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OPTIMIZATION MODEL 
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Catastrophes produce losses highly correlated in space and time, which break the law of 
large numbers. We derive the insurability of dependent catastrophic risks by calculating 
conditions that would aid insurers in deliberate selection of their portfolios. This paper 
outlines the general structure of a basic stochastic optimization model. Connections be
tween the probability of ruin and nonsmooth risk functions, as well as adaptive Monte 
Carlo optimization procedures and path dependent laws oflarge numbers, are discussed. 
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laws of large numbers 
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1. INTRODUCTION 

Catastrophic risks challenge both conventional economic and existing 

risk (insurance) theory. Although risk is a key concept to characterize 

future uncertain outcomes of any socio-economic and environmental 

changes, existing economic theory does not provide appropriate risk

related approaches. The standard economic theory is dominated by 

the universal power of the price system to reveal all uncertainties and 

bring the economic system to an efficient equilibrium. Insurers are 
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then able to derive the possibility of pricing and spreading risks 

through markets over the whole society in such a way that those who 

have enjoyed gains will compensate those who have suffered losses. 

Under such assumptions of certainty, catastrophes pose no special 

problems [l]. 

Insurance risk theory has developed independently of the funda

mental economic ideas [l, 11]. The central problem of this theory is 

modeling the probability distribution of total future claims [14], which 

is then used to evaluate ruin probabilities, premiums, reinsurance ar

rangements etc. This theory essentially relies on the assumption of in

dependent, frequent, low-consequence (conventional) risks, such as car 

accidents, for which decisions on premiums, estimates of claims and 

likelihood of insolvency (probability of ruin) can be calculated by 

using rich historical data. The frequent conventional risks also permit 

simple "trial-and-error" or "learning-by-doing" procedures for adjust

ing default decisions, for instance, premiums and coverage. 

Catastrophes produce claims highly correlated in space and time. The 

law of large numbers does not operate (in general) and the probability 

of ruin can be reduced only if insurers deliberately select the dependent 

catastrophic risks they will cover. So-called catastrophe modeling [15] is 

becoming increasingly important to insurance companies for estimating 

dependent catastrophic losses as they analyze alternatives on the allo

cation of coverage, premiums, reinsurance agreements, and the effects 

of mitigation measures. 

The aim of this paper is to show that the choice of insurance decisions 

in the presence of catastrophic risks can be regarded as a stochastic 

optimization problem. Section 2 illustrates the peculiarities of emerging 

stochastic optimization problems by using a typical model of risk 

theory. Section 3 discusses a rather general model attempting to bridge 

decision-oriented economic theory with risk theory and catastrophe 

modeling. This discussion closely follows papers [5-7]. The concept of 

risk emphasizes the variability of outcomes, the possibility of gains 

and, at the same time, the chances of losses. This type of "hit-or miss" 

situation often leads to nonsmooth models [4], challenging the standard 

paradigm of smooth utilities and their marginal values. In our model the 

risk of ruin is modeled by nonsmooth risk functions. Section 4 discusses 

the connections between the nonsmooth risk functions and the chance 

constraints. Section 5 and 6 analyze the adaptive Monte Carlo 
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optimization procedure on the basis of path-dependent laws of large 

numbers. Section 7 gives concluding remarks. 

2. THE STANDARD RISK MODEL 

To begin with, let us consider a simple model of an insurance business 

[14]. The main variable of concern is the risk reserve rt at time 

t: rt = r0 + 7r t - At' t 2:: 0, where 7r t, At are aggregated premiums and 

claims, and r0 is the initial risk reserve. The process A 1 = L,: ~ 1/ Sk, 

where N(t), t 2:: 0, is a counting process (e.g. , a Poisson process) with 

N(O) = 0, and {Sk};-'° is a sequence of independent and identically dis

tributed random variables (claims), in other words, replicates of a 

random variable S. 

