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Abstract

Of all the age-related declines, memory loss is one of the most devastating. While conditions that increase longevity have
been identified, the effects of these longevity-promoting factors on learning and memory are unknown. Here we show that
the C. elegans Insulin/IGF-1 receptor mutant daf-2 improves memory performance early in adulthood and maintains learning
ability better with age but, surprisingly, demonstrates no extension in long-term memory with age. By contrast, eat-2
mutants, a model of Dietary Restriction (DR), exhibit impaired long-term memory in young adulthood but maintain this level
of memory longer with age. We find that crh-1, the C. elegans homolog of the CREB transcription factor, is required for long-
term associative memory, but not for learning or short-term memory. The expression of crh-1 declines with age and differs
in the longevity mutants, and CREB expression and activity correlate with memory performance. Our results suggest that
specific longevity treatments have acute and long-term effects on cognitive functions that decline with age through their
regulation of rate-limiting genes required for learning and memory.
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Introduction

A guiding proposition of longevity research is that treatments

that extend survival will also be generally beneficial to the health of

the organism. However, many specifics of this concept remain to

be tested. In humans, aging is often accompanied by declines in

cognitive function. An understanding of the molecular mecha-

nisms underlying the initiation and progression of age-related

neuronal decline requires an experimental system to quickly test

early symptoms, rather than the correlative downstream effects, of

neuronal decline and disease. Although C. elegans’ neural system is

relatively simple compared with higher organisms, it has been an

important model system for the study of neuronal development,

synapse formation and function, and neuron-mediated behaviors.

C. elegans has also been invaluable in the study of aging, revealing

several longevity-modifying pathways that have proven to be

conserved in higher organisms [1–6]. C. elegans is particularly

useful as a model of post-mitotic cellular aging; because the cells

do not turn over, maintenance of neuronal function must be due to

cell and protein maintenance with age, as is the case for the

majority of human brain cells. With its short lifespan and simple

stereotyped nervous system, a C. elegans model characterizing the

age-related neuronal decline of neurodegenerative disease may

allow the identification of novel therapeutic targets for the earliest-

onset cognitive disorders in humans.

Electron microscopy studies reveal that while C. elegans muscle

tissue degrades with age, neuronal cells maintain their structural

integrity [7]. However, this may not indicate a retention of

function with age: humans display short-term memory loss that

appears to be independent of neuronal degeneration [8].

Functional studies show that Drosophila also experience declines

in olfaction and olfactory learning with age [9]. C. elegans displays

age-related declines in chemotaxis [10] and isothermal tracking, a

type of associative memory recalling the temperature at which an

animal was raised. However, these declines significantly overlap

with age-related declines in motility and may be related to

degradation of muscle function [10]. Age-related decline in

habituation (desensitization to mechanical stimulus) occurs late

in adulthood as well, also overlapping with declines in muscle

function [11]. Thus, it remains to be determined whether C. elegans

experiences early age-related declines in higher-order neuronal

function despite the structurally intact appearance of neurons.

Two of the primary regulators of longevity, Insulin/IGF-1

Signaling (IIS) and Dietary Restriction (DR), have been well-

studied in C. elegans. The DAF-2 insulin receptor

(WBGene00000898) and its downstream target, the transcription

factor DAF-16/FOXO (WBGene00000912), regulate survival,

stress resistance, and the maintenance of youthful movement in C.

elegans [1,12,13]; its homologs in other organisms, including

humans, also regulate aging, suggesting significant conservation
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of this pathway’s functions [4,5,14]. The C. elegans mutant eat-2

(WBGene00001133) is a model of Dietary Restriction and lives up

to 50% longer than wild type [2]; DR increases survival in every

organism tested [15]. Low insulin signaling in daf-2 mutants

maintains isothermal tracking and chemotaxis abilities with age

better than wild type [10,16]; conversely, high insulin levels

decrease locomotion and spatial memory in mice [17], suggesting

that insulin signaling’s effects on cognition may also be conserved.

DR has also been suggested to attenuate age-related cognitive

decline [18], but the molecular bases for such effects are not yet

known.

Here we have designed positive olfactory associative assays to

measure C. elegans learning and memory. We have found that C.

elegans long-term associative memory (LTAM) requires the same

molecular components, such as transcription, translation, and

CREB activity, as long-term memory in other organisms. Our

aging results suggest that long-term olfactory memory is the first

function to be lost with age and that olfactory learning,

chemotaxis, and motility decline later and sequentially, prior to

any obvious structural defects. We then tested these behaviors in

the insulin-signaling and DR longevity mutants, both in young and

aged worms, and found that these mutations have surprisingly

different effects on age-related declines in learning and memory.

