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University of Miami School of

Medicine, USA

Reviewed by:

Paula I. Moreira,

University of Coimbra, Portugal

Nobuyuki Kimura,

National Center for Geriatrics and

Gerontology, Japan

*Correspondence:

Dimitrios Kapogiannis

kapogiannisd@mail.nih.gov

Received: 29 December 2016

Accepted: 11 April 2017

Published: 03 May 2017

Citation:

Mullins RJ, Diehl TC, Chia CW and

Kapogiannis D (2017) Insulin

Resistance as a Link between

Amyloid-Beta and Tau Pathologies in

Alzheimer’s Disease.

Front. Aging Neurosci. 9:118.

doi: 10.3389/fnagi.2017.00118

Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease

(AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many

well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR

represents a translational gap that has hindered its study in living humans. In our lab, we

have been working to develop biomarkers that reflect the common mechanisms of brain

IR and AD that may be used to follow their engagement by experimental treatments. We

present two promising biomarkers for brain IR in AD: insulin cascade mediators probed

in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic

resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a

fundamental link between brain IR and AD, we provide a novel analysis demonstrating

the close spatial correlation between brain expression of genes implicated in IR (using

Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed

to propose the bold hypotheses that baseline differences in the metabolic reliance

on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling

genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta

(Aβ) pathology, and that IR is a critical link between these two pathologies that define

AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to

treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and

target engagement.
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THE MOLECULAR BASIS OF INSULIN
RESISTANCE

The binding of insulin to the insulin receptor leads to

the recruitment and phosphorylation of the insulin receptor

substrates 1 and 2 (IRS1 and 2; Draznin, 2006). These molecules

represent the first node in the insulin signaling cascade, with

further downstream nodes being phosphoinositide 3-kinase

(PI3K) and protein kinase B (PKB/Akt), which in turn affect

master regulatory switches of cell metabolism, cell survival,

growth and differentiation, such as the mammalian target of

rapamycin (mTOR), and glycogen synthase kinase 3 (GSK3;

Pessin and Saltiel, 2000; Sarbassov et al., 2005; Tzatsos, 2009;

Zhang and Liu, 2014).

Persistent activation of the insulin receptor results in excessive

phosphorylation of Ser and Thr residues on IRSs (Czech

et al., 1988; Singh, 1993; Tanti et al., 1994). This aberrant

phosphorylation of IRS results in reduced insulin receptor

binding sensitivity and translocation of the active portion of

IRS from the membrane to the cytosol, and is one of the main

molecular underpinnings of insulin resistance (IR; Aguirre et al.,

2002; Boura-Halfon and Zick, 2009; Copps andWhite, 2012; Ryu

et al., 2014). Moreover, these mechanisms have the potential for

establishing pathogenic feed-forward loops that inhibit normal

insulin signaling, as mTORc, ribosomal protein S6 kinase beta-1

(S6K1), and GSK3-β induce hyperphosphorylation at various

Ser residues (S632, S302/S522 and S337, respectively; Eldar-

Finkelman and Krebs, 1997; Copps and White, 2012).

A key physiological action of insulin is to increase glucose

uptake into cells (Leney and Tavaré, 2009) by inducing

translocation of various insulin-dependent glucose transporters

(GLUTs) to the plasma membrane. GLUT-3 is the primary brain

GLUT and is mainly expressed in axons and dendrites, but

GLUT-1 and 4 are also expressed in the brain (Maher et al.,

1991; Simpson et al., 2008). The uniquely low Michaelis-Menten

constant of GLUT-3 allows for continuous transport of glucose

into neurons even under low extracellular concentrations,

thereby providing a consistent energy source (Duelli and

Kuschinsky, 2001). Different isoforms of GLUT-1 mediate

glucose uptake by astrocytes as well as the endothelial cells of

the blood brain barrier (BBB). Interestingly, neurons in areas

vulnerable to Alzheimer’s disease (AD; e.g., basal forebrain

cholinergic neurons) show partial GLUT-4 dependence, which

may help explain their vulnerability in low energy conditions

and AD (Morgello et al., 1995; Apelt et al., 1999; Duelli

and Kuschinsky, 2001). In systemic and organ-specific IR

states, the ability of insulin to stimulate glucose uptake via

GLUT transporters is impaired, requiring higher than normal

concentrations of extracellular insulin to maintain normal

glucose uptake to match cellular metabolic needs (Lebovitz,

2001).

BRAIN INSULIN AND THE BBB

While there is evidence that insulin is produced de novo in

different brain regions, the general consensus remains that a

majority of the insulin in the brain arrives from the periphery

through the BBB (Pardridge et al., 1985; Kullmann et al.,

2015), where it is concentrated to levels 50× higher than in

circulating plasma independently of peripheral hormonal states

(Havrankova et al., 1979; Banks et al., 2012; Blázquez et al.,

2014). Peripherally produced insulin crosses the BBB via a

saturable transport system, with partial saturation occurring

at standard euglycemic levels (Woods and Porte, 1977; Banks,

2004). Peripheral insulin can enter the brain interstitial fluid

(ISF) either directly through the BBB or via cerebrospinal fluid

(CSF), but the relative contributions of each are not yet known

(Genders et al., 2013). The levels of CSF glucose and insulin

only partially reflect blood levels, suggesting their differential

regulation in this compartment (Woods and Porte, 1977). In

humans, the transfer of blood insulin into the CSF has been

confirmed during intravenous injections of insulin (Wallum

et al., 1987). Interestingly, in obesity the CSF/plasma insulin

ratio is decreased, a finding that should be taken within broader

context, as the CSF/plasma ratios for leptin and adiponectin are

also decreased (Caro et al., 1996; Kos et al., 2007).

The BBB is a dynamic structure that homeostatically regulates

the uptake and release rates for a variety of hormones, chemicals,

and proteins (Daneman, 2012). Accordingly, fluctuations in

plasma levels of both glucose and insulin affect their uptake

by the BBB (Prasad et al., 2014). This uptake is carried out

by the GLUT-1 and GLUT-3 transporters embedded within

the BBB endothelium, providing the ability to respond to

variable energy demands (Leybaert et al., 2007). This dynamic

is demonstrated in a study that found glucose transport across

the BBB increased with luminal expression of GLUT-1, whereas

higher abluminal GLUT-1 expression was accompanied by

decreased glucose transport (Cornford and Hyman, 2005).