Assume that N (t) , Sk are independent, N (t) has intensity a, i.e., 

E[N(t)] = a t, and 7r
1 = 7rt , 7r > 0. Then the expected profit over the 

interval [O, t] is (7r - aES)t, that is, the expected profit increases in time 

for 7r - aES > 0. The difference 7r - aES is the "safety loading" . It 

follows from the strong law of large numbers that lim 1_.00[7rt -At]/ . 

t = 7r - a ES with probability 1. Therefore, in the case of positive safety 

loading, 7r > aEL, we have to expect that the real random profit 7r 
1 

- A 
1 

for large enough t would also be positive under the appropriate choice 

of premium 7r = (I+ p)aES, where p is the "relative safety" loading, 

p = (7r - aES)/aES. This is a basic actuarial principle: premiums are 

calculated by relying on the mean value of aggregated claims increased 

by the (relative) safety loading. Thus, practical actuarial approaches 

ignore complex interdependencies among timing of claims, their sizes, 

and the possibility of ruin, rt::::; 0. The random jumping process rt is 

simply replaced by a linear int function r1 = r0 + (7r - aES)t. 

The main problem of the risk theory [14] is the evaluation of the ruin 

probability '11 = P{rt::::; 0 for some t, t > O} under different assump

tions on 7r
1 and At. There are several cases where '11 can be explicitly 

given, or at least given in a form suited for numerical calculations. 

An important case arises when the claim distribution is a mixture of 

exponential distributions and claims occur according to a Poisson pro

cess. There are numerous approximations for the probability distri

bution of A 
1
• Most of them provide satisfactory results only in the 

area of mean values and cannot be applied to catastrophes. 
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Various decision variables affect w. Claim size S depends on the 

coverages of the insurer from different locations. Important decision 

variables are r 0, 7r, and reinsurance arrangements, for example, the 

"excess of loss" reinsurance contract. In this case the insurer retains 

only a portion, S(x) = min{S,x},x~O, of a claim Sand the remain

ing portion is passed to the reinsurer. The reinsurance contracts with 

deductibles are defined by two variables x = (xi, x 2). In this case 

S(x) = max{x1,min[S,x2]},x1 ~O,x 2 ~0 is retained by the insurer. 

The reduction of \JI to acceptable levels can be viewed as the well

known chance constraint problem [17, 22]. The complexity is associ

ated with the jumping process A 1
• 

Consider t = 0, I, .. . , and assume that r 
1 

can be subdivided into a 

"normal" part (including r 0) M 1
, associated with ordinary claims, and 

a "catastrophic" part B 1
; 7r

1 = 7rl, where 7r corresponds to premiums 

related to catastrophes; the probability of a catastrophic event p is 

characterized by a probability distribution in an interval [p,p], and the 

probability distribution Vr(z) = P{M
1 < z} can be evaluated. Assume 

also that ruin may only occur due to a catastrophe. Then the pro

bability of ruin after the first catastrophe and with the "excess of loss" 

contract is defined as 

00 

\J!(x) = E LP (I - p)
1
-

1
V1(min{x, B 1

} - 7rt). 

1=1 

The problem is to choose the reinsurance contract x that guarantees 

a firm will not exceed a given level of ruin, \J!(x) = /, 'Y > 0. 

We can define the following stochastic approximation type pro

cedure (see, for example [21] for general definitions) . Let xk be an 

approximate solution calculated after k simulations, where x 0 is an 

arbitrary nonnegative value. Step k +I: choose tk with a probability 

µ1,'f:. 1':,1 µ1 =I, from the set tE{l,2, . .. }; generate Pk E [p,p] and 

simulate claim B~k by a catastrophe model. Adjust xk accordi;:g to the 

feedback 

xk+I =max { O,xk + k: 
1 
µ~ 1 [P (I - p)1k- 1 V 1 k(min{xk,B~k} 

- 7rtk) - 1] }• 
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where k = 0, I, ... ,p is a positive constant. The sequence xk, 

k = 0, I, ... ,converges to the desired value since µ~ 1 p (I - p)rk-
1

Vrk 

(min{xk,s;k} - 7rtk) is an estimate of'l!(xk), i.e., its expected value is 

'l!(xk). This type of approach is discussed in Sections 5 and 6 for 

general problems with many insurers and complex dependent claim 

processes. The choice of probabilities µr, t = 0, I, ... can regulate the 

efficiency of the importance sampling (Section 6). 