We find that CREB levels and activity correlate well with long-

term memory, suggesting an underlying molecular mechanism

determining memory performance. Our results suggest that the

regulation of the degeneration or maintenance of these behaviors

may be conserved in higher organisms and may also be

manipulable through specific longevity treatments.

Results

C. elegans Remember a Food-Odorant Association
To examine cognitive decline in C. elegans, we developed simple

Pavlovian appetitive associative learning and memory assays using

the AWC neuron-sensed odorant butanone (Figure 1), and tested

these behaviors with age in wild-type animals and in longevity

mutants. Briefly, after a short starvation, worms are fed in the

presence of butanone at a concentration that normally elicits a low

chemotactic response (similar to Toroyama et al. [19]; Figure 1B),

and then are tested for their attraction to butanone (Figure 1A).

We found that after a single (‘‘massed’’) training, wild-type

animals’ chemotaxis to butanone increased ,0.6 chemotaxis

index units, which is its ‘‘Learning Index’’ (LI). This massed

associative learning was saturated by 30 min of training (Figure 1C)

and was dependent on the simultaneous presence of food and

butanone during training (Figure 1B).

Memory can be separated into distinct classes based on duration

and molecular requirements; in Aplysia, Drosophila, and mice, short-

term memory lasts minutes to hours [20,21], while long-term

memory lasts hours to days and requires new protein synthesis and

gene transcription [22]. To assess the duration of the learned

association, we held worms on a plate with food but no butanone

after a single training session. We found that the memory of the

food-butanone association was retained less than two hours

(Figure 1D), which is similar to the duration of C. elegans salt-

starvation association [23]. Starvation after massed training only

slightly extended this short-term associative memory (STAM)

(Figure S1A).

In flies, mice, and Aplysia, training paradigms in which

conditioning stimuli are presented to animals several times with

rest periods between presentations (‘‘spaced training’’) yield

longer-lasting memory than does massed training [22]. We found

that spaced training also greatly enhanced the duration of C.

elegans’ memory of the food-butanone association: while the

number of training blocks did not affect initial (‘‘spaced’’) learning

(0 h, Figure 1E), recall increased with the number of training

blocks. After seven training blocks, the learning index 16 h post-

training was the same as that immediately after conditioning

(Figure 1E). (Although the 16 h time point is arbitrary, it is similar

to the time frame used in mammalian long-term memory studies

[24].)

In our spaced-training paradigm, worms are starved in the

‘‘rest’’ period between conditioning training sessions and put onto

food after training (the post-conditioning period). Therefore, any

decline in LI after training is not due to adaptation since butanone

(the conditioned stimulus) is not present between training and

testing for memory. In terms of classical conditioning, holding

worms on food after spaced training may be considered to be re-

exposure to the unconditioned stimulus; however, in our assays it

is critical to return animals to food, the neutral state, after

conditioning, since significant transcriptional changes in response

to starvation can occur as soon as 1 h after the removal of food

[25]. Moreover, we find that holding naı̈ve worms on plates

without food for 16 h greatly increases their attraction to butanone

(Figure S1B). Thus, starving the worms during the post-

conditioning period would not allow a fair test of how well the

association between butanone and food is retained.

Previous studies in Drosophila have demonstrated that varying

the duration of the rest period during spaced training (either

mechanically or through genetic manipulation) can affect recall

performance [26,27,28]. We found that doubling or halving the

length of time between training intervals appears to have no effect

on long-term memory (Figure S1C).

Long-term memory in other organisms requires gene transcrip-

tion and protein synthesis [22]. We found that cycloheximide

treatment and cold shock, which interrupt protein synthesis, and

actinomycin D treatment, which interrupts transcription, all

abrogated 16 h memory but had no effect on the 0 h LI

(Figure 1F), indicating that both protein translation and gene

transcription are required for long-term memory but not for

spaced learning. Thus, our spaced-training memory paradigm

Author Summary

In humans, aging is often associated with a decline in
cognitive function. Progress toward an understanding of
the molecular mechanisms underlying the initiation and
progression of age-related neuronal decline could be
hastened by the development of experimental systems
that quickly test early and true symptoms (rather than the
correlative downstream effects) of neuronal decline and
disease. In contrast to muscle degradation, the nervous
system of C. elegans is structurally remarkably well-
preserved, leaving open the question of how to define
age-related changes in neuronal function. To address this
problem, we have established a novel system to study
associative learning, short-term associative memory, and
long-term associative memory in C. elegans. Through
chemotaxis assays, we measured worms’ ability to learn
a positive association of a neutral chemoattractant with
food. We found that long-term, but not short-term,
associative memory is dependent on crh-1, the C. elegans
homolog of the transcription factor CREB. Furthermore, we
find that worm learning and long-term associative memory
decreases with age and is influenced differently by insulin/
IGF-1 and Dietary Restriction longevity pathways. These
effects can be largely attributed to changes in expression
of crh-1, which correlate with memory performance.

