
For Peer Review
Insulin resistance and insulin hypersecretion in the 

metabolic syndrome and type 2 diabetes: time for a 

conceptual framework shift

Journal: Diabetes and Vascular Disease Research

Manuscript ID DVDRes-Jan-2019-00006

Manuscript Type: Review Article

Date Submitted by the 

Author:
10-Jan-2019

Complete List of Authors: Prentki, Marc ; Montreal Diabetes Research Center, CRCHUM

Nolan, Christopher; Department of Endocrinology, The Canberra Hospital

Keywords:

Cardiovascular diseases, insulin hypersecretion, insulin-mediated 

metabolic stress, insulin resistance, metabolic syndrome, non-alcoholic 

fatty liver disease, type 2 diabetes

 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Diabetes & Vascular Disease Research



For Peer Review

1

Review Article

Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: 

time for a conceptual framework shift

Christopher J. Nolan1,2 and Marc Prentki3

1 Department of Endocrinology, The Canberra Hospital, Garran, ACT, Australia

2Australian National University Medical School and John Curtin School of Medical Research, 

Australian National University, Acton, ACT, Australia

3CRCHUM and Montreal Diabetes Research Center and Departments of Nutrition and 

Biochemistry and Molecular Medicine, University of Montreal, Quebec, Canada

Corresponding authors:

Marc Prentki, Montreal Diabetes Research Center,

CRCHUM, 900 St-Denis, Room R08.412, Montréal, QC H2X 0A9, Canada

Phone: (514) 890-8000 #23642

E-mail: marc.prentki@umontreal.ca

Christopher J Nolan, Department of Endocrinology,

The Canberra Hospital, Yamba Drive, Garran, ACT 2606

Phone : + 61 2 5124 5311 

E-mail: christopher.nolan@anu.edu.au

Word count: 2859

Page 1 of 22

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Diabetes & Vascular Disease Research

mailto:marc.prentki@umontreal.ca
mailto:christopher.nolan@anu.edu.au


For Peer Review

2

Abstract

While few dispute the existence of the metabolic syndrome (MetS) as a clustering of factors 

indicative of poor metabolic health, its utility above that of its individual components in the clinical 

care of individual patients is questioned. This is likely a consequence of the failure of clinicians and 

scientists to agree on a unifying mechanism to explain the MetS. Insulin resistance has most 

commonly been proposed for this role and is generally considered to be a root causative factor for 

not only MetS, but also for its associated conditions of non-alcoholic fatty liver disease (NAFLD), 

polycystic ovarian syndrome (PCOS), obesity-related type 2 diabetes (T2D) and atherosclerotic 

cardiovascular disease (ASCVD). An alternative view, for which evidence is mounting, is that 

hyper-responsiveness of islet -cells to a hostile environment, such as westernised lifestyle, is 

primary and that the resulting hyperinsulinaemia drives the other components of the MetS. 

Importantly, within this new conceptual framework, insulin resistance, while always a biomarker 

and state of poor metabolic health, is not considered to be harmful, but a protective adaptive 

response of critical tissues including the myocardium against insulin-induced metabolic stress. This 

major shift in how MetS can be considered, puts insulin hypersecretion into position as the unifying 

mechanism. If shown to be correct, this new conceptual framework has major implications for the 

future prevention and management of the MetS, including its associated conditions of NAFLD, 

PCOS, obesity-related T2D and ASCVD.
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Cardiovascular diseases, insulin hypersecretion, insulin-mediated metabolic stress, insulin 

resistance, metabolic syndrome, non-alcoholic fatty liver disease, type 2 diabetes
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Prof Gerald “Jerry” Reaven, in his 1988 American Diabetes Association Banting Lecture titled 

“Role of insulin resistance in human disease”, showed strong associations between insulin 

resistance, hyperinsulinaemia, glucose intolerance, hypertriglyceridaemia, reduced high density 

lipoprotein cholesterol and hypertension.1 He termed the clustering of these factors “syndrome X” 

and demonstrated links between this syndrome and increased risk of atherosclerotic cardiovascular 

disease (ASCVD).1 Syndrome X, renamed “metabolic syndrome” (MetS) has been expanded to 

include additional factors such as central or visceral adiposity, increased apolipoprotein B and small 

dense LDL particles (proatherogenic), elevated plasma fibrinogen and plasminogen activator 

inhibitor (PAI)-1 (prothrombotic), increased C-reactive protein and inflammatory cytokines 