3. THE STOCHASTIC OPTIMIZATION (STO) MODEL 

To deal with the insurability of catastrophic risks one should 

characterize patterns of possible catastrophic events, geographical 

locations of current and possible new coverages of insurers, available 

loss reduction (mitigation) measures and insurance-linked securities. 

Assume that the study region is divided into subregions or locations 

j = 1, 2, ... , m. For each location j there exists an estimate W/ of the 

"wealth" at time intervals t = 0, 1, ... that includes values of houses, 

factories, etc. A sequence of random, possibly catastrophic, events 

w = {w1, t = 0, 1, . .. } affects different locations} and generates at each 

t losses Lj(w). In the following we do not use a specific structure of the 

sequence w: we simply assume that w is an element of a probability 

space (n, F, P), where n is a set of all possible w; Fis a O'-algebra of 

measurable (with respect to probability measure P) events from n, 
and {Fr} is an increasing family of O'-algebras,Fr ~ Fr+1,Fr ~ F. 

Random variables Lj(w) are assumed to be Fr - measurable, that is, 

they depend on the observable "history" till t. In the following we also 

assume the existence of all necessary mathematical expectations 

without specifying the standard requirements each time. 

Losses Lj(w), in contrast to conventional risks, are shared by many 

participants, such as governments, insurers, reinsurers, banks, and 

brokers. In the model these are called "insurers". 

For each insurer i, the risk reserve rf at time t = 0, I, ... is defined, 

in general, as rf+ 1 = rf +I/ - Of - Sf, t 2: 0, where r? is a fixed 

amount of the initial risk reserve; I/ represents incomes such as 

premiums from insurance contracts and other assets; and Of stands 

for transaction costs and other outcomes, e.g., debts, loans, etc. In 
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the case of catastrophic risks there are strong dependencies among 

variables !/,Of, Sf defined by patterns of catastrophes and decision 

variables. 

Let us denote by qij a fraction of Lj(w) covered by insurer 

i, Li:! qij ~ 1, qij 2: 0. Then the claim process can be written as 

Sf = L
1
': 1 qijLJ. The decision variables q affect also!/, Of. For example, 

the income of insurer i from premiums 7rf at time t and the outcome 

from transactions costs Cf may be linear functions of q. nf = 
"'m I I ct - "'m ct I Th 1 . st h L..-J=I 1riJqiJ, i - L..-J=I iJqiJ. e c aim process i as a more com-

plex, nonsmooth structure in the case of reinsurance arrangements. 

Thus insurer i retains only the part Sf =min { uu, LJ:I qijLJ} in the 

case of "excess of loss" contract with reinsurer /, which is defined by 

the decision variables uu. The reinsurer I absorbs the claim Sf = 

Li max { 0, LJ:I qijLJ - uu}, where the sum is taken with respect to all 

insurers having this type of contract with /. Apart from decision vari

ables q, the distribution of Lj may depend on mitigation measures in 

location}. Variables / 1
, Of are also affected by decisions on other assets. 

Let us define all possible ex-ante decision variables by a vector x. 

If W,° is the initial wealth, then location j's wealth at time t + I is 

w/+ 1 = ")1 + !/ - o; - LJ. We assume that the "aggregate indivi

dual" from j maximizes his expected wealth ")1
, taking into account 

the risk of underestimating losses, min (0, ")1 
- E")1

], and insolvency, 

W/ < 0. Therefore assume that decisions x are chosen from the 

maximization of the expectation function HJ(x) = Eh/1 (x, w), hj = 
")

1
-

1 +11min (0, ")1
-

1 
- E")t-1] + ¢1 min (0, ")1

), where 11,<f>J are 

substitution coefficients (or risk coefficients) between possible wealth, 

the risk of underestimating losses, and insolvency; TJ is a stopping 

time, for example, the time of ruin not exceeding T, r1 = 
min [T, min { t : ")1 ~ 0, t > 0}]. Similarly, insurer i maximizes his 

expected wealth rf, taking into account the risk of overestimating 

profits and the risk of insolvency (ruin), that is, function Di(x) = 

Ed >.;( ) di_ 1-1 + . [o 1-1 E 1-1] + f; • {o 1} h i x,w, i - ri c;mm ,ri - r; uimm ,ri , w ere 

Ei, 8; are substitution coefficients between profit and the risk of over

estimating profits, min (0, rf - ER!], and insolvency; >.; is a stopping 

time. e.g.,>.;= min [T,min{t: rf ~ 0, t > O}]. 

