resulting in an increase in serum IGFBP-1 (243). An increase
in fasting IGFBP-1 and -2 levels and a decrease in IGFBP-3
levels were observed in normal and NIDDM patients after
IGF-I and insulin infusion (244). These changes in the levels
of various IGFBPs are likely to alter distribution of IGFs
among these binding proteins which, in turn, could modify
the bioavailability of IGFs in the target tissues depending on
the tissue-specific proteolysis of IGFBPs (see Section VIII).

Serum IGFBP-2 is also increased in diabetes; however,
insulin therapy normalized the levels (239). This is surprising
since it is known that free IGF-I and not insulin is the major
regulator of IGFBP-2. Although serum IGFBP-3 is not in-
volved in glucose metabolism, a 30–40% reduction was re-
ported in diabetic patients (237) before starting insulin treat-
ment. After treatment, there was an increase in both serum
IGF-I and IGFBP-3, with the former showing a slightly
greater increase than the latter. This makes more IGF bio-
available and possibly accounts for the improved linear
growth seen in children with IDDM receiving insulin treat-
ment (240).

In several pathological states, IGFBP-specific protease(s) is
increased in the serum, which may lead to an increase in the
amount of free IGF-I available for growth stimulation. Intact
IGFBP-3 measured by ligand blot analysis of children with
untreated IDDM was 50% lower than that of age-matched
controls (243) while it was 70% lower when measured by
immunoblot assay that detected both intact and fragmented
IGFBP-3. IGF-I, a known regulator of serum IGFBP-3, was
reduced in IDDM patients (245) and may be responsible for
the decline in IGFBP-3 levels. After insulin treatment,
IGFBP-3 levels increased significantly, with an associated
decline in serum IGFBP-3 protease (137). It is postulated that
an increase in IGFBP-3 protease activity during insulin de-
ficiency, as seen in IDDM, helps to partly overcome the
catabolic state by increasing the bioavailability of IGF for
growth stimulation (137).

An increase in protease activity is also observed in ges-
tational diabetes. During the latter part of gestation, there is
an alteration in IGFBP-3 levels due to a specific IGFBP-3
protease that increases availability of free IGF-I. Although
women with gestational diabetes had a greater increase in
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free IGF-I compared with nondiabetic pregnant women, this
change did not seem to be due to a decrease in serum IGFBP-3
level, but rather to an increase in this protease activity (246).

2. Tumors. Extrahepatic non-insulinoma tumor-induced hy-
poglycemia is accompanied by metabolic abnormalities such
as an inhibition of hepatic glucose production, decrease in
lipolysis in adipose tissue, and increased consumption of
glucose by peripheral tissues (247). Although these effects are
characteristic of insulin action, plasma insulin levels are low
in these patients (248). It was evident that the tumors in these
patients secreted a bioactive big IGF-II (15–25 kDa) as a result
of incomplete processing of pro-IGF-II peptide (249). Big
IGF-II has an insulin-like action and binds insulin receptor
(250). The presence of high levels of IGF-II by itself does not
address the issue of tumor-related hypoglycemia. However,
it was shown that there is a shift in the distribution of IGF-II
from the 150- to 200-kDa to the 50-kDa complex in the cir-
culation (251, 252), since IGFBP-3 and tumor IGF-II failed to
complex with ALS (253). The increase in 50 kDa complex is
mainly due to an increase in the level of IGFBP-2 (251, 252).
Since the 50-kDa IGF complex can cross the vascular endo-
thelial barrier, it seems likely that the bioavailability of IGF-II
is increased, resulting in insulin-like actions in target organs.

A proposed mechanism by which big IGF-II secreted by
tumors may lead to hypoglycemia is shown in Fig. 5. Con-
sistent with this model, Baxter et al. (253) showed that pred-
nisone treatment of a 87-yr-old women with a non-islet cell
tumor suppressed pro-IGF-II formation and corrected the
hypoglycemia. Prednisone treatment caused a redistribution
of serum IGFBP-3 from binary to ternary complex forms.
These studies demonstrate the role of ALS and the ternary
ALS1IGFBP-31IGF complex in glucose regulation.

a. Prostate tumors. IGFBP-2 is found in significant amounts
in prostate secretions and is elevated in serum of patients
with prostate cancer (254, 255). A dramatic increase in serum
IGFBP-2 is observed in prostate cancer patients and corre-
lates with PSA levels (255). This is supported by the finding
that both normal and cancerous prostate cells in culture

secreted IGFBP-2 as the major binding protein (256). Serum
IGFBP-3 levels, on the other hand, decreased significantly in
patients with prostate cancer. A decrease in IGF-I or the
activation of a protease specific for IGFBP-3 may be respon-
sible for the decrease in IGFBP-3. Recent evidence suggests
a IGFBP-3 proteolytic activity for PSA (125), as seen by an
inverse correlation between PSA and serum IGFBP-3 levels.
However, the exact role of these alterations in binding pro-
teins in the pathophysiology of cancer is unclear. It is possible
that the decrease in IGFBP-3 may lead to an increase in the
amount of free IGF-I in the target tissues, which promotes
growth. On the other hand, the decreased IGFBP-3 levels
may reduce the half-lives of IGFs and decrease the endocrine
IGF actions. However, with respect to the diagnostic utility
of IGFBPs as tumor markers for prostate cancer, serum
IGFBP-2 may not be as sensitive and accurate an indicator as
serum PSA, but may add some information in clinical situ-
ations where serum PSA levels are low (254).