C. elegans Long-Term Memory Decline with Age
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Figure 1. C. elegans learn and remember a positive association between food and the weak chemoattractant butanone. (A) Positive
associative olfactory learning and memory assays. Well-fed worms are starved, then fed in the presence of 10% butanone; testing immediately after a
single (massed) training measures learning, and short-term associative memory (STAM) is measured after an interval without exposure to butanone.
Long-term associative memory (LTAM) is measured after several intervals of (spaced) training. (B) C. elegans positive associative learning. Worms were
tested for chemotaxis toward 10% butanone before (Naı̈ve) or after conditioning massed training (Trained). Control conditioning paradigms include
conditioning training without the 1 h pre-starve, starving for 1 h alone, conditioning training with food alone, 10% butanone alone, or unpaired
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SEM; *** p,0.001.
doi:10.1371/journal.pbio.1000372.g001
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greatly enhances the duration of recall compared with the massed-

training paradigm, and meets the transcriptional and translational

requirements of classical long-term associative memory (LTAM).

C. elegans Long-Term Associative Memory Requires the
Transcription Factor CREB
Several genes that are required for olfactory learning have been

identified, including casy-1 (WBGene00000403), a calsyntenin

[29]; glr-1 (WBGene00001612), an AMPA-type glutamate recep-

tor [30,31]; and hen-1 (WBGene00001841), a secretory protein

required for cue integration and olfactory learning [32]. We found

that these mutants performed normally in benzaldehyde chemo-

taxis assays (Figure S2A); however, these animals, especially casy-1

and glr-1, exhibited defects in massed learning (Figure 2A) and

long-term (16 h) memory (Figure 2B).

By contrast, we found that CREB, a bZIP transcription factor

required for long-term memory in Aplysia, Drosophila, and

mammals [22], is required specifically for LTAM: deletion

allele mutants of CREB (crh-1, WBGene00000793) had normal

benzaldehyde chemotaxis (Figure S2B), massed learning

(Figure 3A), short-term memory (Figure 3A), and spaced

learning (Figure 3B), but were defective for long-term memory

(Figure 3B). In fact, crh-1 recall is lost by 2 h post-spaced

training (Figure S2C), while wild type shows no decrease at this

point, highlighting the requirement for CREB activity in long-

term memory. Expression of CREB under a neuronal-specific

promoter (crh-1(tz2);cmk-1::crh-1b [33]) completely rescued the

long-term memory defect of the crh-1(tz2) deletion mutant

(Figure 3C). Moreover, neuronal overexpression of CREB in a

wild-type background both increases long-term memory dura-

tion (Figure 3D) and reduces the number of training sessions to

achieve 16 h memory (Figure 3E). Together, our results suggest

that learning is molecularly distinct from but required for

subsequent memory, and that CREB is specifically required for

long-term associative memory.

Learning and Memory Decline with Age
The observation that C. elegans neurons do not display obvious

age-dependent structural degeneration [7] leads to the question of

whether worms experience functional neuronal decline. Thus, we

tested the effect of aging on various neuronally-controlled

behaviors. While motility and chemotaxis were unaffected through

the first week of adulthood (as shown previously [10,34]), we found

that massed learning, spaced learning, and long-term memory

abilities declined quickly (Figure 4). Strikingly, 16 h long-term

memory was impaired significantly by Day 2–3 and was

completely lost by Day 5. Thus, not only do learning and long-

term memory require different gene activities (Figures 2, 3), but

these behaviors also decline at different rates, suggesting that the

molecularly distinct mechanisms of learning and memory are also

differently susceptible to aging.

Reduced Insulin Signaling Improves Memory in Young
Adults
daf-2 insulin/IGF-1 receptor mutants are long-lived and

morphologically youthful [1] and thus might be predicted to

maintain cognitive abilities with age. In our positive appetitive

assay, daf-2 mutants displayed no defects in chemotaxis to

butanone or to another AWC-sensed odorant, benzaldehyde

(Figure S2B), consistent with daf-2 performance in chemotaxis

adaptation assays [10], and no learning defects (Figure S3A).

