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Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial
dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. �e
insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting
one of these pathologies with pleiotropic treatment exerts bene�cial e	ect on another one. Combined and expletive treatment of
hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy
may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. �is paper summarises the
common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular in
ammatory reaction at molecular level
and analyses the potential pleiotropic e	ects of drugs used currently inmanagement of cardiovascular disease,metabolic syndrome,
and diabetes.

1. Introduction

Insulin plays an important role in maintenance of vascular
homeostasis. On one hand insulin stimulates endothelial
production of nitric oxide (NO), a crucial vasodilator exert-
ing an antiaggregatory e	ect and limiting vascular smooth
muscle cells growth and migration, but on the other one
mediates the release of endothelin ET-1, known to act as
a strong vasoconstrictor [1]. �is dual action of insulin is
mediated by two major signalling pathways. Under phys-
iological conditions, a vasoprotective phosphoinositide-3-
kinase (PI3-K)/Akt pathway predominates and is responsible
for expression and activation of endothelial nitric oxide
synthase (eNOS) [2].

When insulin resistance appears, the balance is shi�ed
towards mitogen-activated protein kinase/extracellular sig-
nal-regulated kinase (MAPK/ERK), which mediates in
am-
mation, vasoconstriction, and vascular smooth muscle cell
proliferation [3]. �e crosstalk between insulin signall-
ing pathways and endothelial metabolism is strongly related.

�erefore, insulin resistance commonly coexists with endo-
thelial dysfunction in cardiovascular disease. Both non-
pharmacological and pharmacological interventions act on
amelioration of insulin sensitivity as well as on improvement
in endothelial function [4].

2. Insulin Signalling (Figure 1)

Insulin binds to insulin receptor IR, which contains the two
� and two � subunits. �e � subunit binds insulin, insulin
growth factor-1 (IGF-1), and epidermal growth factor (EGF).
�e � subunit contains extracellular, transmembrane, and
cytosolic domains. �e cytosolic part of the � subunit has
tyrosine kinase activity, which undergoes conformational
changes and is autophosphorylated a�er insulin biding to
the � subunit. Activated IR phosphorylates also number of
proteins on tyrosine residues, for example, insulin receptor
substrate (IRS), Shc proteins, or Gap-1 [5]. In human cells
three isoforms of IRS (IRS-1, -2, and -4) were identi�ed to
play a distinct role, depending on cell type and metabolic
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Figure 1: Insulin signalling in vessels. �: alfa subunit of insulin receptor; �: beta subunit of insulin receptor; Shc: Src homology and
collagen protein; Grb2: cytosolic growth factor receptor-bound protein 2; IRS1: insulin receptor substrate; SOS: proline-rich domain of the
son of sevenless; Ras: family of related proteins; Raf: serine/threonine speci�c protein kinases; MEK1/2: mitogen-activated protein kinase;
ERK/MAPK: mitogen-activated protein kinase; ET-1: endothelin-1; GLP-1: glucagon-like peptide; PAI-1: plasminogen activator inhibitor;
ICAM-1: intercellular adhesion molecule 1; VCAM-1: vascular cell adhesion molecule 1.

state. Also those two insulin receptor substrates represent
di	erent kinetics, compartment distribution, and substrate
interactions (IRS-1 is a transmembrane protein and IRS-2
is mostly present in cytosol) [6]. IRS-1 plays a crucial role
in skeletal muscle and its function is to provide insulin
secretion mechanisms [7]. IRS-2 is responsible for insulin
action in liver and pancreatic � cells development. Animal
models showed that IRS-1 knockout mice had growth retar-
dation especially in skeletal muscle and liver, but not in
brain [8]. Mice lacking IRS-1 developed insulin resistance
with hyperinsulinemia, not diabetes, but displayed features
of metabolic syndrome (hypertension and hypertriglyceri-
daemia) [8]. Animals without IRS-2 exhibited insulin resis-
tance with fasting hyperglycemia, due to inadequate insulin
production, which in �nal resulted in diabetes, which was
worse than lack of IRS-1 [8]. IRS tyrosine phosphorylation
is mandatory for insulin response, but depending on which
serine is phosphorylated, IRS intensi�es or diminishes insulin
action [9].