b. Endometrial tumors. IGFs have been shown to stimulate
breast cancer cell proliferation in vitro (257). With respect to
breast cancer, tamoxifen therapy suppressed plasma IGF-I
(258) and increased serum levels of IGFBP-1 (259). This in-
crease in IGFBP-1 could either result in a decrease in the
biologically available form of IGFs and reduce growth of the
tumor or could enhance the delivery of IGFs to the tissues
because of the ability of the IGF/IGFBP-1 complex to cross
the endothelial barrier, making tamoxifen therapy ineffective
in these patients. In women with endometrial cancer, fasting
insulin was found to be higher, and serum IGF-I and IGFBP-3
levels were lower than in normal controls (260). It is not
known at this time whether the changes in the serum levels
of various IGF system components in women with endome-
trial cancer play a role in modulating the amount of IGFs
available for cancer cell growth.

c. Other tumors. Several other tumors are also associated
with alterations in IGF and their binding proteins. For ex-
ample, in one type of tumor affecting the kidney in children
(Wilm’s tumor), IGF-II levels in serum were lower than in
normal controls, but IGFBP-2 was significantly higher in
those with the tumor (261). Although it is known that
IGFBP-2 sequesters IGF-II and prevents it from binding to the
IGF receptors, the exact role of IGFBP-2 in tumor develop-
ment is not known. Based on the findings that the serum level
of IGFBP-2 is increased in various types of tumors, Zumkeller
et al. (261) concluded that the serum IGFBP-2 measurements
may prove to be useful as markers for various malignancies.

Elevation of IGFBP-2 in CSF was observed in patients with
malignant CNS tumors (96). The source of CSF IGFBP-2 was
not the serum as there was no correlation between these two
measurements. Increased expression of IGFBP-2 mRNA in
CNS tumors from one patient suggests the possibility that the
tumor itself may be the source of the CSF IGFBP-2. Although
it is speculated that the IGFBP-2 in the CSF could be a useful
marker for CNS tumors, further studies are required to un-
derstand the mechanism that causes the increase in IGFBP-2
and the clinical utility of IGFBP-2 measurement as a diag-
nostic marker for CNS tumors. Children with highly malig-
nant CNS tumors or CNS leukemia (95) have elevated
IGFBP-3 in the CSF possibly due to the disruption of the
blood-brain barrier and entry of serum IGFBP-3 or to an

FIG. 5. Proposed mechanism of extrahepatic tumor-induced hypo-
glycemia. The hypoglycemic state in patients with-non islet cell tu-
mors is associated with an increase in serum level of pro-IGF-II, a
decrease in the circulating level of the 150-kDa complex, and a cor-
responding increase in the circulating level of the 50-kDa complex.
The altered distribution of IGFs between the 150-kDa and 50-kDa
complexes is likely to be due to the failure of tumor-secreted pro-
IGF-II to form a complex with ALS and IGFBP-3. The increase in
50-kDa IGF pool increases the bioavailability of IGFs (because 50-
kDa and not 150-kDa IGF complex can cross the vascular endothe-
lium) to produce insulin-like effects in the target tissues. The asso-
ciation between the decreased 150-kDa complex and glucose level in
the serum of tumor-induced hypoglycemia emphasizes the central
role of the 150-kDa IGF complex in glucoregulation (248–251, 253).
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increase in local production of IGFBP-3 by tumor tissues.
Chemotherapy for cranial tumors decreased serum IGF-I and
IGFBP-3, although GH levels remained within normal limits
(262). However, after 12 months, the levels returned to pre-
treatment values. It is speculated that GH insensitivity seen
during chemotherapy might be responsible for the early
growth retardation observed in these patients.

3. Laron type dwarfism. Laron type dwarfism (LTD) is an
autosomal recessive condition involving a defect in the GH
receptor gene. These patients have high circulating levels of
GH and low serum IGF-I with impaired receptor function
causing growth retardation. In this GH-resistant condition, it
appears that the IGFBPs play an important role in modulat-
ing the activity of IGFs. Elevated serum IGFBP-1 concentra-
tions were observed in LTD patients, and this may be partly
due to low IGF-I levels. After IGF-I administration, the
IGFBP-1 levels were down-regulated in LTD patients (263).
Low levels of serum IGFBP-3 were seen in LTD subjects
compared with normal controls, and most of the IGF-II in
circulation appeared bound to IGFBP-2 instead of IGFBP-3.
Furthermore, an IGFBP-3-specific protease was identified in
the serum of LTD patients but not in controls. Based on these
data, it is speculated that the decrease in IGF bioactivity in
LTD is largely due to variations in IGFBPs and not in IGF-II
levels.

Long-term treatment of LTD with IGF-I resulted in a strik-
ingly progressive increase in serum IGFBP-3 levels with con-
tinuous treatment (264–266). This increase in serum IGFBP-3
levels, despite the absence of GH action in LTD, suggests the
possibility that IGFBP-3 in humans is regulated directly by
IGF-I, independent of GH. An increase in serum levels of
other IGFBPs was also detected after IGF therapy. The in-
crease in serum IGFBP-1 levels paralleled the decrease in
insulin levels observed with the therapy. Since insulin is the
major regulator of IGFBP-1 production, the rise in the latter
is most probably due to this observed decrease in insulin
(267). The serum IGFBP-2 level was also increased after long-
term IGF-I therapy of LTD. Similar increases in the serum
IGFBP-2 level were also observed in normal human subjects
receiving infusions of IGF-I (268). The functional significance
of the increase in serum levels of various IGFBPs as a result
of IGF-I administration in modulating the growth-promoting
effects of exogenous IGF-I in LTD is not known at this time.