Strikingly, daf-2(e1370), daf-2(e1368), and daf-2(RNAi) animals

(Figure 5A,B; Figure S3B–E) displayed greatly increased duration

of memory on the first day of adulthood: daf-2’s short-term

memory lasted more than 3 times as long as wild type’s (Figure 5A,

Figure S3B,C), and daf-2’s long-term memory at 40 h is still more

than 60% of its initial learning levels (Figure 5B, Figure S3D,E).

daf-2’s short- and long-term memory extensions both require the

activity of the downstream transcription factor daf-16/FOXO

(Figure 5A,B).

Are daf-2 worms simply less plastic, acquiring and losing

information more slowly than wild-type worms do? To answer this

question, we measured the rate of learning in both the massed and

spaced-training paradigms. In the massed training paradigm, daf-2

worms learned at a rate similar to wild type, with maximum learning

achieved after 30 min of conditioning (Figure 5C), suggesting that daf-

2’s basic massed learning ability is similar to wild type’s. However, daf-

2 worms established LTAM faster than wild type, reaching maximum

16 h memory with only five training blocks (Figure 5D), similar to the

performance of CREB overexpression animals (Figure 3E). These

results suggest that reduced insulin signaling does not change plasticity
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but can both establish the long-term memory of an association more

quickly and prolong the duration of this association.

Dietary Restriction Impairs Young Adult Memory
daf-2’s cognitive phenotypes could be specific to IIS or could

be general for all longevity pathways. To differentiate these

possibilities, we examined the acetylcholine receptor mutant

eat-2, a model of the well-established DR longevity mechanism.

eat-2 encodes a nicotinic acetylcholine receptor (nAChR) that

functions postsynaptically in pharyngeal muscle to regulate the

rate of pharyngeal pumping [35,36]. eat-2 mutants ingest food

(E. coli) poorly and extend life span through a daf-16-

independent DR pathway [2,37]. We found that Day 1 adult

eat-2 mutants displayed normal benzaldehyde chemotaxis

(Figure S2B) and normal massed learning (Figure 6A, Figure

S4A), suggesting that its decreased food ingestion does not

affect its ability to form food-olfactory associations or to

chemotax toward odorants. eat-2’s short-term memory dura-

tion was the same as wild type’s (Figure 6A, Figure S4A), in

contrast to daf-2’s significant STAM extension (Figure 5A,

Figure S4B,C). However, in two point mutation allele mutants,

eat-2 animals’ long-term memory was significantly impaired,

with a complete abrogation of memory by 24 h (Figure 6B,

Figure S4B). eat-2’s neutral effect on STAM and negative effect

on LTAM were unexpected, based on our observations that

starvation extends STAM (Figure S1A) and that daf-2

mutations extend both STAM and LTAM (Figure 5A,B,

Figure S3B–E). Increasing the number of training blocks from

seven to ten improves eat-2’s LTAM to a level similar to wild

type’s after 76 spaced training (Figure 6C), suggesting that eat-

2 mutants can form long-term memories but require more

training to do so.

To rule out the acetylcholine receptor itself as the source of eat-

2’s memory impairment, we fed eat-2 mutants smaller, ‘‘easier to

eat’’ bacteria, Comamonas sp. [38] (Leon Avery, personal

communication). Comamonas had no effect on the growth or

longevity of wild-type worms but suppressed eat-2’s small size and

long life span (Figure 7A–C, Figure S4C); thus, these worms still

had the mutant acetylcholine receptor but were not dietarily

restricted. Strikingly, Comamonas also suppressed eat-2’s long-term

memory defect (Figure 7D). All of eat-2’s phenotypes were also

suppressed by treatment with RNAi of pha-4, the FoxA

transcription factor that mediates eat-2’s effects on longevity

(Figure 7E) [2,37]. Together, these results suggest that the

memory impairment we observe in eat-2 mutants is indeed due to

DR rather than to acetylcholine receptor dysfunction. Thus,

while Dietary Restriction and reduced insulin signaling both

increase longevity, the two pathways influence cognitive ability of

young adults in an opposite manner.

