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1 Introduction

Integer optimization problems are concerned with the efficient allocation of limited resources to
meet a desired objective when some of the resources in question can only be divided into discrete
parts. In such cases, the divisibility constraints on these resources, which may be people, machines,
or other discrete inputs, may restrict the possible alternatives to a finite set. Nevertheless, there
are usually too many alternatives to make complete enumeration a viable option for instances of
realistic size. For example, an airline may need to determine crew schedules that minimize the total
operating cost; an automotive manufacturer may want to determine the optimal mix of models to
produce in order to maximize profit; or a flexible manufacturing facility may want to schedule
production for a plant without knowing precisely what parts will be needed in future periods. In
today’s changing and competitive industrial environment, the difference between ad hoc planning
methods and those that use sophisticated mathematical models to determine an optimal course of
action can determine whether or not a company survives.

A common approach to modeling optimization problems with discrete decisions is to formulate them
as mixed integer optimization problems. This article discusses problems in which the functions
required to represent the objective and constraints are additive, i.e., linear functions. Such a
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problem is called a mixed integer linear optimization problem (MILP). Their general form is

max
∑
j∈B

cjxj +
∑
j∈I

cjxj +
∑
j∈C

cjxj (1)

subject to
∑
j∈B

aijxj +
∑
j∈I

aijxj +
∑
j∈C

aijxj


≤
=
≥

 bi ∀i ∈M, (2)

lj ≤ xj ≤ uj ∀j ∈ N = B ∪ I ∪ C, (3)

xj ∈ {0, 1} ∀j ∈ B, (4)

xj ∈ Z ∀j ∈ I, and (5)

xj ∈ R ∀j ∈ C. (6)

A solution to (1)–(6) is a set of values assigned to the variables xj , j ∈ N . The objective is to find
a solution that maximizes the weighted sum (1), where the coefficients cj , j ∈ N are given. B is
the set of indices of binary variables (those that can take on only values zero or one), I is the set
of indices of integer variables (those that can take on any integer value), and C is the set of indices
of continuous variables. As indicated above, each of the first set of constraints (2) can be either
an inequality constraint (“≤” or “≥”) or an equality constraint (“=”). The data lj and uj are the
lower and upper bound values, respectively, for variable xj , j ∈ N .

This general class of problems has many important special cases. When B = I = ∅, we have what
is known as a linear optimization problem (LP) . If C = I = ∅, then the problem is referred to as a
(pure) binary integer linear optimization problem (BILP). Finally, if C = ∅, the problem is called
a (pure) integer linear optimization problem (ILP). Otherwise, the problem is simply an MILP.
Throughout this discussion, we refer to the set of points satisfying (1)–(6) as S, and the set of
points satisfying all but the integrality restrictions (4)–(5) as P. The problem of optimizing over
P with the same objective function as the original MILP is called the LP relaxation and arises
frequently in algorithms for solving MILPs.

A class of problems closely related to BILPs are the combinatorial optimization problems (COPs).
A COP is defined by a ground set E , a set F of subsets of E that are called the feasible subsets
and a cost ce associated with each element e ∈ E . Each feasible subset F ∈ F has as associated
(additive) cost taken to be

∑
e∈F ce. The goal of a COP is find the subset F ∈ F of minimum

cost. The set F can often be described as the set of solutions to a BILP by associating a binary
variable xe with each member e of the ground set, indicating whether or not to include it in the
selected subset. For this reason, combinatorial optimization and integer optimization are closely
related and COPs are sometimes informally treated as being a subclass of MILPs, though there are
COPs that cannot be formulated as MILPs.

Solution of an MILP involves finding one or more best (optimal) solutions from the set S. Such
problems occur in almost all fields of management (e.g., finance, marketing, production, scheduling,
inventory control, facility location and layout, supply chain management), as well as in many
engineering disciplines (e.g., optimal design of transportation networks, integrated circuit design,
design and analysis of data networks, production and distribution of electrical power, collection
and management of solid waste, determination of minimum energy states for alloy construction,
planning for energy resource problems, scheduling of lines in flexible manufacturing facilities, and
design of experiments in crystallography).