Two forms of IGF- and ALS-associated IGFBP-3 (44-kDa
doublet and 28-kDa band) that are capable of forming the
ternary complex have been identified in healthy adult serum
(28). In GH receptor deficiency (GHRD), the distribution of
these two forms differs from that of control serum and ex-
plains the alterations in IGF distribution in these patients.
Although in adults with GHRD, recombinant IGF-I treat-
ment increases serum IGF-I and decreases serum IGF-II with-
out any change in ALS (269), the IGF distribution between the
two molecular forms of IGFBP-3 is not corrected (270). Thus
IGF-I therapy in GHRD patients is expected to have a min-
imal role in prolonging the half-lives of IGFs since IGF-I
therapy in these patients has failed to increase the formation
of the 150- to 200-kDa IGF complex. However, a recent study
demonstrated the potential beneficial effects of short-term
IGF-I therapy in LTD (271) although it is not known whether

long-term IGF-I treatment would result in continuous im-
provement in growth velocity in these patients.

4. GHD. In GHD the patients have a low circulating level of
GH but normal receptor function. The serum IGFBP-1 levels
in GH-deficient patients were higher than in healthy controls
(138, 272), and this could be due to low endogenous insulin
production in these subjects (273, 274). In addition to insulin,
the role of other known stimulators of IGFBP-1, such as
glucagon and catecholamines, in altering serum IGFBP-1
needs to be explored. As for serum IGFBP-3, both in con-
genital and idiopathic GHD, the levels were diminished (60).
Similarly, in patients with hypopituitarism secondary to cer-
tain tumors, the low levels of IGFs were accompanied by low
serum IGFBP-3.

It is known that the serum levels of IGFBP-3 are dependent
on GH and/or IGF-I production. GH and/or IGF effects on
IGFBP-3 levels are mediated via an increased synthesis of
IGFBP-3 or an alteration in IGFBP-3 breakdown (275–277).
IGF-I can also induce IGFBP-3 level independent of GH ac-
tivity as shown by an increase in the serum IGFBP-3 level
after treatment with recombinant IGF-I (278). However, the
changes in serum IGFBP-3 level in IGF-I-treated children are
much smaller compared with those changes induced by GH
treatment, probably due to lack of increase in ALS produc-
tion during IGF-I treatment (278, 279). In terms of whether
or not changes in IGFBP-3 production play a role in medi-
ating GH-induced growth, it is speculated that the absence
or presence of IGFBP-3 plays a role in the growth of pygmy
children. It is proposed that the absence of IGFBP-3 in these
children accounted for their normal growth during child-
hood, in spite of the low levels of IGF-I, while during puberty
the increase in IGFBP-3 level resulted in the failure of the
normal growth spurt (63).

In human serum, levels of IGFBP-3 were shown to be low
in hypopituitary patients and increased after administration
of GH as assessed by immunoanalysis and Western ligand
blot analysis. Similarly, circulating levels of human IGF-I and
ALS are considered to be directly regulated by GH. Admin-
istration of GH in the absence of IGF-I to GH-deficient rats
showed that continuous administration of GH, as opposed to
twice daily GH injections, is superior in restoring the IGF-
IGFBP-3-ALS complex (279, 280). These data are consistent
with the idea that ALS and IGF-I are directly regulated by GH
while IGFBP-3 is directly regulated by IGF-I (280). Also, the
IGF/IGFBP-3 ratio and the induction of all the components
of the IGFBP-3 complex were observed with continuous in-
fusion of GH. It is suggested that continuous infusion of GH
would up-regulate GH receptors and stimulate production
of IGF-I and provide a synergistic effect on growth promo-
tion.

Prepubertal GH-deficient children treated with GH
showed an increase in serum IGF-I and IGFBP-2, suggesting
that they are the major correlates of pubertal growth (231).
GH-deficient children treated with GH sustained an increase
in circulating levels of IGFBP-5 and IGF-II, suggesting that
IGFBP-5 and IGF-II may also play a role in mediating some
of the anabolic actions of GH (228). However, whether or not
this effect is due to a direct influence of GH on IGFBP-5 or
due to a GH-induced increase in IGF-I and II on IGFBP-5
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(281–283) is unclear. GHD not only impairs longitudinal
growth, but also decreases bone mineral content in humans.
GH has been shown to have important effects on skeletal
metabolism in vitro and in vivo (123, 184, 283–286). Thus, in
patients with GHD of childhood onset, GH administration is
often used to increase the bone mineral content (287, 288).

In contrast to GH, administration of IGF-I in adults with
GHD for 7 consecutive days increased serum levels of IGF-I
but decreased serum levels of IGF-II (231). Daily injections of
IGF-I had no significant effect on serum levels of IGFBP-1,
IGFBP-2, and IGFBP-3. In contrast, long-term treatment of 20
GH-deficient patients, aged 22–57 yr, with GH increased
serum levels of IGF-I, IGFBP-3, and ALS (289). However, the
percentage increase in IGF-I was higher than the other two
peptides (i.e., IGFBP-3 and ALS) resulting in a higher ratio of
IGF-I/ALS and IGF-I/IGFBP-3 after treatment of GH-defi-
cient adults with GH. In addition, the increase in lean body
mass during GH treatment showed significant positive cor-
relation with age, thus suggesting that IGF-I can be used as
a marker in monitoring changes in lean body mass during
GH-replacement therapy.

Determination of spontaneous GH secretion in detecting
GHD is a time-consuming procedure, and alternate markers
are often evaluated to determine their usefulness as a diag-
nostic measure in detecting GHD. Blum et al. (140) in their
earlier work showed that IGFBP-3 was subnormal in GH-
deficient patients and that it could serve as an excellent
screening parameter for GHD. In a recent study (290), a
17.7-kDa form of IGFBP-3 that is GH dependent was detected
in the serum and urine of healthy children but was absent in
healthy adults and GH-deficient children. Since IGFBP-3 in-
creases in response to GH treatment secondary to an increase
in IGF-I, quantification of urinary IGFBP-3 could provide a
simple and noninvasive test to detect GHD and monitor the
response to GH therapy. The IGFBP-3 in urine is degraded
and, therefore, the usefulness of urinary IGFBP-3 as a diag-
nostic tool may be partly dependent on patient-to-patient
variations in this proteolytic cleavage. Further, monitoring
the levels of this molecular form of IGFBP-3 as a screening
tool for GHD may be considered only after further studies
support these findings. Serum levels of IGF-I, IGFBP-3, and
ALS were measured after GH treatment in GHD adults (291).
It was observed that the sensitivity of IGFBP-3 and ALS to
the GH dose was lower than that of IGF-I. Thus IGF-I levels
in serum are much more useful as a diagnostic tool than
serum IGFBP-3 levels for detecting GH excess in adults or in
those receiving GH replacement therapy. This is because it
is more sensitive than IGFBP-3 and ALS to GH doses in the
high range (291). Although the value of additional measure-
ment of either IGFBP-3 or ALS levels is limited, these mea-
surements could improve the reliability of diagnostic assess-
ment.