Reduced Insulin Signaling and Dietary Restriction
Differentially Affect Maintenance of Learning and
Memory with Age
To test the roles of IIS and DR in the maintenance of cognitive

ability with age, we measured daf-2 and eat-2 mutants’ learning and

memory abilities later in adulthood. We found that daf-2 mutants

retain the ability to learn longer than do wild-type or daf-16 worms,

with no significant loss in massed learning ability at Day 5, when wild-

type massed learning ability has completely ceased (Figure 8A, Figure

S5A). Surprisingly, however, daf-2 mutants lose long-term memory
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with age at the same rate as wild type: on Day 4, daf-2 mutants had

better spaced learning than wild-type worms but exhibited no

significant 16 h memory (Figure 8B). Thus, despite extending

longevity and learning ability with age, reduced insulin signaling does

not appear to maintain memory performance with age.

Like daf-2, eat-2’s learning ability is maintained with age: on Day

4, eat-2 mutants learned better than Day 4 wild-type worms after

spaced training (Figure 8C). However, in contrast to daf-2 mutants,

eat-2 mutants maintain both short- and long-term memory with

age, as Day 4 eat-2 animals exhibited no significant decline from

their performance on Day 1 (Figure 8C, Figure S5B,C). This

maintenance of long-term memory can be attributed to DR, as

Comamonas feeding suppressed both the aged learning and memory

phenotypes of eat-2 mutants (Figure 8D).

To determine whether DR strictly in adulthood can rescue

age-related memory phenotypes, we raised eat-2 animals on

Comamonas until early adulthood, then switched them to E. coli to

induce DR. When switched post-developmentally, the animals

were still large and exhibited normal (wild-type-like) Day 1

memory (Figure S5D–F) but retained Day 4 memory better than

wild-type (Figure 8E, Figure S5G), suggesting that memory loss

was alleviated by DR.

Thus, while DR and reduced IIS both increase longevity, the

two pathways have very different effects on cognitive behaviors,

both early in adulthood and with age.

Memory Performance Correlates with CREB
Transcriptional Levels and Activity
To identify the underlying molecular mechanisms that might

distinguish IIS and DR effects on long-term memory maintenance

with age, we examined the transcriptional levels of key learning

and memory genes. While the expression of the learning genes glr-

1 and casy-1 did not change significantly with age (Figure S6A), we

found that CREB/crh-1 expression levels correlate with memory
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performance: crh-1 levels are higher in young daf-2 than in wild-

type (Figure 9A) or daf-16;daf-2 animals, lower in young eat-2 than

in wild-type (Figure 9A), fall with age in both wild-type and daf-2

worms (Figure 9B), and are maintained with age in eat-2 mutants

(Figure 9B, Figure S6B).

To determine whether changes in CREB transcriptional levels

reflect changes in activity, we used an anti-phosphorylated CREB

antibody to assay levels of activated CREB. First, we found that

naı̈ve crh-1 overexpression worms have a higher level of

phosphorylated CREB (P-CREB) than did wild-type animals

(Figure 9C, Figure S6C). Secondly, both wild-type and CREB

overexpression worms showed increased P-CREB levels post-

training (Figure 9D, Figure S6C); these levels increased with

training sessions (Figure 9E, Figure S6D), parallel to LTAM

activity (Figure 1E). Increases in CREB activity with training

sessions also parallels the LTAM performances of daf-2 and eat-2

mutant worms (Figures 5, 6): while daf-2 P-CREB levels increased

fairly linearly through six training trials (Figure S6F), P-CREB

levels increased only with additional training sessions in eat-2

animals (Figure S6G).

To determine how well crh-1 expression levels and LTAM

activity correlate, we plotted the ratios of LTAM activities against

the ratios of crh-1 levels for eight pairs of samples (Figure 9F); the

R2 value of 0.8 indicates that crh-1 ratios are a reasonable

predictor of relative LTAM activity. An even stronger correlation

was found when we plotted the ratios of LTAM activities against

ratios of P-CREB levels (R2=0.9; Figure 9G). Thus, CREB

activity appears to be the major molecular mechanism determin-

ing LTAM performance, and crh-1 levels may be an excellent

predictor of long-term memory performance.

Discussion

While it is known that many neuronal structures remain intact

with age [7,8], previously it was not clear how higher-order

neuronal functions are affected by aging. While basic motor skills

and chemotaxis abilities continue through later stages of

adulthood, we find that higher-level cognitive abilities are lost

much earlier in adulthood. Our assays are able to distinguish

between the processes of massed learning, spaced learning, short-

term memory, and long-term memory, and our results suggest that

not only do these processes have distinct molecular requirements,

but they also decline differentially with age. We find that long-term

memory, which inherently requires learning and chemotaxis

abilities, declines particularly early in adulthood, prior to the

decline of learning, chemotaxis, and motility. LTAM likely

involves complex synaptic machinery [20] and thus may be

particularly susceptible to age-related damage. Associative olfac-

tory learning and memory appear to be more sensitive to age-

related decline than other behaviors, such as isothermal tracking

[10] or habituation [11]. Interestingly, anosmia is recognized as

one of the earliest symptoms of neurodegeneration, including

Alzheimer’s and Parkinson’s disease [39], and declines in taste are

linked to olfactory defects [40]. Therefore, food-smell associations

may be extremely effective in evaluating changes in learning and

memory with age and neurodegeneration in humans as well as in

worms.