Insulin receptor expression is also reduced in the BBB when

there is prolonged peripheral hyperinsulemia (Schwartz et al.,

1990). The rate of insulin transport across the BBB is also slowed

by obesity and aging. Obesity decreases the transport of insulin

across the BBB, and this deficit can be reversed by starvation

and caloric restriction (Urayama and Banks, 2008). Aging leads

to an overall decrease in the number of insulin receptors at the

BBB (Moreira et al., 2009). Insulin transport is diminished as a

consequence, with CSF insulin levels being lower in both obese

and older individuals (Heni et al., 2015). Insulin levels in the

brain tissue of older individuals are also lower (Frölich et al.,

1998). Additionally, decreased CSF levels of insulin correlate with

poorer cognitive performance in patients with diabetes or AD

(Moloney et al., 2010; Duarte et al., 2012).

Evidence also exists that insulin can be produced de novo

in brain regions with many pyramidal cells, such as the

hippocampus, prefrontal cortex, olfactory bulb and entorhinal

cortex (Havrankova et al., 1978; Heidenreich and Gilmore, 1985;

Marks et al., 1991; Devaskar et al., 1994; Mehran et al., 2012).

While the significance of this evidence is still debated, recent

studies show that functional insulin signaling components in

forebrain regions may exert a neuroprotective role in areas

responsible for various functions of memory (McNay and

Recknagel, 2011; De Felice et al., 2014). Downstream elements

in the signaling pathway known as the ‘‘PI3K route’’ have been
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shown to both promote neuronal cell survival and facilitate

synaptic plasticity, providing a link between IR and AD (van der

Heide et al., 2006).

BRAIN INSULIN RESISTANCE

A variety of genetic, developmental, and metabolic factors

underlie brain IR. Polymorphisms in the Fat Mass and Obesity-

Associated Protein (FTO) gene, involving introns 1 and 2 that

are highly expressed in the brain, exhibit strong effects on brain

IR (Reitz et al., 2012). Carriers of the at-risk FTO-AA allele

who are also carriers of an apolipoprotein-E (APOE) ε4 allele

have a significantly increased risk for AD and dementia (Keller

et al., 2011). Additionally, a single nucleotide polymorphism near

the Melanocortin-4 Receptor (MC4R) gene, a gene expressed

in brain regions that regulate systemic metabolism such as the

hypothalamus (Shen et al., 2013), has been linked to increased

brain IR (Tschritter et al., 2011). Moreover, maternal glucose

and insulin sensitivity correlate with fetal brain responses

to fluctuations in circulating glucose, suggesting a prenatal

predisposition to brain IR (Linder et al., 2014). Increased

circulating free fatty acids may also play a role in establishing

brain IR. High fat diet (HFD) leads to rapid release of

pro-inflammatory factors at the hypothalamus, and triggers the

c-Jun N-terminal kinase (JNK) pathway to increase activation of

the leptin and insulin signaling inhibitor nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB; Nakano, 2004;

Sears and Perry, 2015).

Dysfunctional phosphorylation of IRS-1 has been extensively

linked with brain IR, similar to other tissues. Total levels

of insulin signaling proteins in the aforementioned ‘‘PI3K

route’’ are not significantly different in the brains of AD

patients vs. cognitively normal (CN) controls, suggesting that

the phosphorylated active levels of these molecules are more

relevant to IR and AD pathogenesis as opposed to total levels

(Talbot et al., 2012). Studies in human hippocampal tissue

have shown that phosphorylation mediated by factors such as

mTOR and GSK-3β, coupled with feed-forward inhibition from

the JNK pathway, leads to specific increased phosphorylation

on multiple Ser residues of IRS-1 (specifically, S312, S616 and

S636; Boura-Halfon and Zick, 2009; Fröjdö et al., 2009; Talbot

et al., 2012). However, conflicting evidence exists showing that

S307 phosphorylation in mice (human S312) may in fact increase

insulin sensitivity and improve insulin signaling (Copps et al.,

2010).

VASCULAR EFFECTS OF BRAIN INSULIN
RESISTANCE

Vascular function is tightly coupled to insulin signaling,

and central to this relationship is endothelial dysfunction,

which manifests through deficient vasodilation and improper

vasoconstriction throughout the body in the setting of IR

(Hsueh et al., 2004; Quiñones et al., 2004; Cersosimo and

DeFronzo, 2006). The vasodilator effects of insulin are mediated

by the PI3K signaling pathway, which leads to nitric oxide

(NO) production in endothelial cells which elevates cyclic

guanosine 3′,5′-monophosphate (cGMP) in vascular smooth

muscle; insulin vasoconstrictor effects are mediated through

endothelin-1 (Muniyappa and Quon, 2007; Muniyappa and

Sowers, 2013). Insulin signaling causes a dose-dependent

increase in NO production (Zeng and Quon, 1996), whereas

impaired PI3K signaling decreases NO and cGMP, leading to

decreased vasodilation (Francis et al., 2010). NO also inhibits

platelet aggregation, monocyte adhesion, and thrombosis, all of

which damage the vessel wall (Celermajer, 1997). Microvascular

disruption leads to superoxide production, which, among other

events, leads to a rise in advanced glycation end products.

Pathological activation of the receptor for these advanced

glycation end products (RAGE) increases oxidative stress,

exacerbating vascular inflammation, thrombosis, and vascular

damage (Kook et al., 2012). Impaired endothelial cell-mediated

vasodilation may also be caused by excess free fatty acids (FFAs)

traveling in the blood stream (Steinberg et al., 1997). FFA’s

are often elevated in diabetic patients, and through the action

of the inhibitor of nuclear factor kappa B kinase subunit beta

(IKKB, which modulates NF-kB) inhibit the production of NO,

decreasing vasodilation, deteriorating cardiovascular function,

and exacerbating the insulin resistant state (Ginsberg, 2000; Kim

et al., 2005).