(systemic inflammation) and microalbuminuria.2,3 It is generally accepted that the clustered 

components of the MetS, including insulin resistance, contribute to the pathogenesis of conditions 

such as non-alcoholic fatty liver disease (NAFLD), polycystic ovarian syndrome (PCOS), type 2 

diabetes (T2D) and ASCVD.2-5 MetS has also been associated with increased risk for chronic 

kidney disease, cognitive impairment, obstructive sleep apnoea and chronic respiratory diseases.6-9 

While the usefulness of a diagnosis of MetS over its individual components in predicting T2D and 

ASCVD has been questioned, MetS is now listed as a disease entity (E88.81) in the International 

Classification of Diseases-10 (ICD-10), avowing to the importance of Reaven’s contribution in 

bringing this clustering of factors involved in cardiometabolic diseases to the attention of clinicians 

and scientists.1,10

Insulin resistance: root cause of MetS and T2D or a protective adaptive response?

Ongoing controversy surrounding the MetS, in terms of its predictive value for particular diseases, 

is a consequence of the failure of metabolic scientists and clinicians to establish it as a precise 

condition or to provide a unifying mechanism to explain its clustering of factors, with insulin 

resistance and visceral adiposity being most commonly proposed.2,10 Reaven argued for insulin 

resistance as the unifying mechanism or primary causal factor and, supporting this view, the 

European Group for the Study of insulin Resistance proposed “insulin resistance syndrome” as an 
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alternate name for MetS.1,11 Furthermore, the mainstream understanding of pathogenesis of T2D is 

that it develops as a consequence of failure of pancreatic islet -cells to sustain the 

hyperinsulinaemia required to compensate for insulin resistance, giving insulin resistance a high 

level causative role.12,13 Thus, within the current conceptual framework, insulin resistance is 

considered to be “harmful” and the root cause of T2D and all the other conditions linked to the 

MetS; furthermore, it should be overcome at any cost. 

An alternate view gaining momentum is that insulin resistance has a role in protecting critical 

tissues of the body from metabolic injury in situations of chronic nutrient excess.14-17  Its presence 

within the MetS, while indicative and a biomarker of poor metabolic health, does not mean insulin 

resistance has a causative role. Furthermore, if insulin resistance does have an adaptive protective 

role, attempts to override it in patient treatment have the potential to cause harm. Thus, we believe a 

shift is needed in the conceptual framework by which we understand insulin resistance and the 

aetiology of T2D and that this has implications on safe management of patients with MetS, T2D 

and related conditions.

Insulin sensitivity: adaptable to physiological demands

Physiological adaptability in insulin sensitivity is an important mechanism by which the body can 

regulate nutrient partitioning between tissues, necessitated by wide fluctuations in dietary intake 

and physical activity, and life events such rapid pubertal growth, pregnancy, illness and aging. For 

example, in response to short term overfeeding, a rapid fall in insulin sensitivity occurs which 

allows diversion of nutrients from skeletal muscle to adipose tissue for storage, potentially 

important moving between situations of feast and famine.18,19 Pregnancy necessitates diversion of 

nutrients to the developing fetus and insulin resistance in the mother is a mechanism by which this 

is achieved.20 Key to this discussion is the role of adaption in insulin sensitivity to a chronic nutrient 

oversupply, as occurs in westernized lifestyles. As discussed below, the development of insulin 

resistance in such situations could provide important protection to critical tissues such as the heart 

from nutrient overload and toxicity.14-17
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Insulin resistance: a protective mechanism against nutrient-induced intracellular metabolic 

stress

We previously proposed that in response to chronic over-nutrition, tissues normally responsive to 

insulin for glucose uptake, such as the heart and skeletal muscle, protect themselves from nutrient-

induced toxicity by becoming insulin resistant.14,15 Without this mechanism at times of nutrient 

surplus, or by overriding this protective insulin resistance with high dose insulin therapy, these 

tissues will be damaged by nutrient overload, a process we have termed “insulin-induced metabolic 

stress” (Figure 1).14,15

A failure to limit excess entry of glucose at times of concomitant high free fatty acid (FFA) 

availability will cause cell injury by the mechanisms of glucolipotoxicity.12 High FFA availability 

will inhibit glucose oxidation at the level of pyruvate dehydrogenase, such that a high glucose flux 

will be forced into pathways above this step, including glycogen synthesis, the polyol and 

hexosamine pathways, and the production of advanced glycation end product (AGE) precursors 