3. The PI3-K/Akt Pathway

�e phosphorylation of IRS tyrosine activates phosphoinos-
itide-3 kinase (PI-3K), which converts phosphatidylinositol

(3,4)-bisphosphate (PIP2) to a second messenger phos-
phatidylinositol (3,4,5)-trisphosphate (PIP3) [10]. PIP3 facil-
itates translocation of Akt kinase from inactivated form to
the cell membrane, where is activated by phosphoinositide-
dependent kinase-1 (PDK-1) [11]. �e Akt activation on
�r308 and Ser473 has many implications in cellular pro-
cesses. Except for cell survival, growth, and proliferation, Akt
in
uences also glucose metabolism, nitric oxide production,
and angiogenesis [12]. In endothelial cells Akt activation
may induce undesirable proliferation and survival of tumour
vasculature [13], but in insulin resistant state diminished cell
proliferation may lead to atherosclerosis, decreased collateral
angiogenesis in occluded coronary and lower extremities
vasculature, or reduced reendothelialisation [14]. �e anti-
apoptotic e	ect of Akt phosphorylation is mediated by
inhibition of caspase-9, which prevents endothelial cells
from death induced by in
ammatory response [15]. �e
crosstalk between endothelial cells and insulin signalling
pathway is marked also in Akt phosphorylation at Ser1177 of
endothelial nitric oxide synthase (eNOS) [2], which enhances
antiapoptotic e	ect in ischemic myocardium and stimulates
vasodilation and angiogenesis by nitric oxide production [16].
�e eNOS activation is mediated by inhibition of calmodulin
dissociation and electron transfer in a reductase domain
[17]. Proangiogenic role of Akt is expressed by increased
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Figure 2: Conceptual de�nition of insulin resistance at molecular
level.

production of the hypoxia-inducible factor � (HIF1� and
HIF2�), which leads to secretion of proangiogenic factors for
example vascular endothelial growth factor (VEGF) [18].

4. The MAPK/ERK Pathway

�e MAPK pathway is activated by insulin, which results
in cytosolic growth factor receptor-bound protein 2 (Grb2)
binding to the plasma membrane. Grb2 interacts with IRS
by Src homology and collagen protein (Shc). Grb2 is also
associated with proline-rich domain of the son of sevenless
(SOS), which is the guanyl nucleotide-exchange factor. �is
process triggers transformation of inactive GDP-bound Ras
into active form of GTP-bound Ras [19]. Active Ras stim-
ulates serine/threonine kinase Raf, which phosphorylates
and activates MEK1/2. MEK1/2 phosphorylate in turn ERK,
a member of the MAPK signalling enzymes [20]. MAPK
pathway is also associated with endothelial cells by mediating
secretion of ET-1 [21].

5. Insulin Resistance (Figures 2 and 3)

Insulin resistance refers to the state of decreased insulin
response and is a common feature of obesity, hypertension,
diabetes, and coronary artery disease [22]. Impairment of
PI3-K/Akt signalling pathway leads to an inadequate tissue
insulin sensitivity. �e paradox of pathologies in molec-
ular insulin signalling contributes to diminished activity
of the PI3-K/Akt pathway coexisting with strengthened
MAPK/ERK pathway, during compensatory hyperinsuli-
naemia [23]. Di	erences in activity of both pathways are
responsible for divergences in insulin resistance in di	erent
organs for example lack of suppression of glucose production
by insulin and maintained lipogenesis in the liver [24] or
decreased production of nitric oxide and enhanced pro-
duction of ET-1 in endothelium [25]. Insulin resistance is
associated inseparably with glucotoxicity, lipotoxicity, and
in
ammation, which initiates and accelerates atherogenesis
and vascular disease [26].

Changes in balance between the PI3-K/Akt and MAPK/
ERK pathways provide strong relationship between insulin
resistance and endothelial dysfunction [27]. What is more,
when the balance in insulin resistance is shi�ed towards the
MAPK/ERK pathway, it results in a release of in
ammatory
markers by insulin (e.g., PAI-1, ICAM-1, VCAM-1, and E-
selectin) and �nally promotes the endothelial dysfunction
[28].