This article gives a brief overview of the related fields of integer and combinatorial optimization.
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These fields have by now accumulated a rich history and a rich mathematical theory. Texts cover-
ing the theory of linear and integer linear optimization include those of Bertsimas and Weismantel
(2005), Chvátal (1983), Nemhauser and Wolsey (1988), Parker and Rardin (1988), Schrijver (1986),
and Wolsey (1998). Overviews of combinatorial optimization are provided by Papadimitriou and
Steiglitz (1982) and Schrijver (2003). Jünger et al. (2010) have produced a marvelous and compre-
hensive volume containing an overview of both the history and current state of the art in integer
and combinatorial optimization.

2 Applications

This section describes some classical integer and combinatorial optimization models to provide an
overview of the diversity and versatility of this field.

Knapsack problems. Suppose one wants to fill a knapsack that has a weight capacity limit of
W with some combination of items from a list of n candidates, each with weight wi and value vi, in
such a way that the value of the items packed into the knapsack is maximized. This problem has
a single linear constraint (that the weight of the items selected not exceed W ), a linear objective
function (to maximize the sum of the values of the items in the knapsack), and the added restriction
that each item either be in the knapsack or not—it is not possible to select a fractional portion of
an item. For solution approaches specific to the knapsack problem, see Martello and Toth (1990).

Although this problem might seem too simplistic to have many practical applications, the knapsack
problem arises in a surprisingly wide variety of fields. For example, one implementation of the
public-key cryptography systems that are pervasive in security applications depends on the solution
of knapsack problems to determine the cryptographic keys (Odlyzko, 1990). The system depends
on the fact that, despite their simplicity, some knapsack problems are extremely difficult to solve.

More importantly, however, the knapsack problem arises as a “sub-structure” in many other im-
portant combinatorial problems. For example, machine scheduling problems involve restrictions on
the capacities of the machines to be scheduled (in addition to other constraints). Such a problem
involves assigning a set of jobs to a machine in such a way that the capacity constraint is not
violated. It is easy to see that such a constraint is of the same form as that of a knapsack problem.
Often, a component of the solution method for problems with knapsack constraints involves solv-
ing the knapsack problem itself, in isolation from the original problem (see Savelsbergh (1997)).
Another important example in which knapsack problems arise is the capital budgeting problem.
This problem involves finding a subset of the set of (possibly) thousands of capital projects under
consideration that will yield the greatest return on investment, while satisfying specified financial,
regulatory and project relationship requirements (Markowitz and Manne, 1957; Weingartner, 1963).
Here also, the budget constraint takes the same form as that of the knapsack problem.

Network and graph problems. Many optimization problems can be represented by a network,
formally defined as a set of nodes and a set of arcs (uni-directional connections specified as ordered
pairs of nodes) or edges (bi-directional connections specified as unordered pairs of nodes) connecting
those nodes, along with auxiliary data such as costs and capacities on the arcs (the nodes and
arcs together without the auxiliary data form a graph). Solving such network problems involves
determining an optimal strategy for routing certain “commodities” through the network. This class
of problems is thus known as network flow problems. Many practical problems arising from physical
networks, such as city streets, highways, rail systems, communication networks, and integrated
circuits, can be modeled as network flow problems. In addition, there are many problems that
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can be modeled as network flow problems even when there is no underlying physical network. For
example, in the assignment problem, one wishes to assign people to jobs in a way that minimizes
the cost of the assignment. This can be modeled as a network flow problem by creating a network
in which one set of nodes represents the people to be assigned, and another set of nodes represents
the possible jobs, with an arc connecting a person to a job if that person is capable of performing
that job. A general survey of applications and solution procedures for network flow problems is
given by Ahuja et al. (1993).

Space-time networks are often used in scheduling applications. Here, one wishes to meet specific
demands at different points in time. To model this problem, different nodes represent the same
entity at different points in time. An example of the many scheduling problems that can be
represented as a space-time network is the airline fleet assignment problem, which requires that
one assign specific planes to pre-scheduled flights at minimum cost (Abara, 1989; Hane et al., 1995).
Each flight must have one and only one plane assigned to it, and a plane can be assigned to a flight
only if it is large enough to service that flight and only if it is on the ground at the appropriate
airport, serviced and ready to depart when the flight is scheduled for take-off. The nodes represent
specific airports at various points in time and the arcs represent the flow of aircraft of a variety
of types into and out of each airport. There are layover arcs that permit a plane to stay on the
ground from one time period to the next, service arcs that force a plane to be out of duty for a
specified amount of time, and connecting arcs that allow a plane to fly from one airport to another
without passengers.