(Figure 1).21,22 Similarly, high glucose availability, via malonyl-CoA/AMPK metabolic sensing 

mechanisms, will inhibit FFA oxidation such that intracellular FFA metabolism will be pushed 

towards esterification and other processes causing intracellular steatosis and accumulation of 

complex lipids such as diacylglycerols, cholesterol esters,  and ceramides (Figure 1).23,24 An 

excessive mixed nutrient entry into cells will also overload the electron transfer chain resulting in 

mitochondrial dysfunction and increased reactive oxygen species (ROS) production.25,26 

Endoplasmic reticulum stress and activation of the inflammasome are also known consequences of 

excessive nutrient entry.23,27-29 The concept of “insulin-induced metabolic stress” has been 

discussed in more detail previously.15 

Islet -cell role in obesity and T2D: upstream or downstream of insulin resistance?

The predominant view is that islet -cell failure in obesity-related T2D is a consequence of it not 

being able to sustain high enough insulin secretion to compensate for insulin resistance, suggesting 

it is downstream and a victim of insulin resistance.12 However, increasing evidence from pre-
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clinical and clinical studies support an alternate possibility, at least in subsets of individuals at risk 

of T2D, that hyper-responsiveness of the islet -cell to a hostile environment (e.g. from a 

westernised lifestyle) drives hyperinsulinaemia, this being the culprit and upstream to excessive 

weight gain, insulin resistance, subsequent -cell failure and the development of T2D.30-33

There is considerable heterogeneity in islet -cell function in mouse strains with those that have a 

tendency for insulin hypersecretion (e.g. DBA/2 compared to the C57Bl/6 and 129T2 strains) being 

more prone to high fat diet induced weight gain and -cell failure.33,34 Furthermore, there are 

several examples by which suppression of insulin secretion through genetic manipulation can 

reduce high fat diet-induced obesity and insulin resistance. Islet -cell specific deletion of the 

adipose triglyceride lipase, through reducing the lipid amplification arm of fuel induced insulin 

secretion, protects mice from obesity, hyperinsulinaemia, insulin resistance and hyperglycaemia.35 

Additionally, through suppressing insulin secretion by knocking out three of the four insulin gene 

alleles (Ins1-/- ; Ins2+/- and Ins1-/- ;Ins2+/+), it has been shown that aging female mice have lower 

glycaemia, improved insulin sensitivity and an extended life span.36 The model less predictably 

altered insulin secretion in male mice.30 In the leptin deficient ob/ob mouse model of obesity, a 

similar genetic approach to lowering insulin secretion, while successfully being able to attenuate 

obesity, resulted in the development of diabetes, indicative of a need for compensatory 

hyperinsulinaemia for obesity related insulin resistance when a rare monogenic cause of obesity 

rather than hyperinsulinaemia is the primary cause of the excessive weight gain.37

Of relevance within human studies is the Da Qing Children Cohort Study which showed that fasting 

insulin at about age 5 years, after the adjustment for age, sex, birth weight, TV-viewing time and 

weight (or body mass index) at baseline, predicted weight gain from age 5 to 10 years.38 

Furthermore, higher insulin levels at 5 years of age were also predictive of higher levels of systolic 

blood pressure, fasting plasma glucose, insulin resistance as determined by the homeostasis model, 

and triglycerides at 10 years of age, all features of the MetS.38 The findings were similar to those in 
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a study of Pima Indian children.39 Additionally, adolescent girls with polycystic ovarian syndrome 

have been shown to have early onset insulin hypersecretion in association with insulin resistance.40

Pharmacological approaches to suppress insulin secretion in humans also support the view that 

hyperinsulinaemia may have more of a primary role in the MetS. In obese men, 6 months treatment 

of lifestyle change with either diazoxide (DZ) alone (inhibits insulin secretion by activating the 

ATP sensitive potassium channels), DZ with metformin (DZ+M), or placebo, showed that DZ (DZ 

and DZ+M groups combined) markedly reduced fasting insulin levels by 72% compared to only 

23% in the placebo group (P<0.001), and this was accompanied by greater improvements in body 

weight, LDL-cholesterol, HDL-cholesterol, triglyceride, systolic and diastolic blood pressure.41 

Similar findings were found when hyperinsulinaemia was suppressed by the somatostatin analogue 

octreotide-LAR in obese subjects, with evidence of responders and non-responders to this therapy.42 

Also of relevance, in subjects with T2D, short term DZ use is capable of restoring islet -cell 

function through -cell rest.43,44 

Thus, considerable evidence points to insulin hypersecretion as being at, or close to, the root cause 

of MetS and its related conditions, with insulin resistance being downsteam.  Focus on reducing 

insulin hypersecretion, at least early in the course of these conditions, is likely to have beneficial 

metabolic effects. 