We have also demonstrated for the first time, to our

knowledge, the requirement of CREB activity in C. elegans

memory. The differential effects of the IIS and DR pathways

on learning and memory decline with age appear to be

attributable to their differential regulation of CREB/crh-1

expression levels and activity, rather than to changes in

learning-associated genes such as glr-1, casy-1, and hen-1. In
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general, we find that CREB expression level changes can

largely account for the decline in wild-type memory with age

and its maintenance in longevity mutants (Figure 9), suggesting

that CREB levels may be a good indicator of long-term

memory function. CREB levels and activity also decline with

age in the mammalian brain [41,42], and over-expression of

CREB in the hippocampus increases the performance of aged

animals in several long-term memory tasks [43]. Thus, the

molecular mechanisms underlying C. elegans long-term memory,

particularly CREB’s importance, are likely conserved in higher

organisms. Our results imply that specific types of longevity

treatments could have either positive or negative effects on

learning and memory, and therefore, it will be crucial to

examine the effects of specific longevity treatments on

maintenance of human cognitive behaviors with age.

Materials and Methods

Worm Cultivation
Animals were cultivated at 20uC on HGM plates on OP50 E.

coli or Comamonas sp. (DA1877) using standard methods [44] and

developmentally synchronized by hypochlorite treatment. Worms

were moved to HGM + 50 mM FUdR at the L4 stage when tested

for learning or memory after Day 1 of adulthood.

Strains
Wild type: (N2 Bristol); mutant strains: RB888 (casy-1(ok739)),

KP4 (glr-1 (n2461)), JC2154 (hen-1(tm501)), DA465 (eat-2(ad465)),

DA1116 (eat-2(ad1116)), CF1041 (daf-2(e1370)), CF1038 (daf-

16(mu86)); CF1043 (daf-16(mu86);daf-2(e1370)); MT9973 (crh-

1(n3315)); YT17 (crh-1(tz2)); and YT50 (crh-1(tz2);cmk-1::crh-1b).

The tz2 mutation lacks 979 nucleotides/38 residues at the C-

terminus of CREB’s bZIP region, and no functional protein is

expressed [33]. Alkema and Horvitz report that n3315 is a loss of

function deletion allele that eliminates the expression of all four

crh-1 isoforms (Wormbase). The ‘‘crh-1 OE’’ strain (CQ71) was

made by crossing N2 with YT50 animals and selecting worms

carrying the cmk-1::crh-1b transgene.

Chemotaxis Assay
Chemotaxis assays were performed according to previously

described methods [45]. .200 developmentally-synchronized

worms were placed at origin, and the number at butanone (1 mL

1:10 butanone:ethanol + 1 mL NaN3), ethanol control (+ 1 mL

NaN3), and origin were counted after 1 h. Chemotaxis Index (CI) =

[(nattractant) 2 (ncontrol)] / [(Total 2 norigin)].

Mobility Assay
Mobility was measured on each day of adulthood by calculating

the percentage of worms that remained at the origin of a

chemotaxis assay plate after 1 h.

Learning Assay (16Massed Training)
Synchronized Day 1 adult hermaphrodites were starved in M9

buffer for 1 h, transferred to a 60 mm NGM plate with 500 mL

freshly-seeded OP50 or DA1877 and 2 mL of 10% butanone on

lid, trained for 1 h, then tested for chemotaxis to butanone. LI =

CITrained 2 CINaive.

STAM Assay
After 16 massed training, worms were transferred to 60 mm

NGM plates freshly seeded with 500 mL OP50 or DA1877

(‘‘holding plate’’) for specified intervals.

LTAM Assay
After 1 h of starvation, worms received seven training blocks

(30 min on training plates with food and butanone, followed by

two M9 washes and 30 min on plates without food). Worms were

then tested immediately for spaced learning (‘‘0 h’’) or transferred

to holding plates for 16 or 24 h. SEM and student’s t test was used

to assign p values in all assays.