5. Acromegaly. Acromegaly is a disorder caused by hyper-
function of the pituitary gland with normal to high produc-
tion of GH. Plasma levels of IGF-I and IGFBP-3 were elevated
markedly in untreated acromegalic patients compared with
age-matched controls (292–294). Although regulated by GH,
the increase in IGFBP-3 was mediated in part via an increase
in IGF-I (292). Insulin, glucose, and gut peptides have a role

in altering the levels of IGFBP-3 (293–295), but further studies
are needed to completely understand the physiological reg-
ulation of IGFBP-3 in acromegaly. Acromegalic patients typ-
ically demonstrate elevated serum IGFBP-1 and IGFBP-2
(294) and an elevated ratio of IGF-I/IGFBP-3, suggesting that
the increase in GH level in acromegalic subjects may result
in increased availability of free IGF-I (294). This ratio, how-
ever, does not provide additional diagnostic value over IGF-I
measurement in clinical settings, since like IGF-I, the ratio of
IGF-I to IGFBP-3 is higher for acromegalic patients compared
with healthy controls. In a recent case report, Yoshida et al.
(296) showed that a nonpulsatile GH secretion and enhanced
tissue sensitivity to GH may induce hypersecretion of IGF-I
and IGFBP-3 resulting in clinical acromegalic gigantism. The
findings that the levels of IGF-I and IGFBP-3 were increased
in acromegalic subjects while they were decreased in GH-
deficient subjects are consistent with an important role for
GH in regulating IGF-I and IGFBP-3 levels in vivo.

6. Osteoporosis. All of the IGFBPs identified thus far (IGFBP-1
through -6) are also produced by human bone cells (31, 34,
46, 153, 297–299). IGFBPs exhibit significant biological effects
on bone cells, and the production of the IGFBPs is regulated
by a variety of osteoregulatory agents, emphasizing a key
role for IGFBPs in regulating osteoblast cell proliferation and
differentiation (34, 153, 297, 300–302). A number of studies
demonstrate that circulating levels of IGF-I and bone mass
are positively correlated in healthy subjects and that subjects
with osteoporosis have low circulating levels of IGF-I (284,
303, 304). Recent studies also showed changes in the serum
levels of various IGFBPs in osteoporotic subjects compared
with normal individuals (304–306). Johansson et al. (284)
reported that serum levels of IGFBP-3 showed significant
positive correlation with bone mineral density at multiple
sites. Serum IGFBP-3 levels were found to be considerably
less in osteoporotic subjects compared with age-matched
controls (305) and was shown to increase in response to
treatment with recombinant human GH (306). In addition,
serum IGFBP-5 levels, measured by RIA using polyclonal
antiserum, were found to be low in osteoporotic subjects
(142). However, further studies are needed to evaluate
whether the low levels of IGFBP-5 in the serum of osteopo-
rotic patients represent that of intact IGFBP-5 or fragments
or both.

Using ligand blot analysis, it was shown that serum
IGFBP-4 levels are higher in elderly women with hip frac-
tures with elevated PTH levels compared with age-matched
controls (227). However, this needs to be confirmed using
RIA in a larger population. It was also shown that the in-
creased serum IGFBP-4 levels in those who are advanced in
age show significant positive correlation with serum PTH
levels (139). PTH treatment increased IGFBP-4 production in
human osteoblasts in vitro (301). In addition, serum IGFBP-4
levels are increased during oral 1,25-dihydroxyvitamin D3
therapy in psoriasis patients (307). These findings suggest
that during calcium deficiency, the increase in serum PTH
and 1,25 dihydroxyvitamin D3 may, in addition to stimulat-
ing bone resorption, inhibit bone formation by stimulating
bone cell production of IGFBP-4 (307–309). These data dem-
onstrate that patients with senile osteoporosis who have hip
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fracture and secondary hyperparathyroidism also have a
highly significant increase in the ratio of inhibitory to stim-
ulatory IGF system components (222, 241). These two
changes could lead to a decrease in bone formation and a
decrease in hip bone density that may increase their pro-
pensity toward hip fractures.

7. Renal failure. Patients with chronic renal failure (CRF) dem-
onstrated a higher capacity to bind IGFs compared with
age-matched controls (310, 311). This is contributed by a
significant increase in circulating IGFBP-2 and -3 (312), with
a moderate increase in IGFBP-1 (145, 313). Serum IGFBP-2
and -3 levels of CRF patients are high, unlike that of serum
IGFBP-1, which is reduced due in part to the high insulin
levels seen in these patients. The increase in IGFBP-2 seems
to be due to an increase in hepatic production and/or low-
ered rate of renal filtration. This excess IGFBP in CRF patients
is believed to act as an inhibitor of IGF action by decreasing
the free biologically active IGF (314, 315). This could explain
the growth deficit seen in CRF subjects and the improvement
seen in longitudinal growth after GH treatment (146, 314).