6. Endothelial Dysfunction (Figures 2 and 3)

Endothelium is a multifunctional paracrine, autocrine, and
endocrine organ, “the ranger” of vascular homeostasis.
�e endothelial balance is maintained by substances of
vasodilatory action (e.g., NO or prostaglandins (PGI2)) and
vasoconstricting features (e.g., angiotensin II (Ang II) or
ET-1) [29]. Insulin, by acting through distinct metabolic
pathways, may in
uence both groups of factors. Activation
of the PI3-K/Akt pathway leads to phosphorylation of eNOS
and subsequent conversion of L-arginine to L-citrulline
and NO, the most important vasodilator. NO plays also
protective role for endothelium by decreasing expression
of cell adhesion molecules, attenuating platelet aggregation,
production of proin
ammatory cytokines, and inhibiting
vascular smooth muscle cells proliferation [30]. De�ciency
in the NO bioavailability, increased level of prothrombotic
and proin
ammatory markers, and reactive oxygen species
(ROS) are factors indicating endothelial dysfunction, which
are mediated by MAPK/ERK activity. Glucotoxicity and
lipotoxicity generate in
ammatory reaction contributing to
vascular damage and link insulin resistance with endothelial
dysfunction through di	erent mechanisms.

7. Glucotoxicity in Insulin Resistance and
Endothelial Dysfunction

Hyperglycemia activates the hexosamine biosynthesis path-
way and modi�es proteins involved in insulin and NO
signalling by the O-Glc-N-acylation of IRS-1, which impairs
activation of PI3-K and reduces glucose uptake [31] and
O-Glc-N-acylation of eNOS at the Akt phosphorylation
residues, leading to its inactivation [32]. O-Glc-N-acylation
also induces PAI-1 gene expression and alters tumor growth
factor � (TGF�) level, what is related to pathogenesis of
vascular diabetic damage [33, 34]. �e overactivation of
hexosamine biosynthesis pathway results in formation of
advanced glycation end products (AGEs), which in turn
stimulate ROS production. Reactive carbonyl species (RCS)
are formed in the course of oxidation of carbohydrates, lipids,
and amino acids and have been identi�ed as intermediates
in the formation of irreversible, advanced glycoxidation and
lipoxidation end products (AGEs and ALEs) on protein.
Reactive carbonyl, oxygen, and nitrogen species (RCS, ROS,
and RNS, resp.) are now recognized to be important trans-
ducers in biological systems. �ere is a growing body of
population of structurally de�ned AGE products such as
pyrraline, pentosidine, N-carboxy-methyl lysine (CML), and
crossline that are found to be elevated in diabetic tissues.
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Figure 3: Changes in expression of particular molecular pathways in insulin resistant state versus under physiological condition. Molecular
de�nition of drug targets for management of insulin resistance. �: alfa subunit of insulin receptor; �: beta subunit of insulin receptor; Shc:
Src homology and collagen protein; Grb2: cytosolic growth factor receptor-bound protein 2; IRS1: insulin receptor substrate; SOS: proline-
rich domain of the son of sevenless; Ras: family of related proteins; Raf: serine/threonine speci�c protein kinases; MEK1/2: mitogen-activated
protein kinase; ERK/MAPK:mitogen-activated protein kinase; ET-1: endothelin-1; GLP-1: glucagon-like peptide; PAI-1: plasminogen activator
inhibitor; ICAM-1: intercellular adhesionmolecule 1; VCAM-1: vascular cell adhesionmolecule 1; Ang I: angiotensin I; Ang II: angiotensin II;
ACE I: angiotensin converting enzyme I; TNF-alpha: tumour necrosis factor alpha; ROS: reactive oxygen species; Akt: the Akt kinase; eNOS:
endothelial nitric oxide synthase; AGEs: advanced glycation end products.

Some of the highest levels of pentosidine have been detected
in individuals with diabetes. �ere is also some evidence for
elevated skin pentosidine levels in individuals with diabetes
correlate with the severity of the complications [35–37].

Increased oxidative stress enhances insulin resistance by
impairing Akt and eNOS activation and limiting NO avail-
ability [38]. Moreover, ROS stimulates IKK� kinase, which
leads to activation ofNF-�B and overexpression of proin
am-
matory markers, for example, interleukin-1� (IL-1�), tumour
necrosis factor-� (TNF-�), and phosphorylation and inac-
tivation of IRS-1 [39]. ROS forming oxidant peroxynitrites
(ONOO−) enhance endothelial dysfunction by direct uncou-
pling and inactivating the eNOS.