Significant vascular pathology is frequently seen in older

individuals with dementia. In fact, until the significance of

neuritic plaques (NP) and neurofibrillary tangles (NFT) was

unequivocally demonstrated, the prevailing view was that

vascular pathology is primarily responsible for the cognitive

deficits in AD (Kling et al., 2013). Vascular dementia is thought

to be the second most common form of dementia after AD

(Jellinger, 2007), whereas mixed pathology dementia is being

increasingly reported in the literature, with more than half of

all dementia cases being attributed to dual pathology (Langa

et al., 2004; Schneider et al., 2007; Battistin and Cagnin,

2010). A variety of small and large vessel cerebrovascular

disease pathologies have been described, including silent

infarcts, leukoaraiosis (seen on magnetic resonance imaging

(MRI) as white matter hyperintensities), cerebral amyloid

angiopathy (CAA), microaneurysms, and small and large

vessel ischemic/hemorrhagic stroke (Breteler, 2000; Gorelick

et al., 2011; Attems and Jellinger, 2014; Corriveau et al.,

2016). Recently, the term ‘‘vascular contribution of cognitive

impairment and dementia’’ (VCID) has been coined to capture

this heterogeneity.

There is emerging evidence showing that IR and diabetes

have significant implications in VCID. It is well known that

cerebral blood flow is decreased in diabetic patients (Jellinger,

2007). Cerebral small vessel disease (CSVD) is the cause of

approximately 20% of strokes and the underlying etiology

for many of the other pathologies previously mentioned

(Lammie et al., 1997; Cai et al., 2015). Importantly, CSVD

is aggravated by diabetes. Specifically, pathological hallmarks

such as incident, small and large lacunes, and white matter

hyperintensities seem to correlate with progression of IR

(Dearborn et al., 2015). Diabetes also increases the risk for large

vessel disease, and is present in approximately 30% of strokes
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(Karapanayiotides et al., 2004). A study showed that for each

standard deviation increase in homeostatic model assessment

for insulin resistance (HOMA-IR) and body-mass index (BMI),

there was an increase in incident large lacunes. Moreover, higher

IR score correlated with the increase in prevalence of both small

and large lacunes (Dearborn et al., 2015). Increased HOMA-IR

scores are associated with higher risk of ischemic stroke even

among non-diabetics (Rundek et al., 2010). Interestingly, IR has

been reported in almost half of non-diabetics who presented with

a transient ischemic attack (Kernan et al., 2003).

THE INTERPLAY OF INSULIN RESISTANCE
AND Aβ PATHOLOGY

Several epidemiological studies have shown that the systemic

IR state of type 2 diabetes is a major risk factor for age-related

cognitive decline, dementia, AD, and progression from mild

cognitive impairment (MCI) to AD (Ott et al., 1999; Arvanitakis

et al., 2004; Li et al., 2016). Besides the aforementioned vascular

contributions, several lines of evidence suggest that brain IR

directly promotes the development of classic AD beta-amyloid

(Aβ) and tau pathologies (Steen et al., 2005; de la Monte, 2012).

Brain IR may also exacerbate pre-existing AD pathology by this

same mechanism and is known to be associated with cognitive

decline independently of AD pathology (Talbot et al., 2012;

Umegaki, 2013).

Aβ refers to several peptides between 39–43 amino acids

in length that are formed by the sequential β and γ secretase

cleavage of the amyloid precursor protein (APP); a large

transmembrane protein with an unknown physiologic role.

Aberrant oligomerization of certain Aβ peptides (such as

Aβ42) and formation of extracellular plaques with Aβ fibrils

at their center in equilibrium with soluble oligomers are

histopathological hallmarks of AD (Hardy and Selkoe, 2002;

Blennow, 2004; Pearson and Peers, 2006; Greenwald and Riek,

2010). It has been shown that the distribution of regional

glucose metabolism via glycolysis in normal young adults

correlates spatially with Aβ deposition in individuals with AD,

suggesting a pathogenic link between glycolysis in earlier life

and eventual development of Aβ pathology (Phelps and Barrio,

2010; Vaishnavi et al., 2010; Vlassenko et al., 2010). Moreover,

an important study found that regional lactate production is

closely linked to interstitial Aβ levels, establishing an additional

link between glycolytic energy metabolism and a key pathogenic

protein in AD (Bero et al., 2011). Lactate is produced by

astrocytes as a product of glycolysis and can be used as an

alternate neuronal energy substrate in conditions that do not

favor aerobic metabolism (Magistretti and Pellerin, 1999). More

recently, elevated lactate in transgenic AD mice compared to

wild type mice was seen in vivo and in association with memory

deficits (Harris et al., 2016). A putative interplay between

increased reliance on glycolysis, increased production of lactate

and ensuing increased extracellular Aβ has the potential of

establishing a feed-forward loop that perpetuates and aggravates

Aβ pathology in AD.

It has been shown that insulin promotes brain Aβ clearance,

preventing its extracellular accumulation and plaque formation

(Watson et al., 2003). Conversely, IR promotes the formation of

Aβ fibrils by inducing GM1 ganglioside clustering in presynaptic

membranes (Yamamoto et al., 2012). Aβ oligomers increase

activation of the JNK pathway, leading to increased IRS-1 pS616

(as well as Tau pS422; Yoon et al., 2012). Collectively, these

data suggest a feed-forward loop where Aβ oligomers aggravate

brain IR, which in turn decreases Aβ clearance and increases

the propensity for Aβ oligomerization. Moreover, a recent study

showed that Aβ oligomers acting at the hypothalamus (through

a mechanism involving NF-κB signaling) trigger peripheral IR,

potentially establishing a second feed-forward loop between

AD pathology, peripheral IR and brain IR (Clarke et al.,

2015).

Aβ can be degraded by a variety of peptidases, such as the

insulin degrading enzyme (IDE), neprilysin and angiotensin

converting enzyme, as well as multiple serine proteases (plasmin,

urokinase-type and tissue-type plasminogen activators; Wang

et al., 2006; Saido and Leissring, 2012). Because of IDE’s ability

to degrade insulin as well as Aβ42, it is thought to be a link

connecting hyperinsulemia, IR, and AD (Authier et al., 1996;

Qiu and Folstein, 2006). Although IDE is thought to only cleave

monomeric Aβ (Hulse et al., 2009; Saido and Leissring, 2012),

a decrease in its action could shift the equilibrium towards Aβ

oligomerization. In mice, IR leads to increased brain amyloidosis

through an increase in gamma-secretase activity, as well as

decreased IDE (Ho et al., 2004; Starks et al., 2015). Furthermore,

in AD patients with the APOE ε4 allele, IDE expression in

areas such as the hippocampus is greatly reduced (Edland,

2004).