A variety of important combinatorial problems are graph-based, but do not involve flows. Such
graph-based combinatorial problems include the node coloring problem, the objective of which is
to determine the minimum number of colors needed to color each node of a graph in order that no
pair of adjacent nodes (nodes connected by an edge) share the same color; the matching problem,
the objective of which is to find a maximum weight collection of edges such that each node is
incident to at most one edge; the maximum clique problem, the objective of which is to find the
largest subgraph of the original graph such that every node is connected to every other node in
the subgraph; and the minimum cut problem, the objective of which is to find a minimum weight
collection of edges that (if removed) would disconnect a set of nodes s from a set of nodes t.

Although these graph-based combinatorial optimization problems might appear, at first glance, to
be interesting only from a mathematical perspective and to have little application to the decision-
making that occurs in management or engineering, their domain of application is extraordinarily
broad. The four-color problem, for example, which is the question of whether a map can be colored
with four colors or less, is a special case of the node coloring problem. The maximum clique
problem has important implications in the growing field of social network analysis. The minimum
cut problem is used in analyzing the properties of real-world networks, such as those arising in
communications and logistics applications.

Location, Routing, and Scheduling Problems Many network-based combinatorial problems
involve finding a route through a given graph satisfying specific requirements. In the Chinese
postman problem, one wishes to find a shortest walk (a connected sequence of arcs) through a
network such that the walk starts and ends at the same node and traverses every arc at least
once (Edmonds and Johnson, 1973). This models the problem faced by a postal delivery worker
attempting to minimize the number traversals of each road segment on a given postal route. If
one instead requires that each node be visited exactly once, the problem becomes the notoriously
difficult traveling salesman problem (Applegate et al., 2006). The traveling salesman problem has
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numerous applications within the routing and scheduling realm, as well as in other areas, such as
genome sequencing (Avner, 2001), the routing of sonet rings (Shah, 1998), and the manufacturing
of large-scale circuits (Barahona et al., 1988; Ravikumar, 1996). The well-known vehicle routing
problem is a generalization in which multiple vehicles must each follow optimal routes subject to
capacity constraints in order to jointly service a set of customers (Golden et al., 2010).

A typical scheduling problem involves determining the optimal sequence in which to execute a set
of jobs subject to certain constraints, such as a limited set of machines on which the jobs must
be executed or a set of precedence constraints restricting the job order (see (Applegate and Cook,
1991)). The literature on scheduling problems is extremely rich and many variants of the basic
problem have been suggested (Pinedo, 2008). Location problems involve choosing the optimal
set of locations from a set of candidates, perhaps represented as the nodes of a graph, subject
to certain requirements, such as the satisfaction of given customer demands or the provision of
emergency services to dispersed populations (Drezner and Hamacher, 2004). Location, routing,
and scheduling problems all arise in the design of logistics systems, i.e., systems linking production
facilities to end-user demand points through the use of warehouses, transportation facilities, and
retail outlets. Thus, it is easy to envision combinations of these classes of problems into even more
complex combinatorial problems and much work has been in this direction.

Packing, Partitioning, and Covering Problems Many practical optimization problems in-
volve choosing a set of activities that must either “cover” certain requirements or must be “packed”
together so as not exceed certain limits on the number of activities selected. The airline crew
scheduling problem, for example, is a covering problem in which one must choose a set of pair-
ings (a set of flight legs that can be flown consecutively by a single crew) that cover all required
routes (Hoffman and Padberg, 1993; Vance et al., 1997). Alternatively, an example of a set packing
problem is a combinatorial auction (Cramton et al., 2006). The problem is to select subsets of a
given set of items that are up for auction in such a way that each items is included in at most one
subset. This is the problem faced by an auctioneer in an auction in which bidders can bid on sets
of items rather than just single items. If one requires that all items be sold, then the auctioneer’s
problem becomes a partitioning problem. There are a variety of languages that allow users to
express the interrelationship among their bids. Such languages (e.g., “OR,” “XOR,” “ORofXOR,”
“XORofOR”) create a somewhat different structure to the combinatorial problem.