Towards better stratification of diabetes: subset of severe insulin resistant and 

hyperinsulinaemic diabetes

Within a recently reported study of adult-onset diabetes from Scandinavia, 5 subgroups were 

identified: severe autoimmune diabetes (SAID); severe insulin-deficient diabetes (SIDD); severe 

insulin-resistant diabetes (SIRD); mild obesity-related diabetes (MOD); mild age-related diabetes 

(MARD).45 

The subgroup that seems most relevant to this discussion is SIRD, with the predominant 

characteristics being obesity, severe hyperinsulinaemia and insulin resistance. An alternative name 

for this subgroup could have been “severe hyperinsulinaemic diabetes”. Individuals within this 
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subgroup, in keeping with the concept of insulin-induced metabolic stress, were also more likely to 

develop diabetic nephropathy and have coronary events.45 Surprisingly, the age of diabetes onset in 

the SIRD group was relatively high, which may relate to the predominant Scandanavian ethnicity 

within the diabetes registries used.45 The SIRD subgroup characteristics of more severe 

hyperinsulinaemia and insulin resistance tend to be mirrored in young people presenting with 

obesity-related T2D, as was found in the Restoring Insulin Secretion (RISE) study and is also 

reported in various high risk indigenous groups.40,46,47 T2D in youth is also associated with a much 

higher risk of early-onset nephropathy and macrovascular disease.40 If in this subset of diabetes 

(SIRD), insulin hypersecretion rather than insulin resistance has the primary role, as remains to be 

determined, it will have major implications on the best approaches to prevention and treatment.

In the SIDD, MOD and MARD subgroups, insulin resistance is of lesser degree at the time of 

diabetes diagnosis, however, islet -cell failure must be involved in the pathogenesis. Whether mild 

suppression of insulin secretion in at least some of those at risk within these subgroups would 

prevent this -cell failure and T2D development is unknown. A precision medicine approach will 

most likely be required in which the correct approach to diabetes prevention and treatment will 

require detailed phenotypic and genotypic classification of individual patients within these 

subgroups.

A paradigm shift: new conceptual framework for considering insulin resistance and the MetS

If insulin resistance, while clearly being a biomarker of poor metabolic health, is also to be 

considered a defensive mechanism used by critical tissues against hyperinsulinaemia and nutrient 

overload, a complete revision of the conceptual framework within which hyperinsulinaemia, insulin 

resistance and the MetS are viewed, is needed (Figure 2). Such a revision is not trivial, as it has 

major implications for how MetS and its associated conditions, including T2D, PCOS, NAFLD and 

ASCVD, should be prevented and managed. Within this new framework and paradigm shift, 

hyperinsulinaemia has a more primary or causative role. In doing so, instead of the role of the islet 

-cell being one of “compensation” for insulin resistance, it becomes the primary driver, with 

Page 8 of 22

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Diabetes & Vascular Disease Research



For Peer Review

9

insulin hypersecretion and the resulting hyperinsulinaemia taking up position as the unifying 

mechanism. Thus, the development of new therapeutic approaches for MetS, and at least the SIRD 

subgroup of T2D, will need to move to prevention and/or suppression of the hypersecreting -cell 

(Figure 2). Approaches to lower glucose and other elevated nutrients in the blood of MetS and T2D 

patients through overriding the protective role of insulin resistance will be contraindicated, as we 

and others have previously advocated.
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14-17 While research into mechanisms of islet -cell failure and insulin resistance will continue to be 

important, more focus on the mechanisms driving insulin hypersecretion will be required, whether 

they be genetic or acquired, including those acquired early in life from epigenetic processes and/or  

consequent on islet -cell response to new environmental exposures.31 

Relevance to management of T2D

Optimisation of cellular nutrient status 

In managing disturbed metabolic homeostasis in T2D, the focus of clinicians is currently on 

normalising glucose and lipid parameters in the blood. Less thought is given to optimising 

intracellular metabolism, even though nutrient-induced tissue injury in obesity-related T2D is 

predominantly a consequence of excess entry of nutrients from the blood into cells. This is 

understandable, as measuring nutrient levels is much easier in blood (e.g. blood glucose, HbA1c, 

plasma triglycerides) than in cells. The corollary is that approaches to normalise glycaemia in 

obesity-related T2D that drive glucose and other nutrients into already nutrient overloaded cells, 