THE INTERPLAY OF INSULIN RESISTANCE
AND TAU PATHOLOGY

Tau is a member of a large group of proteins known

as microtubule associated proteins (MAPs). In its native

conformation, tau is a soluble and unfolded protein involved

in microtubule stabilization and axonal outgrowth. However,

hyperphosphorylated tau tends to aggregate and these tau

aggregates are seen in various neurodegenerative diseases. In AD,

tau forms intracellular NFTs, which alongside extracellular Aβ

NPs constitute the two main histopathological hallmarks of the

disease (Brandt and Leschik, 2004).

Several studies have implicated IR in tau aggregation,

which largely depends on its phosphorylation state, which is

in turn determined by the balance between various kinase

and phosphatase activities. Intravenous insulin administration

exerts a biphasic effect on tau phosphorylation. Short-term

administration of insulin to human neuroblastoma cells or rat

primary cortical neurons leads to rapid hyperphosphorylation

of tau at several Ser/Thr residues, whereas prolonged exposure

results in decreased phosphorylation (Lesort et al., 1999; Lesort

and Johnson, 2000). This increase and subsequent decrease is

mirrored by the activity of GSK-3β, widely considered to be

the primary kinase responsible for the phosphorylation of Tau

in vivo and modulated by insulin via the PKB/Akt pathway

(Welsh and Proud, 1993; Hong and Lee, 1997; Planel et al.,
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2002; Llorens-Martín et al., 2014). A recent study suggests that

a shift in APP processing from the α-secretase pathway to the

β- and γ-secretase pro-amyloidogenic pathway increases GSK-

3β-mediated tau phosphorylation, establishing a connection

between the two core pathologies in AD (Deng et al., 2015),

with brain IR aggravating them both. Upstream of GSK-3β,

PKB/Akt itself also functions as a Ser/Thr kinase and has the

ability to phosphorylate Tau directly, at least in vitro (Ksiezak-

Reding et al., 2003; Zhou et al., 2009). Conversely, inhibiting

the Ser/Thr phosphatases responsible for tau dephosphorylation

can also increase the overall phosphorylation of tau. Protein

phosphatase 2 (PP2A) is the primary tau phosphatase implicated

in AD and is suppressed by insulin administration in both

human and animal studies (Gong et al., 1995; Kins et al.,

2001; Vogelsberg-Ragaglia et al., 2001; Clodfelder-Miller et al.,

2006; Papon et al., 2013). Ob/ob transgenic mice are obese

with high blood sugar and insulin levels, low levels of IRS-1

and 2, behavioral deficits, and tau hyperphosphorylation (Kerouz

et al., 1997; Asakawa et al., 2003; Kim et al., 2013; Porter

et al., 2013). Db/db mice also reliably display a phenotype of

obesity, increased tau phosphorylation and IR accompanied by

profound behavioral deficits in learning and memory (Kim et al.,

2009; Sharma et al., 2010; Dinel et al., 2011). The combined

effects of diminished insulin pathway activity in increasing tau

phosphorylation and decreasing tau de-phosphorylation may

broadly explain the increased tendency for tau aggregation with

brain IR. Moreover, in the brains of AD patients, increased

cytosolic levels of IRS-1 pS312 and pS616 correlate with the

presence of NFTs, whereas, in CN controls, IRS-1 pS312 is

restricted to nuclear regions of the cell. This finding suggests

that IRS-1 phospho-species may have actions promoting tau

pathology in AD beyond their role in the development of brain

IR (Moloney et al., 2010).

Besides its role in the development of Aβ and tau

pathology, brain IR can also directly affect synaptic function

and cognition. For instance, in mice, down-regulation of insulin

receptors in the hippocampus impairs hippocampal long-term

potentiation and spatial learning (Grillo et al., 2015), whereas

their down-regulation in the hypothalamus results in decreased

hippocampal brain derived neurotrophic factor (BDNF; Grillo

et al., 2011). Neurodegeneration, tau hyperphosphorylation and

increased Aβ burden have also been reliably evoked in transgenic

mice as a consequence of HFD, an intervention that reliably

causes IR (Julien et al., 2010; Hiltunen et al., 2012). Both IR

and oxidative stress independently lead to the accumulation

of Aβ and phosphorylated tau (Chen et al., 2003; Grünblatt

et al., 2007). Oxidative stress, an imbalanced biochemical state

wherein the cell produces more reactive oxygen species than

its antioxidant activity can withstand, also occurs as a result of

metabolic syndrome and obesity (Davì et al., 2002).

SPATIAL CORRELATION OF IR-RELATED
GENES AND AD PATHOLOGY

The emergence of ‘‘big data’’ in neuroscience, particularly

from gene expression microarrays, brought with it promising

bioinformatics methods designed to take advantage of its sheer

volume. The prominence of these new ‘‘neuroinformatics’’

methods in no way implies that older, well established data

should be left behind. The synthesis of old and new data can

be invaluable for exploratory studies and hypothesis generation.

For example, when data of different modalities are distributed

spatially over the entire brain, as is often the case for MRI

data, tissue histology, positron emission tomography (PET), etc.,

this opens the possibility of comparison by pairwise spatial

correlation. Often referred to as ‘‘guilt by association’’, (Stuart

et al., 2003), the concept behind this method is that shared

spatial patterns of gene expression and other data (e.g., MRI

features) also suggests participation in a shared function

(Hawrylycz et al., 2011). This type of analysis essentially examines

genotype-phenotype associations across small parcels of the

brain rather than across human subjects. This approach may

be suitable for diseases where there is a concrete spatial pattern

of vulnerability across brain areas and for testing hypotheses

that associate preferential vulnerability and differential gene

expression.

To provide further evidence for the relationship between

brain IR and the propensity to develop plaques and tangles.,

we examined how the spatial distributions of Aβ-containing

NPs and hyperphosphorylated tau-containing NFTs relate to

the spatial expression of genes implicated in brain IR. We

hypothesized that areas that show lower levels of GLUT and

insulin signaling genes are less able to adapt to energetic

challenges and are more vulnerable to AD pathology (Mamelak,

2012). We derived values of double-blinded rater assessments of

the density of plaques and tangles from a seminal histological

study on their topography in AD (Arnold et al., 1991) and

converted them into 3D spatial map in Montreal Neuroimaging

Institute (MNI) space (Figure 1). We then derived microarray

expression levels (log2) for IR-related genes of interest (GSK3B,

IRS1, INS, INSR, GLUT1, GLUT3, GLUT4, AKT1, AKT2, AKT3,

IL6, TNF, FTO,MC4R andmTOR) from the Allen Human Brain

Atlas (AHBA1), using the single probe with the highest overall

expression when multiple probes exist. Like the NP/NFT maps,

the AHBA provides numerous (∼500 per specimen) microarray

samples spatially distributed over six healthy ‘‘normal’’ control

brain specimens (Hawrylycz et al., 2012; Sunkin et al., 2013).