In the above examples, the coefficients in constraints (2) are either zero or one and all variables are
binary. The variables represent the choice of activities, while each constraint represents either a
covering (“≥”), packing (“≤”), or partitioning (“=”) requirement. In many cases, these problems
can be easily interpreted by thinking of the rows as a set of items to be allocated or a set of
activities to be undertaken and the columns as subset of those items/activities. The optimization
problem is then to find the best collection of subsets of the activities/items (columns) in order
to cover/partition/pack the row set. Surveys on set partitioning, covering and packing, are given
in Balas and Padberg (1976), Borndörfer and Weismantel (2000), Hoffman and Padberg (1993),
and Padberg (1979b).

Other Nonconvex Problems. The versatility of the integer optimization model (1)–(6) might
best be exemplified by the fact that many nonlinear/nonconvex optimization problems can be refor-
mulated as MILPs. For example, one reformulation technique for representing nonlinear functions
is to find a piecewise-linear approximation and to represent the function by adding a binary variable
corresponding to each piece of the approximation. The simplest example of such a transformation
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is the fixed charge problem in which the cost function has both a fixed charge for initiating a
given activity, as well as marginal costs associated with continued operation. One example of a
fixed-charge problem is the facility location problem in which one wishes to locate facilities in such
a way that the combined cost of building the facility (a one time fixed cost) and producing and
shipping to customers (marginal costs based on the amount shipped and produced) is minimized
(see Drezner and Hamacher (2004)). The fact that nothing can be produced in the facility unless
the facility exists, creates a discontinuity in the cost function. This function can be transformed
to a linear function by the introduction of additional variables that take on only the values zero or
one. Similar transformations allow one to model separable nonlinear functions as integer (linear)
optimization problems.

3 Solution Methods

Solving integer optimization problems (finding an optimal solution), can be a difficult task. The
difficulty arises from the fact that unlike (continuous) linear optimization problems, for which the
feasible region is convex, the feasible regions of integer optimization problems consists of either a
discrete set of points or, in the case of general MILP, a set of disjoint polyhedra. In solving a linear
optimization problem, one can exploit the fact that, due to the convexity of the feasible region,
any locally optimal solution is a global optimum. In finding global optima for integer optimization
problems, on the other hand, one is required to prove that a particular solution dominates all others
by arguments other than the calculus-based approaches of convex optimization. The situation is
further complicated by the fact that the description of the feasible region is “implicit.” In other
words, the formulation (1)–(6) does not provide a computationally useful geometric description of
the set S. A more useful description can be obtained in one of two ways, described next.

The first approach is to apply the powerful machinery of polyhedral theory. Weyl (1935) established
the fact that a polyhedron can either be defined as the intersection of finitely many half-spaces, i.e.,
as a set of points satisfying inequalities of the form (2) and (3), or as the convex hull of a finite set of
extreme points plus the conical hull of a finite set of extreme rays. If the data describing the original
problem formulation are rational numbers, then Weyl’s theorem implies the existence of a finite
system of linear inequalities describing the convex hull of S, denoted by conv(S) (Nemhauser and
Wolsey, 1988). Optimization of a linear function over conv(S) is precisely equivalent to optimization
over S, but optimizing over conv(S) is a convex optimization problem. Thus, if it were possible
to enumerate the set of inequalities in Weyl’s description, one could solve the integer optimization
problem using methods for convex optimization, in principle. The difficulty with this method,
however, is that the number of linear inequalities required is too large to construct explicitly, so
this does not lead directly to a practical method of solution.

A second approach is to describe the feasible set in terms of logical disjunction. For example, if
j ∈ B, then either xj = 0 or xj = 1. This means that, in principle, the set S can be described by
replacing constraints (4)–(5) with a set of appropriately chosen disjunctions. In fact, it is known
that any MILP can be described as a set of linear inequalities of the form (2) and (3), plus a finite
set of logical disjunctions (Balas, 1998). Similarly, however, the number of such disjunctions would
be too large to enumerate explicitly and so this does not lead directly to a practical method of
solution either.

Although neither of the above methods for obtaining a more useful description of S leads directly to
an efficient methodology because they both produce descriptions of impractical size, most solution
techniques are nonetheless based on generating partial descriptions of S in one of the above forms
(or a combination of both). The general outline of such a method is as follows.
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1. Identify a (tractable) convex relaxation of the problem and solve it to either

• obtain a valid upper bound on the optimal solution value; or

• prove that the relaxation is infeasible or unbounded (and thus, the original MILP is also
infeasible or unbounded).