In children with chronic renal insufficiency (CRI), the
growth deficit observed is reversed after renal transplants.
Growth is not always sustained in these patients because a
number of factors, including the treatments they receive,
impair growth (316). Prednisone treatment of patients with
CRI increased serum IGFBP-3 levels (311, 312, 315, 317, 318)
and decreased growth rate. In contrast to IGFBP-3, serum
IGFBP-1 levels were higher before prednisone treatment, but
returned to normal after treatment, probably as a result of an
increase in insulin concentration. It is not known whether the
increase in IGFBP-3 and/or decrease in IGFBP-1 after pred-
nisone therapy in CRI patients has any role in mediating the
impairment of growth in CRI patients.

Nephrotic syndrome results in damages of the capillary
wall of the arteries that supply the glomerulus and clinically
leads to the loss of large amounts of protein in the urine,
resulting in hypoalbuminemia. It is therefore likely that
IGF-I/IGFBP complex is also filtered, affecting the circulat-
ing levels of these binding proteins. Serum IGF-I concentra-
tion and the binding to the 150-to 200-kDa complex were
lower in nephrotic rats than pair-fed controls (317), while the
serum level of IGFBP-2 was increased due to an increase in
liver synthesis. It was shown in this study that the decrease
in serum IGF-I was compensated for by an increase in a
IGFBP-3 protease, which shifted the binding of IGF-I from
the 150- to 200-kDa complex to the low molecular mass
complex so that it permeates the vascular compartment and
maintains tissue IGF-I availability.

8. Other pathological conditions. Serum IGFBP-1 and GH were
elevated in cirrhotic patients compared with control subjects
(319, 320). The authors suggested that this might be due to
the insulin resistance seen in cirrhosis as insulin regulates
IGFBP-1 production in the healthy state (319). On the other
hand, a decreased level of IGFBP-3 was observed due to
decreases in hepatic production. While the concentration of
IGFBP-3 correlated with the severity of the hepatic disease,
IGFBP-1 did not show a similar relationship. It is clear that
IGFBP-1 and -3 are regulated differently and serve different
functions.

Growth and wasting accompany end-stage liver disease in
children and accelerated growth is feasible only after liver
transplant. Before the transplant, the circulating levels of
IGF-I and IGFBP-3 are low (321), similar to those observed
in acute and chronic renal failure (319). The low levels of
IGF-I could arise from the state of malnutrition or the pres-
ence of liver disease itself. After receiving the liver trans-
plant, these patients demonstrate an increase in both IGF-I
and IGFBP-3, with the latter increasing relatively higher than
control values. It is believed that the higher IGF-I level in
circulation after liver transplantation compared with the pre-
transplantation level would increase the endocrine action of
IGFs for growth stimulation.

Serum IGFBP-1 levels were markedly increased in patients
before transplant, and this persisted after transplant.
IGFBP-1 thus exerts an inhibitory effect on IGF action. How-
ever, unlike in healthy subjects, insulin does not regulate
IGFBP-1 levels, as high insulin secretion in these patients
does not suppress IGFBP-1 production. A rise in serum
IGFBP-2 as a result of dietary restriction in these patients was
also observed, but the level continued to be elevated for
reasons not understood. A combined increase in serum
IGFBP-1 and -3 post-transplant is speculated to play a role in
the growth failure or slow catch-up observed in patients after
liver transplant surgery.

In severely ill patients, catabolism leads to major changes
in IGFBP production and circulation in the serum, which in
turn can influence IGF bioavailability. The major binding
protein in the serum, IGFBP-3, was greatly decreased in
severely ill patients due to the release of substrate-specific
IGFBP-3 protease. Similarly, after surgery such as cholecys-
tectomy (180) and major heart surgery (322), there is an
increase in proteolysis of IGFBP-3. Based on these findings,
it is speculated that the release of IGFBP-3 protease during
surgery is an adaptive mechanism to ensure an adequate
supply of IGF to the tissue for counteracting the catabolic
state (178).

Serum IGFBP-3 decreased in hypothyroid patients and
was within normal levels in hyperthyroid patients. In con-
trast, serum IGFBP-1 was elevated in the hyperthyroid group
(323) or increased in hypothyroid patients receiving T4 treat-
ment (324). The patient is typically in a catabolic state in
hyperthyroidism, and this may be due, in part, to elevated
IGFBP-1, which suggests a decrease in bioactivity of IGFs in
plasma. These conclusions have been questioned since the
collection of the plasma from hyperthyroid subjects and the
reference pool was not done at the same time of day. This
suggests that the changes in IGFBP-1 levels between the
healthy controls and hyperparathyroids may have been
partly due to diurnal variation.

Based on the above mentioned discussion, it is obvious
that the serum IGFBP levels are altered under various phys-
iological and pathological conditions. Table 5 summarizes
the key regulators of various IGFBP levels in circulation.
Multiple mechanisms are known to be involved in regulating
serum levels of various IGFBPs, including alterations in the
production of IGFBPs in target cell types and degradation of
IGFBPs by specific proteases. The presence of multiple bind-
ing proteins and the complexity of regulation are consistent
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with a key role for IGFBPs in regulating the actions of IGFs
in response to a multitude of systemic and local effectors.

VIII. IGFBP Proteases in Circulation

In a variety of physiological and pathological conditions,
the relative ratio of IGFs to IGFBPs may vary to facilitate
tissue-specific growth-promoting effects of the IGFs. One of
the mechanisms by which this can be accomplished is by the
activity of a specific IGFBP protease that degrades the
IGF1IGFBP-3 complex to increase the free IGF concentra-
tion. IGFBP-3-specific protease is triggered under a variety of
stress-related conditions and enables the cleavage of the
IGF1IGFBP complex, making more free IGF available for
growth-stimulating activity.