The expression levels for brain samples located within a given

Brodmann area were averaged to make a new 3D map for each

gene probe registered into MNI space and broken down by

Brodmann areas. With these two spatially coregistered maps of

histopathological and AHBA gene expression data established,

a custom MATLAB (The Mathworks, Inc., Natick, MA, USA)

script was used to perform pairwise Pearson correlations between

NP or NFT densities vs. gene expression values for each

Brodmann area (Figure 2).

Given that the AHBA brain specimens belonged to healthy

individuals, positive correlations indicate regions where the

normal expression of these genes is spatially similar to the Tau

and/or Aβ pathologies seen in AD. In other words, these genes

have higher expression in regions with high density of plaques or

1http://human.brain-map.org/static/download
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FIGURE 1 | Tau tangle (neurofibrillary tangles (NFT), upper row) and

amyloid-beta plaque (neuritic plaques (NP), bottom row) values were

redrawn from data originally presented in Arnold et al. (1991) and

superimposed on Brodmann maps (BA 1–48) from MRIcroGL version

1.150909. NFT and NP values are double-blinded rater assessments of tangle

or plaque density. Color map and bar (“jet”) is red high, blue low.

FIGURE 2 | (A) Heatmap (“jet”: red high, blue low) of the spatial correlation

between levels of expression of various genes from the Allen Human Brain

Atlas and the density of tangles (NFT) or plaques (NP) from Arnold et al.

(1991). Asterisks (∗/∗∗/∗∗∗) represent p values of <0.05/.01/.001, respectively.

(B) Map of mean IRS-1 log2 expression in the six healthy human specimens

included in the Allen Human Brain Atlas. (C) Scatter plot of the mean IRS-1

log2 expression from the Allen Human Brain Atlas and the density of tangles

(NFT) from Arnold et al. (1991). Each of the 40 data points corresponds to a

BA for which both gene expression levels and tangle density ratings were

available.

tangles in AD and lower expression in less vulnerable regions. A

strong and significant positive association was seen between NFT

density and expression of GLUT4 (r = 0.39, p = 0.018). Negative

correlations suggest the reverse; wherein normal expression of

these genes is low in the areas most vulnerable to AD plaques

and tangles and high in less vulnerable areas. Significant negative

correlations with NFTs were found for multiple insulin signaling

genes, including IRS1 (−0.57, p < 0.001), AKT1 (r = −0.42,

p = 0.007), AKT2 (r = −0.33, p = 0.033), AKT3 (r = −0.45,

p = 0.003), GSK3B (r =−0.36, p = 0.019), and GLUT1 (r =−0.43,

p = 0.005). The NP map correlated negatively with GLUT4

(r = −0.42, p = 0.01).

IRS-1 regulates insulin signaling upstream of AKT and

GSK3B, and prior studies have noted a decreased overall level of

IRS-1 and related pathway molecule expression in AD neurons

(Steen et al., 2005; Moloney et al., 2010). The observed negative

spatial correlation with NFTs suggests that regions that normally

show low levels of expression of IRS-1 are more likely to develop

tau pathology in the setting of AD. We recently published a

study showing that levels of pSer312-IRS1 in extracellular vesicles

(EVs) enriched for neuronal origin are associated with brain

atrophy in a regional pattern that corresponds to IRS1 expression

(Mullins et al., 2017). Given that NFTs are known to be closely

associated with atrophy, our findings collectively tie together

IRS1 expression and post-translational phosphorylation, NFT

pathology and atrophy. Regarding GLUTs, it has already been

reported that neurons in areas vulnerable to AD show partial

GLUT4 dependence, and it has been suggested that this may

partially explain their vulnerability (Morgello et al., 1995; Apelt

et al., 1999; Duelli and Kuschinsky, 2001). Moreover, we have

noted that different isoforms of GLUT1 are expressed by

astrocytes and endothelial cells, but unfortunately it is unclear

to what extent GLUT1 expression in AHBA samples represents

astrocytes vs. endothelial cells. Nevertheless, the present analysis

demonstrates that normal regional expression of GLUT4 is

positively associated with NFT density in AD, while GLUT1 is

negatively associated. In other words, areas that normally have

few GLUT1s and many GLUT4s show the greatest propensity for

developing tau pathology in AD; see Figure 3 for summary and

select detailed scatterplots from these findings. For the IR genes

of interest, there are more (8 vs. 2) correlations with the NFTs

than the NPs map.

IR AS A LINK BETWEEN Aβ AND TAU
PATHOLOGIES IN AD

One of the main enduring mysteries in AD is the different

distribution of NFTs and NPs in the disease (Arnold et al., 1991).

The various lines of evidence reviewed above and the novel

analysis presented enable us to formulate a bold new hypothesis

that considers IR as an important link between Aβ and Tau

pathologies in AD and the main determinant of their regional

distribution. Baseline differences in the reliance in glycolysis to

generate energy, the expression of GLUT and insulin signaling

genes determine the vulnerability of different brain regions

to Tau and/or Aβ pathology. As mentioned already, extensive

temporo-parietal areas of the brain show significant metabolic

reliance on glycolysis (Phelps and Barrio, 2010; Vaishnavi et al.,

2010; Vlassenko et al., 2010), which generates lactate. High lactate
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FIGURE 3 | (A) Precuneal voxel placement for the junctional point-resolved spectroscopy (J-PRESS) acquisition is shown in red (25 × 18 × 20 mm3) within a 3D

brain cutaway image (figure created in MRIcroGL version 1.150909). (B) Sample 2D J-PRESS spectral fitting from a representative 48-year-old male cognitively

normal (CN) participant. (C) Scatter plot of the correlation between the Glc/Cr and fasting Glucose values in 15 healthy male participants (red squares).