2. If solving the relaxation produces a solution x̂ ∈ RN that is feasible to the MILP, then this
solution must also be optimal to the MILP.

3. Otherwise, either

• identify a logical disjunction satisfied by all members of S, but not by x̂ and add it to
the description of P (more on how this is done below); or

• identify an implied linear constraint (called a valid inequality or a cutting plane) satisfied
by all members of S, but not by x̂ and add it to the description of P.

In Step 1, the LP relaxation obtained by dropping the integrality conditions on the variables
and optimizing over P is commonly used. Other possible relaxations include Lagrangian relax-
ations (Fisher, 1981; Geoffrion, 1974), semi-definite programming relaxations (Rendl, 2010), and
combinatorial relaxations, e.g., the one-tree relaxation for the traveling salesman problem Held and
Karp (1970). This discussion initially considers use of the LP relaxation, since this is the simplest
one and the one used in state-of-the-art software. Additional relaxations are considered in more
detail in Section 4.

By recursively applying the basic strategy outlined above, a wide variety of convergent methods
that generate partial descriptions of S can be obtained. These methods can be broadly classified as
either implicit enumeration methods (employing the use of logical disjunction in Step 3) or cutting
plane methods (based on the generation of valid inequalities in Step 3), though these are frequently
combined into “hybrid” solution procedures in computational practice. In the next two sections,
more details about these two classes of methods are given.

Enumerative Algorithms. The simplest approach to solving a pure integer optimization prob-
lem is to enumerate all finitely many possibilities (as long as the problem is bounded). However,
due to the “combinatorial explosion” resulting from the fact that the size of the set S is generally
exponential in the number of variables, only the smallest instances can be solved by such an ap-
proach. A more efficient approach is to only implicitly enumerate the possibilities by eliminating
large classes of solutions using domination or feasibility arguments. Besides straightforward or
implicit enumeration, the most commonly used enumerative approach is called branch and bound.

The branch-and-bound method was first proposed by Land and Doig (1960) and consists of gen-
erating disjunctions satisfied by points in S and using them to partition the feasible region into
smaller subsets. Some variant of the technique is used by practically all state-of-the-art solvers.
An LP-based branch-and-bound method consists of solving the LP relaxation as in Step 1 above to
either obtain a solution and an associated upper bound or to prove infeasibility or unboundedness.
If the generated solution x̂ ∈ RN to the relaxation is infeasible to the original MILP, then x̂j 6∈ Z
for some j ∈ B ∪ I. However, xj ∈ Z for all x ∈ S. Therefore, the logical disjunction

xj ≤ bx̂jc OR xj ≥ dx̂je (7)
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is satisfied by all x ∈ S, but not by x̂. In this case, one can impose the disjunction implicitly by
“branching,” i.e., creating two subproblems, one associated with each of the terms of the disjunc-
tion (7).

The branch-and-bound method consists of applying this same method to each of the resulting
subproblems recursively. Note that the optimal solution to a subproblem may or may not be the
global optimal solution. Each time a new solution is found, it is checked to determine whether it
is the best seen so far and if so, it is recorded and becomes the current incumbent. The true power
of this method comes from the fact that if the upper bound obtained by solving the LP relaxation
is smaller than the value of the current incumbent, the node can be discarded. Mitten (1970)
provided the first description of a general algorithmic framework for branch and bound. Hoffman
and Padberg (1985) provided an overview of LP-based branch-and-bound techniques. Linderoth
and Savelsbergh (1999) reported on a computational study of search strategies used within branch
and bound.

Cutting Plane Algorithms. Gomory (1958, 1960) was the first to derive a “cutting plane”
algorithm following the basic outline above for integer optimization problems. His algorithm can
be viewed, in some sense, as a constructive proof of Weyl’s theorem. Although Gomory’s algorithm
converges to an optimal solution in a finite number of steps (in the case of pure integer optimization
problems), the convergence to an optimum may be extraordinarily slow due to the fact that these
algebraically-derived valid inequalities are “weak”—they may not even support conv(S) and are
hence dominated by stronger (but undiscovered) valid inequalities. Since the smallest possible
description of conv(S) is desired, one would like to generate only the “strongest” valid inequalities,
i.e., those that are part of some minimal description of conv(S). Such inequalities are called facets.
In general, knowing all facets of conv(S) is enough to solve the MILP (though this set would still
be very large in most cases).