Modi�cation of endothelial cells matrix collagen and
laminin by AGEs impairs vascular elasticity and interaction
with macrophages promotes atherosclerosis [40]. Vascu-
lar remodelling of vessels associated with cardiometabolic

disorders seems to be hypertrophic and it is mostly due to
increased extracellular matrix deposition. �e mechanisms
underlying the obesity-, insulin resistance-, and/or hyperin-
sulinemia-induced vascular disease are not fully understood
but might include hemodynamic factors such as hyperten-
sion, activation of the renin-angiotensin-aldosterone system,
metabolic factors such as insulin and advanced glycation end
products, and other factors such as adipokines, in
amma-
tion, or oxidative stress [41]. Hyperglycemia promotes AGEs
production, which inhibit tyrosine phosphorylation of IRS-1
and IRS-2 and decrease activation of the PI3-K/Akt pathway
by activation of phosphokinase C (PKC) [42]. Adipose
tissue has been demonstrated to be an active organ, where
matrix metalloproteinases (MMPs) play an important role in
adipogenesis, angiogenesis, and proliferation of extracellular
matrix. However, the lack of association between adipose
tissue and plasma levels of some MMPs, speci�cally MMP-2
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and MMP-9, suggests that this tissue is not a major con-
tributor to circulating MMPs. �ese enzymes, which are
responsible for tissue remodelling, are also expressed in
response to in
ammatory adipocytokines, like adiponectin
or leptin. Adiponectin may also play a protective role in
the plaque rupture through selectively increasing the tissue
inhibitor of metalloproteinase (TIMP) expression. Leptin
induces expression of MMP-2 activators and the expression
of MMP-2, MMP-9, and TIMP-1 in numerous human cells
[43].

8. Lipotoxicity in Insulin Resistance and
Endothelial Disfunction

Lipotoxicity inhibits the PI3-K/Akt signalling and activates
the MAPK/ERK pathway by inducing oxidative stress and
in
ammation through free fatty acids (FFA) [44]. FFA stim-
ulate PKC impairing Akt function due to IRS 1/2 inactivation
[45] and enhance NADPH oxidase to ROS production [46].
NADPH oxidase induces production of PAI-1, interleukin-6
(IL-6), and chemokine (C-C motif) ligand 2 (CCL-2), which
increase proin
ammatory state and inhibits NO production
by decreasing eNOS expression. Moreover, ROS a�er FFA
stimulation activate NF-�B, which increases ET-1 expression
and adhesion molecules ICAM-1 and VCAM-1 and increase
cardiovascular risk even in healthy subjects [47].

�e adhesion molecules on endothelial cells promote
their contact with monocytes, which turn into macrophages
absorbing lipoproteins and as the foam cells secrete IL-6
and TNF-�. TNF-� and IL-6 mobilize immune cells to build
atherosclerotic plaque and activate IKK�, which leads to
impaired insulin signalling in endothelial cells and activates
NF-�B [48].

9. Nonpharmacological Interventions
Improving Insulin Sensitivity and
Endothelial Function

An imbalance between the PI3-K/Akt and MAPK/ERK
pathways links insulin resistance and endothelial dysfunc-
tion. Pathology of decreased activation of Akt signalling
with diminished NO production and stimulation of MAPK
pathway is commonly contributed to overweight, obesity, and
diabetes [49]. Dietary intervention leading to restoration of
the balance between both pathways targets insulin sensitivity
and endothelial function. �ere are animal and human
studies demonstrating bene�cial e	ect of polyphenols added
to diet, based on their involvement in pathways described
above. Green tea polyphenol (EGCG) has been discovered
to mimic insulin action via PI3-K pathway, by stimulating
glucose uptake and inhibiting hepatocyte gluconeogenesis
[50]. Moreover, EGCG is involved in pathway regulating
eNOS activation and NO production in endothelium [51].
�is feature of green tea polyphenol contributes to its
antidiabetic, insulin sensitizing, and lipid lowering properties
[52]. Another 
oral eatable polyphenol of eNOS activating
e	ect is hesperidin, extracted from citrus fruit. Hesperidin is
shown to reduce the triacilgliceroles level and free fatty acid