The problem is to analyze the Pareto optimal improvement of the 

risk situation with respect to goal functions H1 (x ), D,{x) by maxi

mizing W(x) = L1': 1 OjHJ(x) +Li:! {3;Di(x), where a12: 0, {3; 2: 0, 
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LJ::o1 Ctj + L;'~ 1 /Ji = 1. This problem is similar to economic welfare 

programs [13] . The general idea of this model is also close to the model 

proposed in [3] for designing portfolios of callable bonds. Let 

w(x,w) = L j':I Ctjh/1(x,w) +Li:! /3id/';(x,w), then - W(x) can be 

written as W (x) = Ew(x,w). 

Remark 3.1 In general, functions H , D can be replaced by Hj(x) = 

Eh ( W O,Tj EWO,Tj ) D ( ) - Ed ( O,.X; E 0,Aj ) h O,t -j x , j , j , w , i x - i x, ri , ri , w , w ere a -

( o I r) , O I Th r h · · · a , a , . . . , a 1or a sequence a , a , . . . ere1ore, t e max1m1zat10n 

of W(x ) is an STO problem of the following form: maximize 

F(x ) = Ef(x, Eg(x, w), w). 

4. PROBABILITY OF RUIN 

W(x) includes nonsmooth risk functions to model the need for risk 

management. The use of these risk functions corresponds to the 

Markovitz mean-semivariance model [16]. In [20] it was shown that 

the use of absolute deviations with the appropriate choice of risk 

coefficients is consistent with the stochastic dominance of random out

comes. The applicability of the well-known mean-variance model [16] 

is usually linked to the normality of the probability distribution sum

marizing different prospects, which cannot be assumed for catas

trophic risks. The following theorem shows that if risk coefficients 8i 

become large enough, then the probability of ruin drops below a given 

level [5]. 

The function W(q) can be represented in the form W(q) = V(q)+ 

ELi:i /3i5imin{O ,r/;}. If 5i =N//3;, then W(q)= V(q)+NE L7=1 

min{O, r7j}. If N is large enough, then maximization of W(q) ap

proximates the maximization of V(q) subject to the chance con

straints P{ L7=1 min {O , r;>-;} < 0} < c for arbitrarily small c > 0. 
This is due to the following general result, which, for linear chance 

constraints was, in fact, discussed in [25]. 

Consider two general problems: the chance constraint problem 

F(x) ---t maxxEX, P{g(x, w) < O} '.Sc, with optimal value F
0
* and the 

problem <I> N(x) = F(x ) + NG+(x )---t maxxEX' with optimal value if>-;;. 
Here Xis a compact set, F(x) is a continuous function, G+(x) = E 

max{O,g(x ,w)}, and N is a penalty coefficient. 
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THEOREM 4.1 Assume [5] that g(-,w) is almost sure (a.s.) continuous 

and lg (x, w)I :SC (w) for all x EX, EC 1+\w) :SC I+>. < + oo, for some 

C > 0,..\ > O; G+(x') = Ofor some x' EX; P{g(x,w) = O} = 0 VxEX. 

Then there exist non-negative functions c (N ), o.(N), {3(c) and/ > 0 such 

that limN-++oo c(N) = limN-++000.(N) = lim£-+of3(c) = 0, 

<I>~ - o.(N) :'.S F£*(N) :'.S <I>;/£1(N) - {3(c(N)), 

Fi*;N1 h + {3(1/N
1
h) :'.S <I>~ :'.S F£(N) + o.(N). 

In other words, there always exist large enough N so that the 

maximization of penalty function <I> N (x) generates optimal solutions, 

which also satisfy the chance constraints for any given c > 0. The 

proof of this theorem provides some insights on the reasonable choice 

of N. This value can easily be adjusted in the process of calculations 

[6, 7] by using histograms of random outcomes g (x, w). 