A general cutting plane approach relaxes the integrality restrictions on the variables and solves
the resulting LP relaxation over the set P. If the LP is unbounded or infeasible, so is the MILP.
If the solution to the LP is integer, i.e., satisfies constraints (4) and (5), then one has solved the
MILP. If not, then one solves a separation problem whose objective is to find a valid inequality
that “cuts off” the fractional solution to the LP relaxation while assuring that all feasible integer
points satisfy the inequality—that is, an inequality that “separates” the fractional point from the
polyhedron conv(S). Such an inequality is called a “cut” for short. The algorithm continues until
termination in one of two ways: either an integer solution is found (the problem has been solved
successfully) or the LP relaxation is infeasible and therefore the integer problem is infeasible.

For ILPs, there are versions of Gomory’s method that yield cutting plane algorithms that will
produce a solution in a finite number of iterations, at least with the use of exact rational arithmetic.
In practice, however, the algorithm could terminate in a third way—it may not be possible to
identify a new cut even though the optimal solution has not been found either due to numerical
difficulties arising from accumulated round-off error or because procedures used to generate the
cuts are unable to guarantee the generation of a violated inequality, even when one exists. If one
terminates the cutting plane procedure because of this third possibility, then, in general, the process
has still improved the original formulation and the bound resulting from solving the LP relaxation
is closer to the optimal value. By then switching to an implicit enumeration strategy, one may still
be able to solve the problem. This hybrid strategy, known as “branch and cut,” is discussed in the
next section.
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4 Advanced Procedures

Branch and Cut. The two basic methods described above can be hybridized into an algorithm
that combines the power of the polyhedral and disjunctive approaches into a single algorithm.
This method is called branch and cut. A rather sizable literature has sprung up around these
methods. Papers describing the basic framework include those of Hoffman and Padberg (1991) and
Padberg and Rinaldi (1991). Surveys of the computational issues and components of a modern
branch-and-cut solver include Atamtürk and Savelsbergh (2005), Linderoth and Ralphs (2005),
and Martin (2001). The major components of the algorithm consist of automatic reformulation
and preprocessing procedures (see next section); heuristics that provide “good” feasible integer
solutions; procedures for generating valid inequalities; and procedures for branching. All of these
are embedded into a disjunctive search framework, as in the branch-and-bound approach. These
components are combined so as to guarantee optimality of the solution obtained at the end of the
calculation. The algorithm may also be stopped early to produce a feasible solution along with a
bound on the relative distance of the current solution from optimality. This hybrid approach has
evolved to be an extremely effective way of solving general MILPs. It is the basic approach taken
by all state-of-the-art solvers for MILP.

Ideally, the cutting planes generated during the course of the algorithm would be facets of conv(S).
In the early years of integer optimization, considerable research activity was focused on identifying
part (or all) of the list of facets for specific combinatorial optimization problems by exploiting the
special structure of conv(S) (Balas and Padberg, 1972; Balas, 1975; Bauer et al., 2002; Hammer
et al., 1975; Nemhauser and Sigismondi, 1992; Nemhauser and Trotter Jr., 1974; Nemhauser and
Vance, 1994; Padberg, 1973, 1974, 1979a; Pochet and Wolsey, 1991; Wolsey, 1975, 1976). This led
to a wide variety of problem-dependent algorithms that are nevertheless based on the underlying
principle embodied in Weyl’s theorem. An extensive survey of the use of these techniques in
combinatorial optimization is given by Aardal and van Hoesel (1996b,a).

Research on integer optimization is increasingly focused on methods for generating inequalities
based purely on the disjunctive structure of the problem and not on properties of a particular
class of problems. Part of the reason for this is the need to be able to solve more general MILPs
for which even the dimension of conv(S) is not known. With this approach, it is not possible to
guarantee the generation of facets in every iteration, but theoretical advances have resulted in vast
improvements in the ability to solve general unstructured integer optimization problems using off-
the-shelf software. A survey of cutting plane methods for general MILPs is provided by (Cornuéjols,
2008). Other papers on techniques for generating valid inequalities for general MILPs include Balas
et al. (1993, 1996, 1999), Gu et al. (1998, 1999, 2000), Nemhauser and Wolsey (1990), Marchand
and Wolsey (2001), and Wolsey (1990).