such as by high dose insulin therapy or sulphonylureas to override insulin resistance, or insulin 

sensitisers to reverse insulin resistance depending on mechanism of action, may unintentionally 

cause harm.15 According to this argument, alternative approaches to lowering glycaemia that 

nutrient off-load cells, such as intensive lifestyle measures, sodium glucose transporter 2 (SGLT2) 

inhibitors, glucagon-like peptide-1 receptor agonists or bariatric surgery, should be beneficial in the 

majority of patients with obesity-associated T2D (Figure 3A).15 

The alternate scenario of intracellular nutrient depletion in patients with hypoinsulinaemic diabetes 

is also important to consider, particularly, with the increasing occurrence of cases of euglycaemic 

ketoacidosis in patients treated with SGLT2 inhibitors.48 Avoidance of SGLT2 inhibitors and most 

often a shift to insulin therapy will be necessary in such patients (Figure 3B).

Thus, the approach to diabetes management should take into account some consideration of cellular 

nutrient status (Figure 3). For these reasons, new blood biomarkers of cellular nutrient or energy 
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status may also be of value in patient care and once discovered should be examined for clinical 

utility. 

In support of the proposition that glucose lowering approaches that work by driving glucose into 

tissues can be harmful in overweight and obese subjects with T2D and insulin resistance, we 

reviewed major T2D clinical trials and found that whenever intensive glucose lowering approaches 

were associated with weight gain of greater than 1.0 kg/year (ACCORD, Veterans Affairs Diabetes 

Trial (VADT), Diabetes Mellitus Insulin-Glucose Infusion in Acute Myocardial Infarction 2 

(DIGAMI 2)), cardiovascular and all-cause mortality increased, although only reaching statistical 

significance in ACCORD given the greater sample size.15 Furthermore, among adults with diabetes 

and stable ischaemic heart disease aged ≥75years, insulin provision therapy was associated with an 

increased risk for all-cause-mortality (hazard ratio 1.89, CI 1.1-3.2, p=0.020).49 

In support of the benefits of nutrient off-loading approaches are more recent clinical trials of new 

classes of glucose lowering agents, such as SGLT2 inhibitors (by promoting urinary glucose loss) 

and GLP-1 receptor agonists (by reducing weight through increased satiety), as well as bariatric 

surgery that have demonstrated reductions in major adverse cardiovascular and renal outcomes in 

high-risk T2D patients.50-52 The recent consensus statement of the ADA and EASD on the 

management of hyperglycaemia in T2D has taken the results of these major clinical trials in their 

recommendations.53 

Prevention of insulin hypersecretion

The nutrient off-loading approaches to glucose-lowering available in the management of T2D, 

including intensive lifestyle change, SGLT-2 inhibitors, GLP-1 receptor antagonists, -glucosidase 

inhibitors, bariatric surgery, will all reduce insulin hypersecretion. However, often these therapies 

are started once T2D is established and failure of islet -cells has already commenced. Optimal 

approaches for reversal of severe hyperinsulinaemia in patients prior to development T2D or early 

in its course, in particular in younger individuals, when lifestyle measures are generally 

unsuccessful, are not known. Of note, bariatric surgery has been shown to be effective in reversing 
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hyperinsulinaemia and MetS in obese adolescents.54  In the RISE study, neither 3 months of insulin 

glargine followed by 9 months of metformin, nor 12 months of metformin alone, slowed the 

progressive deterioration of β-cell function in young people with early T2D, suggesting different 

approaches are required.55 The development of specific islet -cell therapies to limit insulin 

hypersecretion in high-risk individuals with MetS related conditions and obesity-related pre-

diabetes and early T2D should be pursued. 

Conclusion

The part played by Jerry Reaven in linking the dots between the various components of the MetS 

and the relevance of MetS to ASCVD, NAFLD, PCOS and T2D has been enormously important. 

The search for the unifying mechanism has been contentious. Here, we make a case for putting 