5. THE ESTIMATION OF SUBGRADIENTS 

The maximization of W(x) has the following form. Let j1(x, w), 

((x, w), t = 0, 1, ... be real-valued, random F 1 - measurable func

tions, which guarantee the existance of necessary expectations; 

T(x, w) = min[T, min{t: (1(x, w) :S 0, t > O}]. Then the maximization 

of W (x) can be viewed as the maximization of a function F (x) = 

Ef(x, w), f(x, w) = fr(x, w). If /1(x, w) are concave in x, then F
1
(x) = 

Ef1(x, w) are also concave, but not F(x) due to the dependence of 

T(x, w) on x. The class of so-called generalized differentiable (GD)

functions is important for problems involving min, max operations as 

in "excess of loss" reinsurance contracts. 

DEFINITION 5.1 Function/: Rn--> R is called generalized differenti

able at x ER" if in some vicinity of x there exists an upper semi

continuous at x multivalued (subdifferential) mapping 8/ with closed 

convex compact values 8/ (x) such that f(y) = f(x) + (g, y - x) + 
o (x, y, g ), where ( · , ·) denotes the inner product of two vectors, 

gE8f(y) and limk lo(x,yk,gk)l/llyk-xll=O for any sequences 

yk--> x, gk E 8/(yk). Function f is called generalized differentiable if 

it is generalized differentiable at each point x ER". 
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It is important [19] that continuously differentiable, convex or 

concave functions are generalized differentiable: class GD-functions is 

closed with respect to max, min operations and superpositions, there is 

calculus of subgradients: 

8min(f1,J2)(x) = co{8.fil.fi(x) = min(f1(x),J2(x))}, (5.1) 

where co{·} denotes a convex hull of { ·}; the subdifferential 

8f0(ji, ... Jm) of a composite function fo(fi, ... Jm), where foO is a 

GD-function, is calculated by the chain rule. In addition, the class of 

GD-functions is closed with respect to expectations. It is easy to see 

that f r(x,w)(x, w) may be function discontinuous in x for continuous 

f 1
(-, w), (1(-,w), t = 0, 1, .... Therefore, in general, the maximization of 

F(x) requires the use of stochastic mollifiers [4]. For many important 

cases, for example, when T does not depend on x, andf
1
(-,w) are GD

functions, it is possible to show thatfr(x,w)(x, w) is a GD-function and 

to derive the following estimator of a subgradient Fx: 

THEOREM 5.2 Assume [5] that Xis a compact set and 

(i) functions (1(x, w), t = 0, 1,.. . are continiously differentiable in 

x EX for almost all w and sup {I ( 1 
(x, w)I Ix EX}::; L(w), with 

integrable function L(w); 

(ii) generalized gradient (in x) mappings ap(x, w) are measurable in w 

and bounded by L (w) for all x EX; 

(iii) for all x EX and t = 0, 1, ... the probability P{ ( 1(x, w) = O} = 0. 

Then 8F(x) = E8f(x, w), where 

at (x,w) = 8f
1
(x,w)l1=r· (5.2) 

Assume now X = {xiw(x)::; O}, where w is a GD-function, inf 

{ligll :gE8'11(x)} > O; F(x) = Ef(x,w), where f(·,w), F(-) are GD

functions. The following key result was proved in [8]. Consider the 

stochastic quasi-gradient (SQG) procedure: 

xk+I E IIx(xk - Pk~k), x0 EX, k = 0, 1, ... ' 

E{~klx 0 , ... ,xk} E 8/ (xk,wk), 
(5.3) 

where Ilx(Y) is the (multivalued) projection of y on X, Ilx(Y) = arg 

min{liy- x 11
2
, x EX}; Pk~ 0, 'L,~ 0 Pk= oo, 'L,~ 0 pi < oo; wk is a 
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sequence of independent observations (simulations) of w. Define X* = 
{xl0E8F(x)+Nx(x)}, where Nx(x) = {u8'11(x):u20} if w(x) = 0 

and Nx(x) = 0 if w(x) < 0. Let X be a compact and 11e11::::; C < oo 

(this usually follows from the compactness of X). 