Protein Synthesis and Transcription Inhibition during
LTAM Training
Protein synthesis inhibition: animals were cold shocked at

220uC [30] for 15 min, then were returned to the conditioning

temperature (20uC) for 15 min, or treated with 800 mg/mL

cycloheximide [46], during the starvation period of each training

block. Transcription inhibition: animals were treated with 100 mg/

mL Actinomycin D during the starvation period of each training

block [47].

Survival Analysis
Wild-type or eat-2(ad465) worms were cultivated and life span

assays were carried out at 20uC on NGM + 50 mM FUdR with

OP50 (E. coli) or DA1877 (Comamonas sp.). The first day of

adulthood was defined as t=0. n.70 for each strain. Standard

Kaplan-Meier survival analysis was used to assess significance

([48], GraphPad, Prism 5.01).

RNAi
RNAi clones were PCR-verified. RNAi-sensitive eri-1(mg366);lin-

15B(n744) (daf-2 RNAi) or eat-2(ad465) (pha-4 RNAi-treated) animals

were synchronized and cultivated on vector control or RNAi bacteria

on NGM plates with 0.1 M IPTG (final concentration) at 20uC until

Day 1 of adulthood.

Gene Expression Analysis
Data for gene expression analyses with age in wild-type, daf-2,

and daf-16;daf-2 conditions was provided by Murphy et al. [49].

eat-2(ad465) and daf-16(mu86) mutants were collected and

analyzed as previously described [49,50]. Data were filtered for

quality, and replicates were collapsed to an average value

(PUMAdb; http://puma.princeton.edu). RT-PCR was carried

out to verify expression results (Figure 9A, Figure S6B). cDNA was

made from total worm RNA (checked for 230/260/280 quality

before processing) using TaqMan Reverse Transcription Reagents

(Applied Biosystems). Serial dilutions of 0.5 mg/mL cDNA were

used in 20 mL PCR reactions. For crh-1 RT-PCR experiments, the

primers used (forward: ATGTCAGCGAAAGGTAACGG, re-

verse: CGTTTTGTTGTGGTCCTCCT) amplify a 442 bp

fragment located at 30–471 bp in the 1,197 bp mRNA sequence

(NCBI reference sequence NM_001027690.1), a region that lies

upstream of the deletion described for crh-1(tz2).

Western Blot Analysis
Worms were washed in M9, collected, and frozen in liquid

nitrogen. Lysates were prepared by freeze/thawing worm pellets

in lysate buffer (50 mM HEPES, 1 mM EDTA, 150 mM NaCl,

1 mM NaFl, 10% glycerol, 1% Triton X-100, proteinase

inhibitor), and sonication to break cells. Protein concentrations

were quantified using Coomassie Plus (Pierce). Anti-Phospho-

CREB (Ser133) rabbit mAb (Cell Signaling Technology 87G3,

#9198) was used to probe for P-CREB; Anti-a-Tubulin mouse

mAb (Sigma-Aldrich, #T9026) was used as a probe for the

loading control, as we were unable to find a working antibody for

total CREB in C. elegans. Antibodies were diluted 1:1,000 in 16
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TBS-T, 5% BSA. Quantification of Western blot results was

performed using ‘‘GeneTools’’ software from SynGene; P-CREB

levels were compared to the a-tubulin loading control.

Supporting Information

Figure S1 Associative learning and memory controls. (A)

Post-conditioning 16 massed trained worms on holding plates

without food increases short-term associative memory but still

declines within hours. (B) Worms starved for 16 h have a

significantly higher naı̈ve chemotaxis to butanone than well-fed

worms. (C) Halving (15 min) or doubling (60 min) the time of the

starvation period during 76 training does not affect LTAM

performance. (D) Replicates of wild type LTAM. Wild Type 1–4

spaced trained on OP50, Wild Type 5 grown and spaced trained

on L4440 (Control vector) RNAi. 0 h and 16 h across all five sets

of WT experiments was averaged for Figure 2B. (E) Spaced

training with both food and butanone is required for the formation

of 16 h memory. (A–C, E): n = 6; (B) n = 3 trials for WT 1 and 5,

n = 6 trials for WT 2–4; 6 SEM; *** p , 0.001.

Found at: doi:10.1371/journal.pbio.1000372.s001 (3.00 MB TIF)

Figure S2 Mutant benzaldehyde chemotaxis and crh-

1(tz2) LTAM controls. (A) Naı̈ve learning mutants casy-

1(ok793), glr-1(n2461), and hen-1(tm501) all chemotax normally

to AWC-sensed odorant benzaldehyde (9.8%). (B) Naı̈ve longevity

mutants daf-2(e1370) and eat-2(ad465), and CREB mutant crh-

1(tz2) all chemotax normally to 9.8% benzaldehyde. (C) crh-1(tz2)

16 h memory is depleted by 4 h after LTAM spaced training. (A–

C): n = 6; 6 SEM; * p , 0.05, ** p , 0.01.

