
Integer Complexity: Breaking the Θ(n2) barrier
Srinivas Vivek V., and Shankar B. R.

Abstract—The integer complexity of a positive integer n, denoted
f(n), is defined as the least number of 1’s required to represent
n, using only 1’s, the addition and multiplication operators, and
the parentheses. The running time of the algorithm currently used
to compute f(n) is Θ(n2). In this paper we present an algorithm
with Θ(nlog2 3) as its running time. We also present a proof of the
theorem: the largest solutions of f(m) = 3k, 3k±1 are, respectively,
m = 3k, 3k ± 3k−1.

Keywords—Integer complexity, Number theory, Running time

I. INTRODUCTION

THE integer complexity of a positive integer n, denoted
f(n), is defined as the least number of 1’s required to

represent n, using only 1’s, the addition and multiplication
operators, and the parentheses [3]. f(n) can be computed as
follows [2]:

f(n) = min {f(e) + f(n− e), f(d) + f(n/d)} , (1)

where d|n, 2 ≤ d ≤
√
n, and 1 ≤ e ≤ n/2.

This is the currently used algorithm to compute f(n). The
above algorithm, when implemented in the bottom-up manner
i.e. computing the smaller terms of the sequence first and then
reusing them later, runs in time Θ(n2). We must note that here
the running time of the algorithm is measured in terms of the
number of comparisons required to determine the value of
f(n). The above running time can be arrived at as follows: let
the total number of comparisons needed to determine f(n) be

Cn. Then Cn = O

 n∑
j=2

(
j
2 +

√
j
) and Cn = Ω

 n∑
j=2

j
2

 ,

where j ∈ N. Therefore, Cn = Θ(n2). We now present an
algorithm whose running time is Θ(nlog2 3).

II. PROPOSED ALGORITHM

We propose that

f(n) = min {f(e′) + f(n− e′), f(d) + f(n/d)} , (2)

This paper is based on a thesis submitted by Srinivas Vivek V., under
the guidance of Dr. Shankar B. R., in partial fulfillment of the requirements
for the degree of Bachelor of Technology in the Department of Information
Technology at the National Institute of Technology Karnataka, Surathkal, India
in April 2008. This paper was previously available at www.waset.org since
2008. As on October 2014, it is no longer available there due to unknown
reasons.

Srinivas Vivek V. was with the Department of Information Technol-
ogy, National Institute of Technology Karnataka, Surathkal, India. As on
October 2014, the author is at the University of Luxembourg. Email:
svivekv@gmail.com

Dr. Shankar B. R. is with the Department of Mathematical and Computa-
tional Sciences, National Institute of Technology Karnataka, Surathkal, India.
Email: shankarbr@gmail.com

where d|n, 2 ≤ d ≤
√
n, 1 ≤ e′ ≤ n(1 − rn)/2, rn =√

1− 4(3)1/3(n−1)log2 3

n2 , and n ≥ 65.
The inequality n ≥ 65 follows from the fact that
4(3)1/3 (n− 1)

log2 3 ≤ n2. It is interesting to observe that
limn→∞ rn = 1.

Proof of correctness

To prove the correctness of the algorithm (2), we show that

f(e′) + f(n− e′) ≥ f(n− 1) + f(1)

∀ e′ ∈ N ∩ [n(1− rn)/2, n/2] .(3)

We arrive at the above result by trying to find a range of values
of e for which the inequality (3) is true. In [2] it is shown that
3 log3 n ≤ f(n) ≤ 3 log2 n = 3 (log2 3) log3 n. By using this
fact and assigning the individually smallest possible values to
f(e′) and f(n−e′), and the largest possible value to f(n−1)
in the inequality (3), we get

3 log3 e
′ + 3 log3(n− e′) ≥ 3 log2(n− 1) + 1

⇒ log3

e′(n− e′)

(n− 1)
log2 3

≥ 1

3

⇒ −(e′)2 + n e′ − 31/3(n− 1)log2 3 ≥ 0. (4)

The integer values of e′ (≤ n/2) which satisfy (4) are N ∩[
n

2

(
1−

√
1− 4(3)1/3(n−1)log2 3

n2

)
,
n

2

]
, which can be equiv-

alently written as N ∩ [n(1− rn)/2, n/2]. Clearly, the values
of e′ which satisfy (4) also satisfy (3). Hence, the proof of
correctness of the algorithm.

Running time

Let Cn be as previously defined . Then Cn =

O

 n∑
j=65

(
j(1−rj)

2 +
√
j

) and Cn = Ω

 n∑
j=65

j(1−rj)
2

. Let

hj = 4(3)1/3(j−1)log2 3

j2 . By binomial expansion,

j(1− rj) = j
(

1−
√

1− hj

)
≤ j hj

1− hj

⇒ j(1− rj) = Θ
(
j(log2 3)−1

)
.

⇒ Cn = Θ
(
nlog2 3

)
= O

(
n1.59

)
.

Hence, the running time of the proposed algorithm is
Θ
(
nlog2 3

)
.



III. PROOF OF A THEOREM

The following theorem has been mentioned in [2]. It is
also mentioned there that the theorem has been proved using
induction but the proof was not given. We now give a proof
of the theorem. This proof also is based on induction.

Theorem: The largest solutions of f(m) = 3k, 3k ± 1 are,
respectively, m = 3k, 3k ± 3k−1.