THEOREM 5.3 All cluster points of {F(xk)} a.s. constitute an interval 

in F*. If set F* does not contain intervals (for example, F* is finite or 

countable), then all cluster points of {xk} a.s. belong to a connected 

subset of X* and {F(xk)} a.s. has a limit in F*. 

From Theorem 5.3 follows the basic SQG procedure for maximizing 

W(x ). Assume that after k independent simulations of events 

w0
, . . . , wk-l from (n, F, P) we obtain an approximate solution xk. 

Theorem 5.2 provides the following simple rule for calculating e 
for F(x) := W(x ). For given xk simulate wk from (n, F, P) independ-

1 f 0 k-1. b . . k - ( k k) \k -ent y o w, .. . ,w , o serve stoppmg times T_j - 71 x ,w , "; -

>.;(xk,wk), and calculate subgradients of functions hj(x,w(k)), for 

t :S 'rf, and df(x ,w(k)), fort :S >.7. Compute 

m n 

~k = La1h}x(xk,wk)l1=rj + L,Bidfx(xk ,wk)lt=A7· (5.4) 
j=1 i=l 

After that a new xk+I is adjusted according to (5 .3), and so on. The 

implementation of this basic procedure requires at least the exact cal

culation of functions h, d, which may be impossible for general cases. 

Let us consider this in more detail. 

6. ADAPTIVE MONTE CARLO OPTIMIZATION 

The maximization of W(x), in general, is regarded as estimating the 

maximum value F* of the integral (see Remark 3.1) 

F(x) = j f(x, Eg(x, w) , w)P(dw) ( 6.1) 

and a corresponding optimal solution x* from a subset X. "Adaptive 

Monte Carlo" usually means [23] a technique that makes on-line use of 

sampling information to improve sequentially the efficiency of the 

sampling itself. We use "adaptive Monte Carlo optimization" in a 
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rather broad sense, i.e., when the efficiency of the sampling procedure 

is considered as a part of more general improvements with respect to 

different decisions and goals. The adaptive Monte Carlo optimization 

problem arises when the probability measure P and/or the sample 

function fare not explicitly known, but known only in terms of other 

explicitly known measures and functions. 

The random function f(x, Eg(x, w), w) in (6.1) may not be 

analytically tractable even for simple risk management problems 

(Section 2). The essential complexity is associated with the calculation 

of expectation Eg(x, w). Assume that f(x, v, w), g(x, w) are GD

functions with respect to x , v, and :F - measurable with respect to 

w. A stochastic sub gradient of F(x), that is, an estimate of sub gradient 

Fx, is fx(x, Eg(x, w) , w) + f,,(x, v, w)/v= E g (x, w ~x(x, B), where w, B, are 

independent samples from P. Unfortunately, we cannot use this for

mula directly because expectation Eg is not explicitly known. Consid

er the sequence of estimates x \ generated by (5.3) with 

where vk is an estimate,of E[g(x\w) I xk] defined by the rule 

k+I - k ( ( k k) k) _O - 0 k - 0 l 2 v - v + ak g x ,w - v , ,, - , - , , , . . . . (6.3) 

Let us note that if ak = l /k+ 1, then vk = k - 1 I::;=I g(xs,ws). 

Assume that sequence x\ k = 0,1 , ... , converges with probability 1. 

The convergence of vk to E{g(xk,w)/xk}, vk-E{g(x\w)/xk}-tO, 

with probability 1, is then derived from known results [12, 18] on the 

law of large numbers for dependent random variables. Unfortunately, 

the convergence of {xk} (defined by (5.3) , (5.4), (6.3)) itself is derived 

only from the convergence vk - E{g(x\ w) I xk}-t 0, that is, if esti

mates vk "track" E{g(x\w)/xk} without assumption of the conver

gence of {xk}. This is typical situation for the nonstationary 

optimization [1 O]. The following general theorem [9] shows that v k 

is able to track E{g(xk,w)/xk} without the convergence of xk. 

Let (O,:F, P) be a probability space with a flow of nondecreasing a

algebras :Fk ~ Fk+I ~ :F, k = 1, 2, . . . ; (k(w): 0-t R" are measurable 

with respect to :Fk. k = 1, 2, ... , zk(w) = E{(k(w)/:Fk_i}. Consider the 
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following estimators: 

where ( 0 = 0, z0 = 0, Z is a convex compact set from Rn, IIz ( y) is the 

projection of yon Zand random variables ak are Fk-I - measurable. 