Equally as important as cutting plane generation techniques are branching schemes, though these
methods have received far less attention in the literature. Branching methods are generally based
on some method of estimating the “impact” of a given branching disjunction and trying to choose
the best one according to certain criteria. Papers discussing branching methods include Achterberg
et al. (2005), Fischetti and Lodi (2002), Karamanov and Cornuéjols (2009), and Owen and Mehrotra
(2001).

There has been a surge in research on the use of heuristic methods within the branch-cut-cut
framework in order to generate good solutions and improve bounds as the search progresses. Many
search methods are based on limited versions of the same search procedures used to find globally
optimal solutions. The development of such methods has led to marked improvements in the
performance of exact algorithms (Balas and Martin, 1980; Balas et al., 2004; Fischetti and Lodi,
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2002; Nediak and Eckstein, 2001). In current state-of-the-art software, multiple heuristics are used
because they are likely to produce feasible solutions more quickly than tree search, which helps
both to eliminate unproductive subtrees and to calculate improved variable bounds that result in
a tighter description of the problem. These heuristics include techniques for searching within the
local neighborhood of a given linear feasible solutions for integer solutions using various forms of
local search. Achtenberg and Berthold (2007), Danna et al. (2005), Fischetti et al. (2009), and
Rothberg (2007) provide descriptions of heuristics built into current packages.

Automatic Reformulation. Before solving an integer optimization problem, the first step is
that of formulation, in which a conceptual model is translated into the form (1)–(6). There are often
different ways of mathematically representing the same problem, both because different systems of
the form (1)–(6) may define precisely the same set S and because it may be possible to represent
the same conceptual problem using different sets of variables. There are a number of different ways
in which the conceptual model can be translated into a mathematical model, but the most common
is to use an algebraic modeling language, such as AIMMS (AIMMS) AMPL (Fourer et al., 1993),
GAMS (Brooke et al., 1988), MPL (Maximal Software), or OPL Studio (ILOG).

The time required to obtain an optimal solution to a large integer optimization problem usually
depends strongly on the way it is formulated, so much research has been directed toward the effective
automatic reformulation techniques. Unlike linear optimization problems, the number of variables
and constraints representing an integer optimization problem may not be indicative of its difficulty.
In this regard, it is sometimes advantageous to use a model with a larger number of integer variables,
a larger number of constraints, or even both. Discussions of alternative formulation approaches
are given in Guignard and Spielberg (1981) and Williams (1985) and a description of approaches
to “automatic” reformulation or preprocessing are described in Anderson and Anderson (1995),
Atamturk and Savelsbergh (2000), Brearley et al. (1975), Hoffman and Padberg (1991), Roy and
Wolsey (1987), and Savelsbergh (1994).

A variety of difficult problems have been solved by reformulating them as either set-covering or
set-partitioning problems having an extraordinary number of variables. Because for even small
instances, such reformulations may be too large to solve directly, a technique known as column
generation, which began with the seminal work of Gilmore and Gomory (1961) on the cutting
stock problem, is employed. An overview of such transformation methods can be found in Barnhart
et al. (1998). For specific implementations, for the vehicle routing problem, see Chabrier (2006);
for the bandwidth packing problem, see Hoffman and Villa (2007) and Parker and Ryan (1995); for
the generalized assignment problem, see Savelsbergh (1997); and for alternative column-generation
strategies for solving the cutting stock problem, see Vance et al. (1994). Bramel and Simchi-
Levi (1997) have shown that the set-partitioning formulation for the vehicle routing problem with
time windows is very effective in practice—that is, the relative gap between the fractional linear
optimization solutions and the global integer solution is small. Similar results have been obtained
for the bin-packing problem (Chan et al., 1998a) and for the machine-scheduling problem (Chan
et al., 1998b).