Proof: Define g(s) as the largest number which can be
formed using s number of 1’s, the addition and multiplication
operators, and the parentheses. Clearly, the largest solution of
f(m) = s is m = g(s). g(s) can be recursively obtained by
the following formula:

g(s) = max {g(e) + g(s− e), g(e)× g(s− e)} ,

where 1 ≤ e ≤ s/2.

Let the above theorem be true for k = 1, 2 . . . n − 1.
First, we prove the case of f(m) = 3n − 1, and in a similar
manner we subsequently prove the cases of f(m) = 3n and
f(m) = 3n + 1. It can be easily verified that when k = 1,
the theorem is true since g(2) = 2, g(3) = 3, and g(4) = 4.
Define g′(s, e) = max {g(e) + g(s− e), g(e)× g(s− e)}.
It is easy to see that g′(s, e) = g(e)×g(s−e) ∀ e ≥ 2, s ≥ 4.

First, consider f(m) = 3n− 1.
g′(3n− 1, 1) = 1 + g(3(n− 1) + 1) = 1 + 3n−1 + 3n−2.
Let 2 ≤ e = 3k′ − 1 ≤ (3n− 1) /2, then
g′(3n − 1, e) = g(3k′ − 1) × g(3(n − k′)) =(

3k
′ − 3k

′−1
)
× 3n−k

′
= 3n − 3n−1.

Let 2 ≤ e = 3k′ ≤ (3n− 1) /2, then g′(3n−1, e) = g(3k′)×
g(3(n− k′)− 1) = 3k

′ ×
(

3n−k
′ − 3n−k

′−1
)

= 3n − 3n−1.
Let 2 ≤ e = 3k′ + 1 ≤ (3n− 1) /2, then
g′(3n − 1, e) = g(3k′ + 1) × g(3(n − k′ − 1) + 1) =(

3k
′
+ 3k

′−1
)
×
(

3n−k
′−1 + 3n−k

′−2
)

= 16× 3n−3.
Therefore, the maximum possible value of g′(3n − 1, e) is
3n − 3n−1. Hence, the theorem is proved for the case of
f(m) = 3n− 1.

Next, consider f(m) = 3n.
g′(3n, 1) = 1 + g(3n− 1) = 1 + 3n − 3n−1.
Let 2 ≤ e = 3k′ − 1 ≤ 3n/2, then g′(3n, e) = g(3k′ − 1)×
g(3(n − k′) + 1) =

(
3k

′ − 3k
′−1
)
×
(

3n−k
′
+ 3n−k

′−1
)

=

8× 3n−2.
Let 2 ≤ e = 3k′ ≤ 3n/2, then g′(3n, e) =
g(3k′)× g(3(n− k′)) = 3k

′ × 3n−k
′

= 3n.
Let 2 ≤ e = 3k′ + 1 ≤ 3n/2, then g′(3n, e) = g(3k′ + 1)×
g(3(n − k′) − 1) =

(
3k

′
+ 3k

′−1
)
×
(

3n−k
′ − 3n−k

′−1
)

=

8× 3n−2.
Therefore, the maximum possible value of g′(3n, e) is 3n.
Hence, the theorem is proved for the case of f(m) = 3n.

Finally, consider f(m) = 3n + 1.
g′(3n + 1, 1) = 1 + g(3n) = 1 + 3n.
Let 2 ≤ e = 3k′ − 1 ≤ (3n + 1) /2, then g′(3n + 1, e) =

g(3k′ − 1) × g(3(n − k′ + 1) − 1) =
(

3k
′ − 3k

′−1
)
×(

3n−k
′+1 − 3n−k

′
)

= 3n + 3n−1.
Let 2 ≤ e = 3k′ ≤ (3n + 1) /2, then g′(3n+1, e) = g(3k′)×
g(3(n− k′) + 1) = 3k

′ ×
(

3n−k
′
+ 3n−k

′−1
)

= 3n + 3n−1.
Let 2 ≤ e = 3k′ + 1 ≤ (3n + 1) /2, then g′(3n + 1, e) =

g(3k′ + 1) × g(3(n − k′)) =
(

3k
′
+ 3k

′−1
)
× 3n−k

′
=

3n + 3n−1.
Therefore, the maximum possible value of g′(3n + 1, e) is
3n + 3n−1. Hence, the theorem is proved for the case of
f(m) = 3n+1, and this completes the proof of the theorem.

IV. CONCLUSION

In this paper we have presented a more efficient algorithm
to compute the integer complexity that runs in Θ(nlog2 3) time
when compared with the existing algorithm that runs in Θ(n2)
time. Working on the same lines, a better algorithm can be
provided if one can give a tighter upper bound on the value of
f(n) than the existing 3 log2 n bound. Also, we have given a
proof of the theorem: the largest solutions of f(m) = 3k, 3k±
1 are, respectively, m = 3k, 3k ± 3k−1, using induction.

REFERENCES

[1] R. K. Guy, Unsolved Problems in Number Theory. Second edition,
Springer-Verlag, 1994, Problem F26.

[2] R. K. Guy, Some Suspiciously Simple Sequences. American. Math.
Monthly 93, 186-190, 1986.

[3] Sequence A005245, The On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/~njas/sequences/A005245

[4] Integer Complexity, Math Games, MAA Online. http://www.maa.org/
editorial/mathgames/mathgames_04_12_04.html