THEOREM 6.1 Assume [9]for some 0 < c :S 1 

00 00 

O :S ak :S 1, lir1 ak = 0, L ak = oo L aL+
0 < +oo a.s. : 

k=O k=O 

Then limk((k(w) - :zk(w)) = 0 a.s. Suppose additionally that 

Then limk( z k - II2(zk) = 0 a.s. and hence /imk((k(w) - IIz(zk(w)) = 
0 a.s. 

Thus, if z k(w) E Z, then estimator (k a.s. tracks a moving mean zk 

as k-. oo. Consider now again the procedures (5.3), (6.2), (6.3). We 

can always assume that llxk+I - xkll :S Cpk for a constant C. If limkpk/ 

ak=O, then lgk-Eg(x\w)l-.O for k->oo (from Theorem 6.1). 

Therefore, this justifies the use of f(xk, vk, wk) as an estimate of 

f(x\Eg(x\w),wk) and ~k from (6.2) as an estimate of Fx(xk). The 

full convergence analysis of (5.3), (6.2) is similar to [8] . 

The fast simulation of rare catastrophes and the variance reduction 

of estimates W(xk),k = 0, 1, .. . can be achieved by importance 

sampling. A general idea of adaptive improvement of the sampling 

procedure was introduced by Pugh [23]. Unfortunately, the proposed 

approach itself requires the additional estimation of some integrals. 

Stochastic optimization procedures of type (5.3), (6.2), (6.3) allow for 

sequential variance reduction without major additional computations. 
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The general idea is as follows [7]. Consider a probability measure 

µ(w) on the domain of P such that W(x) = J w(x, w)(dP/dµ)dµ(w), 

where (dP/dµ) is the Radon-Nycodym derivative [18]. The random 

variable w(x,w) (dP/dµ) is an estimate of W(x). The variance of this 

estimator is <I>:= Jw 2 
(x, w)(dP/dµ)

2
dµ(w) - W

2
(x). The aim is to find 

a µ that minimizes <I> . 

Let the family of distributionsµ be indexed by the vector parameter y. 

Then w, (dP/dµ) are functions of y. Let us assume that they are 

continuously differentiable. It is easy to see that 8<I> /8y1 = 2 J w2
(d/dy!) 

(dP/dµ)dP = 2 J w2 
(d/dy1) (dP/dµ) (dP/dµ) dµ. Together with proce

dures (5.3), (6.2), (6.3) consider a sequence of measures µk := µ(yk, w) 

defined by the sequence of vectors {yk},yk+ 1 = yk - <f>kw 2(xk,wk) 

grad(dP/dµ)ly=yk(dP/dµ), where r:;;k is a sample from µk; <f>k satisfies 

the same conditions as Pk· The convergence of the resulting procedure 

easily follows because W(x) does not depend on y. 

7. CONCLUDING REMARKS 

Numerical experiments with the proposed model show a satisfactory 

convergence of the methods analyzed. The model has a rather general 

form suitable for so-called integrated catastrophe risk management 

[24], in other words, for the analysis of location-specific risk reduction 

measures combined with different risk spreading options. It takes into 

account differences in vulnerability between various insurance port

folios and geographically explicit, dependent losses from events occur

ing at different locations. Paper [24] discusses the need for integrated 

risk management as the natural further development of catastrophe 

modeling. 

Our model can be used by one insurer or a pool of insurers. The 

importance of cooperative efforts of insurers ("pooling" of risks) was 

emphasized by Borch [2]. In contrast to [2], the model includes trans

action costs and deals with non-substitutable catastrophic risks. The 

solution of the resulting stochastic optimization problem by (5.3) can 

be organized in a decentralized manner by using a computer's network 

connecting all insurers. 

The maximization of functions Hj, Dj generates the insurance 

demand and supply functions, which depend on premiums. The choice 
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of premiums must reflect the balance between insurance demand and 

supply that calls for an appropriate concept of stochastic equilibrium. 

This requires special attention. 
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