Integer and Combinatorial Optimization

GEORGE NEMHAUSER

School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia

LAURENCE WOLSEY

Center for Operations Research and Econometrics Université Catholique de Louvain Louvain-la-Neuve, Belgium

٩

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

Contents

PA	RT	I. FOUNDATIONS	1
I.1	Th	e Scope of Integer and Combinatorial Optimization	3
	1.	Introduction	3
	2.	Modeling with Binary Variables I: Knapsack, Assignment and Matching,	
		Covering, Packing and Partitioning	5
	3.	Modeling with Binary Variables II: Facility Location, Fixed-Charge	
		Network Flow, and Traveling Salesman	7
	4.	Modeling with Binary Variables III: Nonlinear Functions and	
	-	Disjunctive Constraints	10
	5.	Choices in Model Formulation	14
	6.	Preprocessing	17
	7.	Notes	20
	8.	Exercises	22
I.2	Liı	near Programming	27
	1.	Introduction	27
	2.	Duality	28
	3.	The Primal and Dual Simplex Algorithms	30
	4.	Subgradient Optimization	41
	5.	Notes	49
I.3	Gra	aphs and Networks	50
	1.	Introduction	50
	2.	The Minimum-Weight or Shortest-Path Problem	55
	3.	The Minimum-Weight Spanning Tree Problem	60
	4.	The Maximum-Flow and Minimum-Cut Problems	62
	5.	The Transportation Problem: A Primal-Dual Algorithm	68
	6.	A Primal Simplex Algorithm for Network Flow Problems	76
	7.	Notes	82
I.4	Pol	yhedral Theory	83
	1.	Introduction and Elementary Linear Algebra	83
	2.	Definitions of Polyhedra and Dimension	85
	3.	Describing Polyhedra by Facets	88
	4.	Describing Polyhedra by Extreme Points and Extreme Rays	92
	5.	Polarity	98

	6.	Polyhedral Ties Between Linear and Integer Programs	104
	7.	Notes	109
	8.	Exercises	109
1.5	Computational Complexity		114
	1.	Introduction	114
	2.	Measuring Algorithm Efficiency and Problem Complexity	117
	3.	Some Problems Solvable in Polynomial Time	121
	4.	Remarks on 0-1 and Pure-Integer Programming	125
	5.	Nondeterministic Polynomial-Time Algorithms and NP Problems	127
	6.	The Most Difficult NP Problems: The Class NPC	131
	7.	Complexity and Polyhedra	139
	8.	Notes	142
	9.	Exercises	143
I.6	Po	lynomial-Time Algorithms for Linear Programming	146
	1.	Introduction	146
	2.	The Ellipsoid Algorithm	147
	3.	The Polynomial Equivalence of Separation and Optimization	161
	4.	A Projective Algorithm	164
	5.	A Strongly Polynomial Algorithm for Combinatorial Linear Programs	172
	6.	Notes	180
I.7	Integer Lattices		182
	1.	Introduction	182
	2.	The Euclidean Algorithm	184
	3.	Continued Fractions	187
	4.	Lattices and Hermite Normal Form	189
	5.	Reduced Bases	195
	6.	Notes	201
	7.	Exercises	202

PAR	TI	. GENERAL INTEGER PROGRAMMING	<i>2</i> 03
II.1	The	e Theory of Valid Inequalities	205
	1.	Introduction	205
	2.	Generating All Valid Inequalities	217
	3.	Gomory's Fractional Cuts and Rounding	227
	4.	Superadditive Functions and Valid Inequalities	229
	5.	A Polyhedral Description of Superadditive Valid Inequalities for	
		Independence Systems	237
	6.	Valid Inequalities for Mixed-Integer Sets	242
	7.	Superadditivity for Mixed-Integer Sets	246
	8.	Notes	254
	9.	Exercises	256

.

-

II.2	Strong Valid Inequalities and Facets for Structured Integer Programs	259
	 Introduction Valid Inequalities for the 0-1 Knapsack Polytope Valid Inequalities for the Symmetric Traveling Salesman Polytope Valid Inequalities for Variable Upper-Bound Flow Models Notes Exercises 	259 265 270 281 290 291
II.3	Duality and Relaxation	296
	 Introduction Duality and the Value Function Superadditive Duality The Maximum-Weight Path Formulation and Superadditive Duality Modular Arithmetic and the Group Problem Lagrangian Relaxation and Duality Benders' Reformulation Notes Exercises 	296 300 304 308 312 323 337 341 343
II.4	General Algorithms	349
	 Introduction Branch-and-Bound Using Linear Programming Relaxations General Cutting-Plane Algorithms Notes Exercises 	349 355 367 379 381
11.5	Special-Purpose Algorithms	383
	 Introduction A Cutting-Plane Algorithm Using Strong Valid Inequalities Primal and Dual Heuristic Algorithms Decomposition Algorithms Dynamic Programming Notes Yexercises 	383 386 393 409 417 424 427
11.6	Applications of Special-Purpose Algorithms	433
	 Knapsack and Group Problems 0-1 Integer Programming Problems The Symmetric Traveling Salesman Problem Fixed-Charge Network Flow Problems Applications of Basis Reduction Notes Exercises 	433 456 469 495 513 520 526

Contents

PART III. COMBINATORIAL OPTIMIZATION		533
HI.1	Integral Polyhedra	
	1. Introduction	535
	2. Totally Unimodular Matrices	540
	3. Network Matrices	546
	4. Balanced and Totally Balanced Matrices	562
	5. Node Packing and Perfect Graphs	573
	6. Blocking and Integral Polyhedra	586
	7. Notes	598
	8. Exercises	602
111.2	Matching	608
	1. Introduction	608
	2. Maximum-Cardinality Matching	611
	3. Maximum-Weight Matching	627
	4. Additional Results on Matching and Related Problems	636
	5. Notes	654
	6. Exercises	655
III.3	Matroid and Submodular Function Optimization	659
	1. Introduction	659
	2. Elementary Properties	662
	3. Maximum-Weight Independent Sets	666
	4. Matroid Intersection	671
	5. Weighted Matroid Intersection	678
	6. Polymatroids, Separation, and Submodular Function Minimization	
	7. Algorithms To Minimize a Submodular Function	694
	8. Covering with Independent Sets and Matroid Partition	702
	9. Submodular Function Maximization	708
	10. Notes	712
	11. Exercises	714
Refer	nces	721
Autho	Index	° 749
Subie	t Index	755