FIGURE 4 | Graphical abstract. Baseline differences in the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of

different brain regions to Tau and/or Aβ pathology. Extensive temporo-parietal areas of the brain show significant metabolic reliance on glycolysis, which generates

lactate. High lactate is associated with high interstitial Aβ, which assembles into Aβ oligomers. These Aβ oligomers promote Ser phosphorylation of IRS-1, impeding

downstream insulin signaling and leading to brain IR. A feed-forward loop is established between IR and Aβ pathology leading to progressive Aβ deposition in NP.

Chronic IR promotes tau hyperphosphorylation and this effect is more pronounced in regions that show low expression of insulin signaling proteins (IRS-1, Akt, etc.)

at baseline. As a result, hyperphosphorylated tau leads to the development of NFT in a different and more restricted regional pattern than Aβ. The sum of these three

inter related pathologies (IR, Aβ, Tau) produces Alzheimer’s disease.

is associated with high interstitial Aβ, which assembles into Aβ

oligomers. These Aβ oligomers promote Ser phosphorylation

of IRS-1, impeding downstream insulin signaling and leading

to brain IR. A feed-forward loop is established between IR

and Aβ pathology leading to progressive Aβ deposition in NPs

across extensive parts of the brain. Chronic IR promotes tau
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hyperphosphorylation and this effect is more pronounced in

regions that show low expression of insulin signaling proteins

(IRS-1, Akt, etc.) at baseline (earlier adult life). As a result,

hyperphosphorylated tau leads to the development of NFTs in a

different and more restricted regional pattern than Aβ. The sum

of these three inter related pathologies (IR, Aβ, Tau) produces

Alzheimer’s disease (AD).

This hypothetical paradigm is based on correlational studies

but its predictions are testable (and falsifiable). For instance, it

can be falsified by examining the spatial correlation of IR-related

gene expression and Aβ and Tau pathologies in brain specimens

from subjects across the spectrum from normal cognition to

AD. Moreover, it allows for novel predictions that can be

tested in clinical trials. For instance, interventions that increase

insulin sensitivity (see below) may be expected to decrease

the rate of Aβ production and tau hyperphosphorylation.

For these predictions to be testable though, biomarkers that

reflect AD pathogenic processes, brain metabolism and IR are

required.

TRADITIONAL AND NOVEL BIOCHEMICAL
MEASURES OF INSULIN RESISTANCE

The traditional gold standard for measuring systemic IR is

the hyperinsulinemic euglycemic clamp, as this technique

provides highly reproducible data with a distinct physiological

meaning (DeFronzo et al., 1979). Unfortunately, the technique

is procedurally complex and requires considerable expertise to

obtain reliable results (Le et al., 2009). HOMA-IR, as well as

its most recent version HOMA2-IR, provide an estimate of

systemic IR and β cell function by combining fasting insulin

and glucose levels in a single metric (Matthews et al., 1985).

IR as measured by HOMA-IR (see below) has been shown

to correlate with increased CSF levels of AD biomarkers such

as soluble amyloid precursor protein β (sAPPβ), p-tau181 and

Aβ42 (Starks et al., 2015; Hoscheidt et al., 2016). Unfortunately,

HOMA-IR is subject to measurement errors especially if a single

blood sample is used and is also susceptible to physiological

fluctuations in fasting glucose and insulin levels, limiting its

reliability. Moreover, HOMA-IR does not distinguish between

brain-specific and systemic IR, making the search for biomarkers

directly reflecting brain phenomena imperative for studying the

role of IR in AD.

EVs are membranous particles and are secreted from nearly

every cell type throughout the body, whereas the term exosomes

refers to a subtype of EVs from 30 nm to 150 nm in size that

have been implicated in a variety of functions. EVs extracted

from murine brain tissue have been shown to contain APP,

as well as Aβ species (Bellingham et al., 2012; Perez-Gonzalez

et al., 2012) Moreover, secreted exosomes have been shown

to contain hyperphosphorylated tau as well as Aβ (Rajendran

et al., 2006). Interestingly, EVs also contain proteolytically

active IDE which may degrade extracellular Aβ (Bulloj et al.,

2010).

Whereas these and subsequent findings implicated EVs in

AD pathogenesis, we are primarily interested in EVs as a source

of biomarkers for the disease. Our team has been a pioneer in

isolating plasma EVs enriched for neuronal origin. To date, AD

biomarkers derived from neuronal origin-enriched EVs include

not only the main pathogenic proteins (p-tau and Aβ42) but also

intracellular signaling molecules, such as phosphorylated IRS-1,

Cathepsin-D, REST, LRP6, and others (Fiandaca et al., 2015;

Goetzl et al., 2015a,b; Kapogiannis et al., 2015). Of particular

interest for the study of brain IR are our findings concerning

IRS-1. In plasma EVs enriched for neuronal origin, we measured

total, pSer312- and p-PanY- (pan-Tyr phosphorylated) IRS-1

in a clinical cohort of AD patients and CN older control

subjects (as well as patients with Frontotemporal Dementia,

as a neurodegenerative disease control, and CN patients with

diabetes, as a metabolic disease control). We showed that

these two phospho-species, as well as their ratio, were highly

significantly different in AD patients vs. all control groups.

Interestingly, subjects with diabetes had intermediate values

between AD patients and CN controls, suggesting that the

peripheral IR that characterizes diabetes is linked to some degree

to brain IR and corroborating the extensive body of literature

suggesting that IR and diabetes are risk factors for AD, but

by no means obligatory causative factors. Furthermore, IRS-1

phospho-species achieved remarkable classification accuracy for

AD patients vs. controls, and in a separate smaller cohort were

already abnormal up to 10 years before clinical onset of AD

(Kapogiannis et al., 2015).

In a recent study Mullins et al. (2017), we showed that, in a

cohort of AD patients without systemic IR, pSer312-IRS-1 was

positively associated with MRI atrophy, whereas p-PanY-

IRS-1 was negatively associated with it, in a highly characteristic

pattern of regions. The significance of this regional pattern lies

in its spatial correlation with the normal IRS-1 brain expression.

We speculate that neuronal-enriched plasma EVs containing

IRS-1 may be preferentially derived from brain regions with high

levels of IRS-1 expression. Therefore, the IRS-1 phosphorylation

pattern seen in these EVs may reflect its phosphorylation status

in specific brain regions that suffer brain atrophy in early AD

in association with higher burden of brain IR. Interestingly,

systemic IR (either in terms of fasting insulin or HOMA-

IR) showed no associations with regional AD atrophy, further

suggesting that EV-based biomarkers are well- suited as a tool

for investigating brain IR in AD. These findings not only further

establish the links between IR and AD, but provide hope for a

blood-based diagnostic assay to identify individuals who would

likely develop AD preclinically. Importantly, since interventions

that aim to reverse brain IR in AD are being subjected to clinical

trials (e.g., intranasal insulin, exenatide), using these biomarkers

we may be able to demonstrate target engagement and follow

response to treatment.