A. Proteases under normal conditions

IGFBP-3 proteolysis is known to occur under normal con-
ditions (25, 191, 325–327) in a variety of biological fluids such
as peritoneal, follicular, amniotic, seminal, and cerebrospinal
fluids. In addition, amniotic fluid contains a IGFBP-1-specific
protease and cerebrospinal fluid contains a IGFBP-2 protease
(91). In addition to tissue fluids, a variety of cell types in
culture secrete proteases capable of degrading IGFBPs. Some
of these proteases are relatively specific to a given IGFBP
while others are relatively nonspecific. For example, bone
cells in culture produce matrix metalloproteases and plas-
min, which degrade multiple IGFBPs as well as other pro-
teins (328). In addition, human bone cells as well as fibro-
blasts in culture produce proteases that are relatively specific
to IGFBP-5 (281, 282, 329). Endogenous IGF-II and tumor
necrosis factor-b stimulate IGFBP-4 protease (282, 330, 331),
and IGF-II inhibits IGFBP-5 protease (282). The finding that
IGFs regulate IGFBP levels by regulating proteolysis in a
variety of cell types raises the interesting possibility that IGFs
function to regulate IGFBPs, as well as vice versa. IGFBP-2-,
-4-, and -5-specific proteases have been detected in smooth
muscle cells (332) with IGFBP-4 protease capable of increas-
ing the bioavailable IGF-I. IGFBPs 1–4 were found in human
skin interstitial fluid (128) with IGFBP-3 in the modified form
due to an increased IGFBP-3 protease activity (128, 333).
Although IGF concentration in the interstitial fluid is lower
than in serum, it is more available due to proteolytic activity
for IGFBPs (128). Synovial fluid from both normal individ-
uals and patients with rheumatoid arthritis (130) also contain
IGFBP-3 protease activity, which acts to regulate IGF bio-
availability. IGFBP-4 levels in estrogen-dominant follicular

fluid were lower than levels found in androgen-dominant
follicular fluid because of the presence of a metalloserine
IGFBP-4 protease activity in the former. It is speculated that
the presence of IGFBP-4 protease in estrogen-dominant fol-
licular fluid would decrease the inhibitory IGFBP-4 level and
increase bioavailability of IGF. It is also speculated that the
available IGFs stimulate estradiol production along with go-
nadotropins in the growing follicular tissues (41). Significant
proteolysis of IGFBP-3 was shown in the reproductive tract
of men, and the intact IGFBP-3 levels were inversely related
to the PSA concentration (334). Thus, proteases have been
postulated to aid in modulating IGF action in a tissue-specific
manner.

B. Pregnancy-associated proteases

One of the first identified IGFBP proteases was a preg-
nancy-associated IGFBP-3-specific protease that is active
from the second trimester of pregnancy in humans (135, 179).
This is specific to the reproductive tissues and helps to meet
the in utero fetal growth demand. The potential role of
IGFBP-3 protease in regulating the bioavailability of IGFs has
been discussed earlier. In addition to IGFBP-3 protease, a
IGFBP-5 protease that degrades IGFBP-3, -4, and -5 was
detected in maternal serum and amniotic fluid (119). The
protease activity is also increased in relation to fetal demands
as seen by a higher serum protease activity in mothers with
multiple fetuses or with fetuses affected by in utero placental
insufficiency (203) and in GH-deficient pregnant rats (275).
The regulation of these proteases is now being investigated.

C. Proteases under catabolic and disease states

Another common condition that increases serum protease
activity is a general catabolic state. For example, IGFBP-3
specific protease was detected in patients with severe ill-
nesses and in a catabolic negative nitrogen balance (178, 180).
Protease activity is more significant during fasting and de-
clines after parenteral nutrition (322, 325), suggesting that
there is a specific response to catabolism. Another example
of a catabolic state occurs in patients with acute and chronic
renal failure. These patients showed an increase in urinary
IGFBP-3-specific protease, which was responsible for the
complete absence of intact IGFBP-3 in the urine (276). Sig-
nificant proteolytic activity of IGFBP-3 protease was ob-
served in acute diseases of childhood such as Kawasaki dis-
ease, bacterial meningitis, and mycoplasma pneumonia
(277). A high amount of IGFBP-3 protease activity was de-

TABLE 5. Regulators of serum IGFBP levels

IGFBP IGF carrier
function in serum

Daily
variation Major regulators Alterations during

physiological situation
Alterations during

pathological situation

1 Minor Yes Insulin Aging Diabetes
Glucagon

2 Minor No IGFs, GH, nutrition Aging Undernutrition, Tumor
3 Major No IGFs, GH, glucocorticoids Puberty GH deficiency

Aging Acromegaly
4 Minor Not known PTH Aging Osteoporosis
5 Minor Not known IGFs, glucocorticoids Puberty Osteoporosis

Aging
6 Minor Not known Retinoic acid Not known Not known
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tected in the CSF of children with CNS tumors (95). It is
speculated that IGFBP-3 proteolysis plays a role in overcom-
ing catabolic conditions by increasing the availability of
IGF-I.

Insulin has an important role in regulating the activity of
IGFBP-3-specific protease as shown in studies that demon-
strated an elevated serum IGFBP-3 protease activity in un-
treated NIDDM (335) and IDDM (137) patients. This appears
to be regulated by insulin levels, as shown by a decline in the
protease activity after insulin therapy. Therefore, the cata-
bolic state induced by insulin deficiency is counteracted to
some extent by an increase in the IGFBP protease activity.

The observations that IGFBP protease activity was de-
tected in various biological fluids during pathological and
physiological situations suggest a role for protease in con-
ditions of increased growth such as in pregnancy, and also
when a person is in a catabolic state indicated by an illness,
infection, cancer, or diabetes. The increase in protease activ-
ity during these situations helps to increase the dissociation
of IGF from the 150- to 200-kDa complex so that more free
IGF is available for promoting growth. The finding that a
number of IGFBP proteases have been identified in a variety
of biological fluids (Table 6) and the finding that the rate of
IGFBP proteolysis can be regulated by a variety of systemic
and local effectors (327, 336–342) raise interesting possibil-
ities for the involvement of IGFBP protease in regulating the
endocrine and local actions of IGFs (see Figs. 6 and 7).