oxidationwith decrease in in
ammatorymarkers [53]. Cocoa

avonoids also showed positive e	ect on eNOS activity and
endothelial improvement as well as on insulin sensitivity
in several short-term studies [54]. Animal studies involving
dietary restriction of AGEs elimination also revealed sat-
isfying e	ect on metabolic disturbances. Reversing insulin
resistance combined with suppressing the in
ammation and
atherosclerosis might be a future therapeutic option [55].
AGEs are absorbed from highly heated processed food (bar-
beque, grilled) and higher levels were shown to correspond
with vascular damage [56]. However, low-quality evidence of
human studies needs further investigation [57].

Meta-analyses, which compared di	erent dietary pat-
terns, have shown that the Mediterranean diet has bene�cial
e	ect on cardiovascular disorders, cancer risk [58], and dia-
betes [59]. Nonpharmacological interventions combine also
diet with physical exercise, which is demonstrated to reduce
in
ammatory markers and improve insulin sensitivity [60].
Lifestyle modi�cations can stop and reverse disease, which
was shown by Esposito et al. by comparing Mediterranean to
low-fat diet with an e	ect of remission of diabetes and delay
of drug requirement [61].

10. Pharmacological Interventions
Improving Insulin Sensitivity and
Endothelial Function (Figure 2)

10.1. 
iazolidinediones. �iazolidinediones bind to peroxi-
some proliferator-activated receptor (PPAR-�). PPAR-� reg-
ulates transcription of insulin sensitive genes, which control
glucose and lipid metabolism. �iazolidinediones improve
insulin sensitivity and decrease FFA circulating amounts [62].
�eir anti-in
ammatory properties are expressed by decrease
in expression of adhesion molecules, ICAM-1, VCAM-1,
and E-selectin, which protect monocytes from vascular wall
attachment and later lipid accumulation inmacrophages [63].
PPAR-� ligands inhibitNF�B anddecrease in
ammation that
way. �iazolidinediones inhibit NADPH oxidase expression
components NOX1, NOX2, and NOX4, reduce ROS pro-
duction, increase NO formation through heat shock pro-
tein 90 and eNOS interaction [64], promoting vasodilation,
and suppress ET-1, protecting from vasoconstriction. PPAR-
� ligands decrease vasculature complications in diabetes,
by lowering fasting insulin level and blood pressure, and
reduce secondary clinical end point of stroke and myocardial
infarction death.

10.2. Dimethylbiguanide. Metformin is an oral �rst-line treat-
ment in diabetes 2 and is not associated with a hypo-
glycemic tendency. Metformin exerts its antihyperglycemic
e	ect by decreasing hepatic glucose production by suppress-
ing of gluconeogenesis and enhancing insulin suppression
of endogenous glucose production, by reducing intestinal
glucose reabsorption and possibly improving glucose uptake
and utilization by peripheral tissues, such as skeletal mus-
cle, and adipose tissue lowers blood glucose levels [65].
It acts via the AMP-activated protein kinase (AMPK) and
by eNOS phosphorylation and NO increased production
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ameliorates endothelial function [66]. Despite AMPK path-
way, metformin inhibits the respiratory chain complex-1
(NADH:ubiquinone oxidoreductase) in mitochondria [67]
and regulates oxidative stress induced by hyperglycemia.
Metformin plays also a crucial role in the incretin pathway
through the glucagon-like peptide (GLP-1), by enhancing its
production [68].