Decomposition Methods. Relaxing the integrality restriction is not the only approach to re-
laxing the problem. An alternative approach to the solution to integer optimization problems is to
relax a set of “complicating” constraints in order to obtain a more tractable model. This technique
is effective when the problem to be solved is obtained by taking a well-solved “base problem” and
adding constraints specific to a particular application. By capitalizing on the ability to solve the
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base problem, one can obtain bounds that are improved over those obtained by solving the LP
relaxation. These bounding methods can then be used to drive a branch-and-bound algorithm, as
described earlier. Such bounding methods are called “constraint decomposition methods” or simply
“decomposition methods,” since they involve decomposing the set of constraints. By removing the
complicating constraints from the constraint set, the resulting sub-problem is frequently consider-
ably easier to solve. The latter is a necessity for the approach to work because the subproblems
must be solved repeatedly. The bound found by decomposition can be tighter than that found by
linear optimization, but only at the expense of solving subproblems that are themselves integer
optimization problems. Decomposition requires that one understand the structure of the problem
being solved in order to then relax the constraints that are “complicating.”

The bound resulting from a particular decomposition can be computed using two different compu-
tational techniques—Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960; Vanderbeck, 2000)
(column generation) and Lagrangian relaxation (Fisher, 1981; Geoffrion, 1974; Held and Karp,
1970). In the former case, solutions to the base problem are generated dynamically and combined
in an attempt to obtain a solution satisfying the complicating constraints. In the latter case, the
complicating constraints are enforced implicitly by penalizing their violation in the objective func-
tion. Overviews of the theory and methodology behind decomposition methods and how they are
used in integer programming can be found in Ralphs and Galati (2005) and Vanderbeck and Wolsey
(2010). A related approach is that of Lagrangian decomposition (Guignard and Kim, 1987), which
consists of isolating sets of constraints so as to obtain multiple, separate, easy-to-solve subproblems.
The dimension of the problem is increased by creating copies of variables that link the subsets and
adding constraints that require these copies to have the same value as the original in any feasible
solution. When these constraints are relaxed in a Lagrangian fashion, the problem decomposes into
blocks that can be treated separately.

Most decomposition-based strategies involve decomposition of constraints, but there are cases in
which it may make sense to decompose the variables. These techniques work well when it is the case
that fixing some subset of the variables (the “complicating variables”) to specific values reduces the
problem to one that is easy to solve. Benders’ decomposition algorithm projects the problem into
the space of these complicating variables and treats the remaining variables implicitly by adding
so-called “Benders cuts” violated by solutions that do not have a feasible completion and adding a
term to the objective function representing the cost of completion for any given set of value of the
complicating variables (Benders, 1962). For a survey on Benders cuts, see Hooker (2002).

5 Related Topics

There are a number of topics related to combinatorial and integer optimization that have not
been covered here. One such topic is the complexity of integer optimization problems (Garey
and Johnson, 1979), an area of theoretical study that has increased our understanding of the
implicit difficulty of integer optimization dramatically. Another important topic is that of heuristic
solution approaches—that is, techniques for obtaining “good” but not necessarily optimal solutions
to integer optimization problems quickly. In general, heuristics do not provide any guarantee as
to the quality of the solutions they produce, but are very important in practice for a variety of
reasons. Primarily, they may provide the only usable solution to very difficult optimization problems
for which the current exact algorithms fail to produce one. Research into heuristic algorithms
has applied techniques from the physical sciences to the approximate solution of combinatorial
problems. For surveys of research in simulated annealing (based on the physical properties of
heat), genetic algorithms (based on properties of natural mutation) and neural networks (models of
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brain function), see Hansen (1986), Goldberg (1989), and Zhang (2010), respectively. Glover and
Laguna (1998) has generalized some of the attributes of these methods into a method called tabu
search. Worst-case and probabilistic analysis of heuristics are discussed in Cornuejols et al. (1980),
Karp (1976), and Kan (1986).

Another developing trend is the use of approaches from other disciplines in which optimization
problems also arise. In some cases, multiple approaches can be used to handle difficult optimiza-
tion problems by merging alternative strategies into a single algorithm (the so-called algorithm
portfolio approach). As an example, constraint-logic programming was developed by computer
scientists in order to work on problems of finding feasible solutions to a set of constraints. Dur-
ing the last decade, many of the advances of constraint-logic programming have been embedded
into mathematical programming algorithms in order to handle some of the difficult challenges of
combinatorial optimization such as those related to scheduling where there is often significant sym-
metry. For example, see Hooker (2007) and Rasmussen and Trick (2007) for some applications that
use both Benders decomposition and constraint programming to handle difficult scheduling prob-
lems. For research that relates issues in computational logic to those associated with combinatorial
optimization, see McAloon and Tretkoff (1996).
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