Found at: doi:10.1371/journal.pbio.1000372.s002 (3.00 MB TIF)

Figure S3 Insulin signaling learning and memory

controls. (A) daf-2(e1370) has higher naı̈ve chemotaxis but still

shows enhanced association between food and butanone after 76

spaced conditioning. (B–C) Like daf-2(e1370) worms (Figure 5A),

daf-2(e1368) (B) and daf-2(RNAi) (C) animals also exhibit extended

STAM on Day 1 of adulthood. (D–E) Like daf-2(e1370) worms

(Figure 5B), daf-2(e1368) (D) and daf-2(RNAi) (E) animals also

display extended LTAM on Day 1 of adulthood. N = naı̈ve,

numbers under bars represent hours after 76 spaced training. (A,

D–E): n = 6 trials; (B–C): n = 4 trials; 6 SEM; *** p , 0.001.

Found at: doi:10.1371/journal.pbio.1000372.s003 (3.00 MB TIF)

Figure S4 Dietary Restriction learning and memory

and lifespan controls. (A) eat-2(ad465) worms have wild-type-

like 16massed learning and STAM. (B) Like eat-2(ad465) worms

(Figure 6B), eat-2(ad1116) mutants also exhibit defective LTAM.

Numbers under bars represent hours after 76 spaced training. (C)

Feeding with Comamonas suppresses eat-2(ad465)’s lifespan exten-

sion phenotype. (A): n = 6 trials; (B): n = 4 trials; 6 SEM; ** p ,

0.01; (C): n . 70 animals; WT/E. coli versus eat-2/E. coli: p ,

0.001; versus eat-2/Comamonas: p = 0.25; versus WT/Comamonas:

p = 0.003.

Found at: doi:10.1371/journal.pbio.1000372.s004 (3.00 MB TIF)

Figure S5 Controls for IIS and Dietary Restriction

learning and memory with age. (A) daf-2(e1370) mutants

extend 16massed learning with age, while daf-16(mu86)’s massed

learning declines more quickly with age. (B) daf-2(e1370) STAM

declines with age. (C) eat-2(ad465) STAM is maintained with age.

(D) Day 1 adult eat-2(ad465) worms (Figure 8E) raised on

Comamonas are significantly larger than those grown on E. coli.

(E) Day 1 adult eat-2(ad465) worms (Figure 8E) raised on

Comamonas have wild-type-like LTAM. (F) Day 1 adult eat-

2(ad465) worms raised on Comamonas have wild-type-like LTAM

compared to those grown on Control RNAi (antibiotic-selectable

E. coli). (G) Post-developmental induction of Dietary Restriction

improves maintenance of spaced learning and memory on Day 4

of adulthood. eat-2(ad465) worms were cultivated on Comamonas

until Day 1 of adulthood, then switched to growth on Control

RNAi (antibiotic-selectable E. coli). (A): n = 1 trial; (B–C): n = 6

trials; (D): n $ 15 worms; (E–G): n = 4 trials. Numbers under bars

represent hours after 76 spaced training; 6 SEM; ** p , 0.01.

Found at: doi:10.1371/journal.pbio.1000372.s005 (3.00 MB TIF)

Figure S6 Expression of learning and memory genes

and P-CREB levels. (A) Expression levels of learning genes glr-1

and casy-1 in old versus young wild-type worms. (B) Semi-

quantitative RT-PCR verification of crh-1 expression with age in

wild-type, daf-2(e1370), and eat-2(ad465) worms. (C) P-CREB

levels increase after 76 training in wild-type and crh-1-overex-

pressing animals; P-CREB levels are higher in crh-1-overexpressing

worms relative to wild type before and after 76 training

(Figure 8C, D). (D) P-CREB levels increase in wild-type worms

with 76training. (E) P-CREB levels are higher in daf-2(e1370) and

lower in eat-2(ad465) worms relative to wild-type before and after

76 training (Figure 8C, D). (F) P-CREB levels increase in daf-

2(e1370) worms with 76 training. (G) P-CREB levels do not begin

to increase in eat-2(ad465) worms until after six training blocks. (A–

B): n $ 4; 6 SEM; ** p , 0.001.

Found at: doi:10.1371/journal.pbio.1000372.s006 (3.00 MB TIF)
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