10.3. Glucagon-Like Peptide-1 Connected Drugs. GLP-1 is
a hormone generated and secreted from enteroendocrine
cells of intestine, which enhances glucose-stimulated insulin
secretion and suppresses glucagon release thereby mod-
ulating both postprandial and long-term glucose home-
ostasis [69]. It acts through the G-protein coupled recep-
tor (GLP-1R). GLP-1 is inactivated by the serine pro-
tease dipeptidyl-peptidase-4 (DPP-4) [70]. Soluble form
of dipeptidyl-peptidase-4, which is present in plasma, is
inactive against novel diabetic drugs degradation-insensitive
GLP-1R agonists (exenatide, liraglutide, and lixisenatide).
Liraglutide (NN2211) is a long-acting glucagon-like peptide-
1 receptor agonist, binding to the same receptors as does
the endogenous metabolic hormone GLP-1 that stimulates
insulin secretion. Exenatide (NN2211) is a 39-amino acid
peptide, an insulin secretagogue, with glucoregulatory e	ects,
and is a long-acting glucagon-like peptide-1 receptor agonist,
binding to the same receptors as does the endogenous
metabolic hormone GLP-1 that stimulates insulin secre-
tion. Lixisenatide has been described as “des-38-proline-
exendin-4 (Heloderma suspectum)-(1–39)-peptidylpenta-L-
lysyl-L-lysinamide,” meaning it is derived from the �rst 39
amino acids in the sequence of the peptide exendin-4, found
in the Gila monster (Heloderma suspectum), omitting proline
at position 38 and adding six lysine residues [71].

GLP-1 has vasoprotective properties, including its e	ects
on heart rate, ischemia/reperfusion injury, coagulation,
in
ammation, and vascular endothelial function [72]. GLP-1
agonists reveal vasodilatory properties, by increasing the NO
production, stimulating proliferation, and protecting from
lipid-induced apoptosis of human endothelial cells, through
PI3K/Akt pathway, protein kinase A (PKA), and the eNOS-
dependent pathways [73]. Liraglutide reduces in
ammatory
cytokine (TNF-�) and hyperglycemia-induced expression
of the �brinolysis inhibitor, PAI-1, and vascular adhesion
molecules VCAM-1 and ICAM-1, which decreases in
am-
mation and monocytes attachment [74]. In animal models
GLP-1 agonist diminished monocyte adhesion, macrophage
in�ltration, and atherosclerotic lesions in the vasculature
[75].

High activity of the DPP-4 enzyme in immune system
might give a possibility of using dipeptidyl peptidase-4
inhibitors in anti-in
ammatory therapy, particularly in
atherosclerosis. DPP-4 inhibitors mediate macrophages
polarization in atherosclerotic regions, decrease the level
of M1 macrophages, responsible for in
ammation [76],
and expand anti-in
ammatory M2 macrophages, which,
in turn, might diminish insulin resistance and ameliorate
endothelial function. In
ammatory reactions might be
reduced by GLP-1R agonists and DPP-4 inhibitors, due
to macrophages shi� into M2 type through T regulatory

lymphocytes (Tregs), whose function is increased by GLP-1
[77]. Moreover, Tregs secrete interleukin-10 (IL-10), which
inhibits NADPH oxidase, reducing oxidative stress and ROS
production. �is additional metabolic role protects endothe-
lium and maintains correct insulin signalling, since NADPH
oxidase has been shown to activate serine kinases, which
phosphorylate IRS and disrupt physiological insulin pathway
[78]. Pharmacological inhibition of dipeptidyl peptidase-4
increase the bioavailability of GLP-1, which enhances insu-
lin-dependent action in vasculature. Saxagliptin (rINN), pre-
viously identi�ed as BMS-477118, linagliptin (BI-1356),
vildagliptin (LAF237), sitagliptin (MK-0431), and alogliptin
are oral hypoglycemic agent of the dipeptidyl peptidase-4
(DPP-4) inhibitor class of drugs approved by the FDA for
management of type 2 diabetes in adults. Animal studies of
obese Zucker rats treated with linagliptin showed improve-
ment in eNOS activation, blood pressure, and diastolic heart
function [79]. Nonetheless, two large clinical studies with
DPP-4 inhibitors, EXAMINE [80], which involved alogliptin,
and SAVOR-TIMI 53 [81], which involved saxagliptin, did
not show reduced risk of cardiovascular events, but further
investigations are needed [82].