IX. Endocrine Functions of IGFBPs in Serum

IGFBPs have been proposed to play a role in modulating
the actions of IGFs by regulating their availability to target
tissues. In this regard, the serum levels of IGFBPs may play
an important role in regulating the endocrine actions of IGFs.
The proposed functions of IGFBPs that aid in regulating the
endocrine actions of IGFs are: 1) inhibition of insulin-like
activity; 2) a prolongation of the plasma half-lives of IGFs;
and 3) regulation of the rate of transport of IGFs from the
vascular compartment to enhance the growth-potentiating
effects of IGFs. In addition to the endocrine effects, IGFs are
also involved in local regulation, where IGFs produced by
one cell type act in an autocrine or paracrine manner. The
finding that certain extracellular body fluids are enriched
with one or more IGFBPs and that local body fluids contain
protease(s) capable of degrading IGFBPs into forms that do
not bind IGFs or bind IGFs with very low affinity are con-
sistent with a role for IGFBPs in modulating the actions of
IGFs either positively or negatively in the local milieu.

A. To prevent insulin-like effects

In adult humans, the mean IGF concentration is about 800
mg/liter, with IGF-I and -II contributing about 200 mg/liter
and 600 mg/liter, respectively. This amount is 1000-fold
higher than mean insulin concentration. Despite the fact that
insulin-like activity of IGFs is only 5% of insulin, the IGFs
could in theory contribute 50 times more insulin-like activity
than insulin alone due to their abundance (6, 58, 59, 149, 343).
However, this does not occur because the activity of IGFs is
largely neutralized as a consequence of IGFBP binding. Thus,
without the IGFBPs, the effect of IGFs would overwhelm the
effect of insulin alone, and because IGF expression is not
tightly controlled by blood glucose levels, blood glucose
homeostasis would not be possible.

B. To increase the half-lives of IGFs

IGFBPs are known to facilitate IGF endocrine action by
increasing the half-life of the IGFs in circulation. Both IGF-I
and IGF-II, when injected into hypophysectomized rats, dis-
appeared in approximately 20–30 min, while in normal rats
the half-life was extended to about 15–20 h (81). This differ-
ence is due to the fact that the majority of IGFs circulate in
serum as a 150- to 200-kDa ALS1IGFBP-31IGF ternary com-
plex as described previously. The stabilization of IGFs thus
depends mainly on IGFBP-3, with other IGFBPs having min-
imal roles in this function. IGFBP-1 and -2, for example, had
shorter half-lives in serum (161) and thus seem unlikely to
play any role in stabilizing the IGFs in the circulation. Thus,
by increasing the half-life of IGFs and protecting them from
rapid degradation, IGFBP-3 alters the ratio of free IGF to
bound IGF, which in turn regulates the metabolic actions of
the IGFs. Consistent with the idea that IGFBPs may increase
the endocrine actions of IGFs by increasing their half-lives,
several reports document that systemic administration of an
equimolar dose of IGFBP-31IGF-I complex is more effective
than IGF-I alone in stimulating bone formation in ovariec-
tomized rats (344, 345).

C. To control the transport of IGFs from the vascular space

The transportation of serum IGFs from the vasculature
into the extracellular fluid is necessary in order for IGFs to
elicit a growth-stimulating response. For this to be accom-
plished, the IGFBPs bound to the IGFs in circulation must be
either degraded or should be able to cross the endothelial
barrier (Fig. 6). The majority of IGFs exist as a ALS-IGFBP-
3-IGF complex and, as such, other IGFBPs, including
IGFBP-1 and IGFBP-2, remain unsaturated in plasma since
they are not the predominant binding proteins (59) for IGFs.

TABLE 6. Characterization of IGFBP proteases in biological fluids

Protease Class IGFBP specificity Broad protein specificity Biological fluid

BP-3 protease Serine protease BP-3 Not known Maternal serum
Matrix metalloprotease Metalloprotease BP-3 Yes Maternal serum
Plasmin Serine protease BP-3, BP-1, BP-4, BP-5 Yes Serum
Cathepsin Acid protease BP-3 Yes Serum
PSA Serine protease BP-3, BP-5 Yes Seminal plasma
7S NGF Serine protease BP-3, BP-4, BP-5, BP-6 Yes Serum
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However, their ability to cross the endothelial barriers intact
(346) makes them important IGF transporters to target tis-
sues. Unlike the complex with IGFBP-1 and -2, the IGFBP-
3-IGF-ALS complex, which contains more than 75% of the
circulating IGFs, does not migrate from the vascular com-
partment. The ALS1IGFBP-31IGF complex serves as a res-
ervoir for IGF release, which is determined by 1) a drop in
free IGF or 2) the action of certain proteases. Proteolytic
cleavage can reduce the affinity of the IGFBP-3 for IGFs by
20–30 times (135) and facilitates equilibration with the
smaller molecular mass binding protein complex in serum
(Fig. 6). Because the affinity of IGFs to IGFBP-3 is reduced
upon binding to glycosaminoglycans, it is speculated that
glycosaminoglycans present on the surface of endothelial
cells may control the efflux of the IGFs out of the vascular
compartment (346). Although this is an attractive theory,
further experimental data are required to support this func-
tion for extracellular matrix proteins produced by vascular
endothelial cells.