NEUROIMAGING STUDIES OF INSULIN
RESISTANCE

Fluorodeoxyglucose Positron emission tomography (FDG-PET)

imaging has long been considered the definitive method for

assessing brain metabolism. FDG is an analog of glucose that is

imported in cells in a similar fashion to glucose that provides
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a reliable estimate of the cerebral metabolic rate for glucose

(CMRGlc). As was initially shown in 1989 (Friedland et al.,

1989) and replicated in numerous cohorts since (Herholz et al.,

2002; Langbaum et al., 2009), CMRGlc is decreased in AD

with a characteristic regional pattern over the medial/lateral

parietotemporal and frontal cortices. Intriguingly, the same

pattern of relative hypometabolism was shown in relation to

HOMA-IR in CN post-menopausal women (Rasgon et al., 2014),

older adults with prediabetes/T2D (Baker et al., 2011), and those

at higher risk for AD given their parental history (Willette et al.,

2015a). This suggests a continuum of vulnerability of glucose

metabolism in these conditions that culminates in clinical AD.

In a study of patients with MCI and AD, we showed that

HOMA-IR is negatively associated with glucose metabolism in

brain areas vulnerable to AD pathology, but not in areas typically

unaffected by AD (Willette et al., 2015c). In addition, we showed

that HOMA-IR is paradoxically (and perhaps maladaptively)

positively associated with hippocampal glucose metabolism in

MCI patients prior to conversion to AD dementia (Willette et al.,

2015c).

Conflicting findings exist on the relationship between Aβ

deposition and peripheral IR in PET studies using Pittsburgh

compound B (PiB) or Florbetapir (F18-AV-45), with some

studies showing no such relationship (Edison et al., 2007;

Thambisetty et al., 2013) and others indicating a relationship for

normoglycemic but not hyperglycemic CN older adults (Willette

et al., 2015b). The recent development of tau-PET imaging has

attracted a surge of interest due to recent findings that it presents

a stronger relation to neurodegeneration and cognitive decline

than Aβ (Sarazin et al., 2016; Thal and Vandenberghe, 2016), but

being a very recent development there are no published results to

report on the relation of tau distribution to IR.

Structural and functional MRI have also been used to study

IR-AD associations. In late middle-aged, cognitively healthy

individuals, HOMA-IR has been negatively associated with

hippocampal (Rasgon et al., 2011) and cortical gray matter

(Willette et al., 2013) volumes in a pattern characteristic of

AD. Diffusion MRI has revealed deficits in the microstructural

integrity of gray and white matter in AD (Meng et al., 2012; Hong

et al., 2013; Molinuevo et al., 2014; Weston et al., 2015) and type

2 diabetes (Hsu et al., 2012; Reijmer et al., 2013; Xiong et al.,

2016) that are associated with impaired cognitive performance.

Functional MRI (fMRI) has been used to demonstrate that

insulin infusion enhances activity in the medial temporal lobe

(Zhao and Townsend, 2009), that middle-aged CN subjects with

peripheral IR (Kenna et al., 2013) or type 2 diabetes (Musen et al.,

2012; Chen et al., 2014) show impaired functional connectivity

of the hippocampus and the default mode network, Advanced

two-dimensional (2D MRS) methods currently gaining favor

are capable of detecting glucose concentrations within specific

regions of the brain (Thomas et al., 2003) and may be used some

day to study IR in relation to AD. An example of this method is

provided below.

As a general comment to all neuroimaging studies to

date; since no good biomarker of brain IR existed, the field

had to rely on the assumption that some peripheral IR

measure (such as HOMA-IR) can be used as a surrogate of

brain IR. With the discovery of IRS-1 phospho-peptides in

neural-origin plasma EVs (Kapogiannis et al., 2015) and the

demonstration of their neuroimaging correlates (Mullins et al.,

2017), we have introduced biomarkers for brain-specific IR.

We hope that future neuroimaging studies will take advantage

of these novel biomarkers and examine more brain-specific

associations.

FUTURE DIRECTIONS: GLUCOSE
MEASUREMENT VIA 2D MAGNETIC
RESONANCE SPECTROSCOPY

Modern magnetic resonance spectroscopy (MRS) techniques

have recently advanced to the point of reliable measurement

of in vivo glucose levels in the brain. Earlier 1D MRS

methods had difficulty quantifying the glucose metabolite signal

due to the presence of multiple overlapping signals in the

acquired spectra (Steinberg and Velan, 2013). The method

of 2D junctional point-resolved spectroscopy (J-PRESS) solves

this problem by sampling the signal at multiple echo times,

which adds another dimension to the spectra to increase

specificity and reduce overlapping peak tails (see Figure 3B

for spectral fitting; Schulte and Boesiger, 2006). This increased

specificity is of particular interest for neurotransmitters and

metabolites linked to AD pathogenesis, particularly glucose

(Kapogiannis et al., 2013). The J-PRESS technique thus presents

researchers with the opportunity to safely estimate the actual

in vivo level of combined intracellular and extracellular

brain glucose. Therefore, this measure may complement

information acquired with FDG-PET, which assesses the

metabolic rate of glucose rather than its concentration. In

comparison to PET, MRS has the advantage of not using

radiation and potentially being more widely available, since

it requires only MR scanning rather than nuclear medicine

capabilities.

To demonstrate technical feasibility and provide proof of

concept for this method, we collected JPRESS data from a set of

15 fasting healthy male volunteer participants (40.5 ± 7.8 years

old) who also underwent a blood draw for fasting glucose.