11. Drugs Acting on the Renin-Angiotensin-
Aldosterone System

In insulin resistance and endothelial dysfunction, a hyper-
activity of the renin-angiotensin-aldosterone system (RAAS)
plays a crucial role, and therefore targeting it on a di	erent
molecular level bene�ts in improvement in insulin sensitivity
and vascular function. �e most harmful factor in this
system, a	ecting insulin metabolism and endothelium, is
angiotensin II (Ang II). Ang II is converted from inactive
angiotensin I by the angiotensin converting enzyme (ACE)
and acts as a ligand for angiotensin II receptors, mostly type
1 (AT1). Angiotensin II interferes with the insulin pathways
by suppressing IRS-1 phosphorylation and decreasing PI3-
K function and glucose receptor (GLUT-4) translocation,
which diminishes glucose uptake [83]. Moreover Ang II hin-
ders endothelial function by decreasing NO bioavailability
through NADPH oxidase activation and ROS production.
Destructive function of Ang II a	ects also endothelium by
enhancing NF-�B, which in turn promotes production of
TNF� and IL-6 and adhesion molecule VCAM-1, mediating
in
ammation [84]. Association between RAAS, insulin, and
endothelial pathways results in wide use of drugs targeting
those common pathologies, and therefore the treatment with
ACE inhibitors, which reduce circulating AngII levels and
angiotensin receptor blockers (ARBs), has additional bene-
�ts beyond antihypertensive e	ect. �is metabolic outcome
results from blocking the crosstalk between Ang II and
insulin at the level of IRS-1 and PI3-K [85]. Human and
animal studies showed that ACE inhibitors and ARBs have
positive e	ect on glucose disposal in glucose intolerance,
diabetes mellitus, obesity, and hypertension [86]. In line with
these reports, some trials have shown that ACE inhibitors
and ARBs improve insulin sensitivity and prevent new onset
of diabetes [87]. In the DREAM trial (Diabetes Reduction
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Assessment with Ramipril and Rosiglitazone Medication)
ramipril reduced the postchallenge glucose levels and
increased the tendency of regression to normoglycemia
in subjects with impaired glucose tolerance and impaired
plasma glucose levels [88]. In the TREND study (Trial on
Reversing Endothelial Dysfunction) another ACE inhibitor,
quinapril, has been shown to improve endothelial function
by enhancement in the NO release in normotensive subjects
with coronary artery disease [89]. Increase in NO production
might facilitate glucose delivery to tissues due to vasodi-
lation. ARB representative, losartan, also increased insulin
sensitivity, improved endothelial function, and impacted
in
ammatory markers in hypercholesterolemic hypertensive
patients [90]. Di	erent mechanisms of crosstalk between
insulin and endothelial pathways are perfectly optimized
during telmisartan treatment, due to its dual action, which
consists of angiotensin receptor blockade and activation
of the peroxisome proliferator-activated receptor-� (PPAR-
gamma) [91].

12. Hypolipemic Drugs

In pathologies accompanied by hyperlipidemia, the two
types of therapeutic regimens are commonly used: the 3-
hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins)
and �brates. Statins are characterized by improving endothe-
lial function, reducing in
ammation and ET-1 circulating
levels, which diminishes vasoconstriction and ameliorates the
insulin activity [92], especially in addition to ACE inhibitors
or ARBs. Fibrates act as a PPAR-� ligands improving lipid
pro�le, insulin sensitivity, and endothelial function and
diminishing vascular in
ammation, which has been shown
in the FIELD study [93].

13. Conclusions

Endothelial and insulin signalling pathways crosstalk each
other and therefore the relationship between endothelial
function and insulin metabolism is very important in dis-
orders, such as hypertension, obesity, or diabetes. Insulin
resistance, a hallmark of metabolic syndrome, impairs vas-
cular response and increases cardiovascular risk. Involve-
ment of insulin resistance and endothelial dysfunction
in pathological disorders contribute to impairment in
the NO-dependent vasodilatation, cellular glucose uptake,
enhancement in oxidative stress, and in
ammation, lead-
ing �nally to atherosclerosis. Strong association of insulin
and endothelial signalling disturbances contributes to glu-
cotoxicity, lipotoxicity, and in
ammation, disrupting the
balance between vasodilating-vasoconstrictive endothelial
mechanisms as well as between the insulin-dependent PI3-
K/Akt–MAPK/ERK pathways. �e synergistic antidiabetic,
antihypertensive, and hypolipemizing treatment, aiming at
multiplemetabolic pathways, improve both insulin sensitivity
and endothelial function and should be considered at early
stages of disturbances, before clinical progression of diseases,
with fully developed vascular complications.
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