The shifting of IGF from the 150- to 200-kDa complex to a
50-kDa IGF complex does not necessarily increase IGF bio-
availability in target tissues since many of the IGFBPs (e.g.,
IGFBP-1, IGFBP-2, IGFBP-4, and IGFBP-6) inhibit IGF actions
by preventing the binding of IGFs to their receptors. Thus,
the inhibitory IGFBP in the 50-kDa IGFBP1IGF complex
must be degraded in the local tissue to release the IGF from
this circulating complex in a bioavailable form (Fig. 7). Based

on the above mentioned discussion, two sequential mecha-
nisms are essential to increase the availability of free IGFs to
local tissues: First, release of IGFs from the 150- to 200-kDa
complex by disruption of ALS1IGFBP-31IGF complex (e.g.,
proteolysis of IGFBP-3); second, release of IGFs from a 50-
kDa inhibitory IGFBP1IGF complex by disruption of this
complex (e.g., proteolysis of inhibitory IGFBP-4). Consistent
with the idea that locally produced IGFBP proteases may
play a role in regulating IGF action, a number of studies have
shown that the activity of the IGFBP proteases in biological
fluids may be regulated based on the physiological and/or
pathological conditions. In addition, in vitro studies have
shown evidence that a number of cell types and cultures
produce proteases capable of degrading one or more IGFBPs,
which are regulated by both local and hormonal effectors
(100, 124, 157, 282, 329, 331, 347, 348).

Thus the 150- to 200-kDa and 50-kDa IGFBP complexes
may have a specific role either to increase half-life, prevent
hypoglycemia, or to facilitate transport of IGF out of the
vascular compartment. These functions ultimately are re-
sponsible for increasing the bioavailability of free IGF for
mitogenic/differentiation activity in the target tissues. Sev-
eral mechanisms have been suggested to cause an increase in
the bioavailability of free IGFs in the target tissues, such as
1) increasing the ratio of IGFs/inhibitory IGFBPs; 2) increas-
ing the ratio of stimulatory IGFBPs/inhibitory IGFBPs; 3)
increasing or decreasing the rate of proteolysis of inhibitory
or stimulatory IGFBPs, respectively; and 4) increasing IGF
receptor abundance in the target tissue (149). Essentially,
factors that can alter the effective concentration of IGFBPs
can, in turn, regulate the availability of free IGF.

Since IGFs present in the 50-kDa complex can exist as
complexes of both stimulatory and inhibitory binding pro-
teins, it is essential that the regulation of these two types of

FIG. 6. Modulation of IGF bioavailability by IGFBP proteolysis. IGF
proteases may regulate the availability of IGFs by controlling the
transport of IGFs from the vascular space into tissue space. The
majority of IGFs exist as ALS-IGFBP-3-IGF complex in the serum,
which does not cross the vascular barrier. Since transportation of
serum IGFs from the vasculature into the tissue space is necessary
in order for IGFs to elicit hormonal growth-stimulating responses, the
IGFs bound to IGFBP-3-ALS complex must be released first. This can
be accomplished by the IGFBP-3 protease produced by vascular en-
dothelial cells or by IGFBP-3 protease present in serum. Proteolysis
of IGFBP-3 by IGFBP-3 protease results in disruption of this complex
and release of IGFs. IGFs, thus released, may get transported into the
tissue space or may bind to other IGFBPs such as IGFBP-4 and cross
the endothelium. Because the small molecular mass IGFBPs are
present in excess, this is likely to occur. The binding of IGFs to these
small molecular mass IGFBPs may protect the IGFs from degradation
and may also increase half-life in the circulation. Upon transport into
the tissue space, IGFBP-4 protease produced by target cells may
release the IGFs to bind to IGF receptor and exhibit a growth-
promoting response. Thus IGFBP protease may play a role in con-
trolling the transport of IGFs into the tissue space and regulating the
availability of free IGFs in the tissue space.

FIG. 7. Tissue-specific regulation of IGF bioavailability by IGFBP
proteases. IGFBP proteases may also regulate bioavailability of IGFs
in a tissue-specific manner. Based on the finding that proteolysis of
IGFBP4 can increase the amount of local IGF available for receptor
interaction and based on the findings that a number of local growth
factors (e.g., TGFb) can regulate IGFBP 4 proteolysis (330), it can be
speculated that some effectors may increase the local production of
IGFBP proteases in specific tissues and, in turn, may degrade the
inhibitory IGFBPs in extracellular fluid and thus increase the free
level of IGFs for receptor interaction. Thus, tissue-specific regulation
of IGFBP proteolysis may provide a mechanism to increase site-
specific bioavailability of serum IGFs depending on the local needs.
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binding proteins occur in a reciprocal manner to produce a
significant biological effect. Several physiological and patho-
logical conditions, including age, development, nutrition,
exercise, surgery, and pregnancy, have been shown to affect
the ratio of IGF to IGFBP (78, 162, 178–180, 214, 231, 273). For
example, the relative ratio of inhibitory IGFBP-4 to stimu-
latory IGFBP-5 increases with advancing age, a change that
would tend to decrease the endocrine actions of IGFs (222).
It is anticipated that future research studies would provide
experimental data to demonstrate a role for IGFBPs and their
proteases in regulating the endocrine IGF actions depending
on the needs of the target tissues.

X. Conclusions

The complexity of the IGFBP system in biological fluids is
shown by the presence of six IGFBPs, multiple IGFBP pro-
teases, and the intricate regulation of IGFBPs and IGFBP
proteases during various physiological and pathophysiolog-
ical situations. Although the finding that tissue fluids are
enriched with one or more of the IGFBPs suggests a role for
the IGFBPs in modulating the actions of IGFs in a tissue-
specific manner, the exact roles of the IGFBPs in biological
fluids are still poorly understood. Recent development of
analytical methods for measuring various IGFBPs, and the
potential availability of large amounts of recombinant DNA-
derived IGFBPs for animal and human studies, should pro-
vide a better understanding of the physiological role of
IGFBPs in various tissues.
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