Both the MRS and the blood draws took place after an

8-h fast. Plasma samples were processed via YSI 2300 STAT

PLUSTM Glucose analyzer (YSI Inc., Yellow Springs, OH, USA)

to derive glucose concentration. A 2D J-PRESS acquisition

with maximum-echo sampling was used to acquire metabolite

concentrations from a bilateral anisotropic precuneus Voxel

(25 × 18 × 20 mm3, see Figure 3A), also used in our

previous study (Kapogiannis et al., 2013). ProFit software

(Schulte and Boesiger, 2006) was used to acquire the linear

combinations of simulated basis metabolite spectra to generate

relative concentrations to creatine. All data were acquired

as part of the visit for a physiology study on glucose

metabolism (ClinicalTrials.gov Identifier NCT01517100) and

approved by the Institutional Review Board of the National

Institute of Diabetes and Digestive and Kidney Diseases,

Bethesda, MD, USA. All participants provided written informed

consent.
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We found that glucose concentration was reliably measured

in all 15 subjects, with a mean Cramer-Rao lower bound (crlb%,

a measure of signal reliability) of 13.7%, ranging from 7.6% to

21.8%. In addition, we found a moderate negative correlation

between MRS Glc brain concentrations and fasting glucose levels

(r = −0.546, p = 0.035; Figure 3C). The exact significance of

this finding and its pertinence to disease states is the subject of

ongoing research. As the MRS acquisition spans about 24 min,

MRS Glc likely reflects steady state glucose levels. One possible

explanation is that higher brain MRS Glc results from lower

brain glucose metabolism. It is known that, during prolonged

fasting (after 12 h), the body (and the brain) switches from

glucose to ketone metabolism (Foster, 1967). It has been shown

that ketones are the preferred energy source by the brain, since

the higher their plasma concentration, the higher their uptake

by the brain, and the higher their percent contribution to total

brain energy metabolism (Cunnane et al., 2016a,b). Subjects

with lower fasting plasma glucose during prolonged fasting

may have switched more fully into brain ketone metabolism,

with a corresponding decrease in brain glucose metabolism and

increase inMRS Glc concentration. This hypothesis will be tested

in an ongoing clinical study on the brain effects of intermittently

prolonged calorie restriction (5–2 calorie restriction), which

examines the effects of the diet on MRS glucose vis a vis

levels of metabolites in CSF and plasma (NCT02460783). More

broadly, this technique opens yet another window into brain

metabolism for examining the effects of disease states, such

as AD.

CLINICAL TRIALS TARGETING BRAIN IR
IN AD AND BIOMARKERS

There are several approaches for targeting brain IR as a

therapeutic strategy for AD. Perhaps, the most straightforward

one is to try to overcome brain IR by increasing brain

availability of insulin. Since systemic insulin administration in

non-diabetic subjects produces hypoglycemia, the approach that

has been promoted to achieve this goal is intranasal insulin

administration, which involves bulk flow through the olfactory

bulb into the brain (Born et al., 2002). In a Phase II clinical trial,

patients receiving intranasal insulin for 4 months showed better

cognition (especially memory) compared to those receiving

placebo (Craft et al., 2012). A recent study using the long-acting

insulin analog detemir via intranasal administration also yielded

promising results (Claxton et al., 2015). A different strategy

is brain insulin sensitization; two insulin-sensitizing drugs,

rosiglitazone and pioglitazone, are currently being investigated

as therapeutic agents for AD. Rosiglitazone potentiates the

protective effects of insulin on cultured neurons and inhibits

the production of Aβ42 in mice, but human trials have yielded

disappointing results (Landreth et al., 2008; De Felice et al., 2009;

Miller et al., 2011). In mice, pioglitazone improves learning,

reduces tau and Aβ deposits in the hippocampus, and improves

neuronal plasticity (Searcy et al., 2012). In humans, consistent

pioglitazone administration has been associated with decreased

incidence of dementia, but clinical trials are lacking (Heneka

et al., 2015).

Glucagon like peptide 1 (GLP1) agonists have been shown

to offer neuroprotection (Perry et al., 2002, 2007), reverse brain

IR (Bomfim et al., 2012; Talbot and Wang, 2014), decrease

Aβ and tau levels and deposits (Li et al., 2010; McClean

et al., 2011), and decrease tau hyper-phosphorylation (Xu et al.,

2015) in multiple cellular and animal models of AD. The

GLP-1 agonist exenatide, has been shown to alleviate brain

IR in AD by modifying the pattern of IRS-1 phosphorylation

(Bomfim et al., 2012) and be neuroprotective against a variety

of neurodegenerative diseases and stroke (Li et al., 2009; Martin

et al., 2009; Tweedie et al., 2012). Importantly, exenatide has

already demonstrated clinical effectiveness for Parkinson disease

in terms of motor and cognitive performance measures (Aviles-

Olmos et al., 2013). Our team recently completed a pilot clinical

trial of exenatide in MCI/early AD (NCT01255163). Recently,

it was reported that AD patients treated with another GLP-1

agonist, liraglutide, for 6 months showed a non-significant trend

for increased CMRglc compared to placebo-treated patients.

Importantly, the rate of progressive Aβ deposition in PiB

PET was not affected by the treatment. The authors note

that the findings are inconclusive in regard to the therapeutic

potential of liraglutide, and by extension of GLP1 agonists,

in AD (Gejl et al., 2016). In our view, this inconclusiveness

stems from the limited relevance of the outcome measures

to the mechanism of action of the intervention. Relying on

cognitive/clinical outcomes or even biomarker outcomes far

down-stream in the pathogenic cascade and relevant only to

one particular aspect of disease pathogenesis (such as PiB PET)

irrespective of the particular mechanism involved has plagued

clinical trials in AD and prevented the field from extracting

generalizable conclusions from the failures in individual clinical

trials.

We are currently engaged in the analysis of IRS-1

phosphotypes and downstream signaling molecules in neuronal

EVs from plasma samples from the pilot trial of exenatide in AD

conducted at the National Institute on Aging (NIA) and several

other clinical trials targeting IR. We are hopeful that a response

of EV-based biomarkers and/or MRS Glc to experimental

interventions would demonstrate mechanism-specific target

engagement. In addition, if these interventions decrease Aβ

production and tau phosphorylation, they would provide

significant mechanistic support to the hypothetical paradigm

advocated in this article.

CONCLUSIONS

This article attempted to disentangle the complex mechanisms

underlying brain IR, highlight proven or plausible links to Aβ

and tau pathologies in AD, as well as provide information

about promising recent EV-based biomarkers, in vivo glucose

MRSmeasures, and gene array neuroinformatics techniques. The

convergence of such diverse sources of evidence makes it all

but certain that brain IR plays a major role in AD pathogenesis

linking the two main types of pathology (Figure 4). Ultimately,

the merit of this hypothesis rests on demonstrating effectiveness

in ongoing and future clinical trials.
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