“insulin hypersecretion” into this role, while considering insulin resistance as a protective 

downstream response. This necessitates a complete revision of the conceptual framework within 

which we view insulin resistance and the pathophysiology of the MetS and obesity-associated T2D, 

which if confirmed, has major implications for the prevention and management of these metabolic 

conditions.
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Figure Legends

Figure 1.  Model illustrating the molecular basis of insulin-induced metabolic stress in obese 

insulin resistant and poorly controlled type 2 diabetes patients.   Depicted is a cell in which: (A) 

insulin resistance (IR) protects from nutrient overload and metabolic stress by limiting glucose flux 

into the cell at times when both glucose and free fatty acids (FFA) are elevated in blood, and; (B) 

the IR protection is overridden by a high dose of exogenous insulin therapy which promotes excess 

glucose uptake and both glucotoxicity and lipotoxicity. High FFA availability inhibits glucose 

oxidation at the level of pyruvate dehydrogenase (PDH), such that a high glucose flux promoted by 

high levels of insulin will be forced into glucotoxic pathways above this step, including the polyol 

and hexosamine pathways, as well as the production of advanced glycation endproduct (AGE) 

precursors. Furthermore, high glucose availability promotes build-up of cytosolic malonyl-CoA 

which will inhibit carnitine palmitoyltransferase 1 (CPT1) and the transfer of long-chain acyl-CoAs 

(LC-AcylCoA) into mitochondria for -oxidation. This will result in a push of intracellular FFA 

metabolism towards synthesis of complex lipids, such as diacylglycerols, cholesterol esters and 

ceramides, and steatosis causing lipotoxicity.  Excess glucose supply to the mitochondria in the 

presence of high FFA supply will also promote reactive oxygen species (ROS) production and 

oxidative damage. CD36, free fatty acid transporter; GLUT4, facilitative glucose transporter 4; Ins-

R, insulin receptor.

Figure 2.   A new conceptual framework for considering insulin resistance and the metabolic 

syndrome (MetS) and its associated disorders.   The key changes in this conceptual framework 

are the roles of hyperinsulinaemia and insulin resistance in the MetS. Islet -cell hyper-

responsiveness to adverse environmental factors in genetically or epigenetically predisposed 

individuals results in hyperinsulinaemia and this is the primary driver of the MetS. Insulin 

resistance provides protection for critical tissues against insulin-induced metabolic stress and, while 

being a biomarker of metabolic ill health, is not a driver of pathogenesis. The characteristic features 
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of MetS are driven by hyperinsulinaemia. The MetS related disease entities, type 2 diabetes (T2D), 

cardiovascular diseases (CVD), non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis 

(NAFLD/NASH) and polycystic ovarian syndrome (PCOS) are a downstream consequence of 

hyperinsulinemia and the MetS.

Figure 3.  Optimisation of cellular nutrient status in patients with hyper- or hypo- 

insulinaemic type 2 diabetes: importance of the approach to glucose lowering.   (A) In 

untreated type 2 diabetes (T2D) with hyperinsulinaemic diabetes, insulin resistance (IR) protects 

insulin-responsive cells such as cardiomyocytes and skeletal muscle cells from nutrient overload; 

cells such as endothelial cells that are non-responsive to insulin with respect to glucose uptake, 

however, are not protected and are injured by glucotoxicity contributing to diabetes complications 

(left panel). Glucose lowering approaches that override the physiological IR to force glucose into 

insulin-responsive tissues (e.g. by high-dose insulin therapy) may reduce glucotoxicty in some 

tissues, but at the cost of nutrient-induced injury to the insulin-responsive tissues (e.g. causing a 

metabolic cardiomyopathy) (centre panel). Glucose lowering approaches that off-load glucose from 

cells of critical body tissues, by either reducing glucose entry into the blood (e.g. intensive lifestyle, 

-glucosidase inhibitors, bariatric surgery) or glucose clearance from the blood via non-toxic routes 

(e.g. SGLT2 inhibitors to promote urinary glucose loss, exercise, activation of brown adipose 

tissue), will reduce nutrient-induced tissue injury in all cell types (right panel).   (B) In untreated 

hypoinsulinaemic T2D, a starvation response to insulin deprivation occurs in which free fatty acid 

(FFA) release from adipose tissue is increased and hepatic ketone body production is increased; 

cardiomyocytes and skeletal muscle cells are starved of glucose and switch to use FFA and ketone 

body for energy; cells such as endothelial cells are not protected from hyperglycaemia (left panel). 

In this circumstance insulin therapy will prevent the starvation response and normalise cellular 

nutrient status in insulin-responsive tissues and prevent glucotoxicity in endothelial cells (centre 

panel). Glucose lowering approaches that off-load glucose from cells (e.g. by very low 
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carbohydrate diets or fasting for surgery) together with glucose clearance from the blood (e.g. 

SGLT2 inhibitors) will exacerbate the starvation response in hypoinsulinaemic T2D and induce 

euglycaemic ketoacidosis (right panel). Healthy cells shown in green; unhealthy nutrient-

overloaded cells shown in red; unhealthy nutrient-deprived cells shown in blue.
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