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Abstract. Carrier phase ambiguity resolution is the key
to fast and high-precision GNSS (Global Navigation
Satellite System) kinematic positioning. Critical in the
application of ambiguity resolution is the quality of the
computed integer ambiguities. Unsuccessful ambiguity
resolution, when passed unnoticed, will too often lead to
unacceptable errors in the positioning results. Very high
success rates are therefore required for ambiguity reso-
lution to be reliable. Biases which are unaccounted for
will lower the success rate and thus increase the chance of
unsuccessful ambiguity resolution. The performance of
integer ambiguity estimation in the presence of such
biases is studied. Particular attention is given to integer
rounding, integer bootstrapping and integer least squar-
es. Lower and upper bounds, as well as an exact and
easy-to-compute formula for the bias-affected success
rate, are presented. These results will enable the evalu-
ation of the bias robustness of ambiguity resolution.
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Rate — Bias Robustness

1 Introduction

Ambiguity resolution applies to a great variety of
GNSS models currently in use. They range from
single-baseline models used for kinematic positioning
to multi-baseline models used as a tool for studying
geodynamic phenomena. An overview of these models,
together with their applications in surveying, navigation
and geodesy, can be found in textbooks such as those of
Hofmann-Wellenhof et al. (1997), Leick (1995), Parkin-
son and Spilker (1996), Strang and Borre (1997) and
Teunissen and Kleusberg (1998).

Despite the differences in application of the various
GNSS models, their ambiguity resolution problems are
intrinsically the same. Hence, any rigorous method of
ambiguity resolution should be applicable to each of

these models. Any such method should be able to effi-
ciently obtain integer ambiguity estimates from the
‘float” solution, as well as provide the user or analyst
with tools to evaluate the quality of the integer solution
so obtained. Unfortunately the availability of proper
indicators for the qualitative aspects of the integer am-
biguity estimators is still lacking in most of the present-
day GNSS positioning systems.

It is of importance to be able to evaluate the quality
of the integer solution, since unsuccessful ambiguity
resolution, when passed unnoticed, will all too often lead
to unacceptable errors in the positioning results. We
therefore need to have a way of knowing how often we
can expect the computed ambiguity solution to coincide
with the correct, but unknown, solution. Is this nine out
of 10 times, 99 out of 100, or a higher percentage? It will
certainly never equal 100%. After all, the integer am-
biguities are computed from the data. They are therefore
subject to uncertainty just like the data are.

In order to describe the quality of the integer ambi-
guity solution, we require the probability distribution of
the integer estimator. This distribution will be a proba-
bility mass function, due to the integer nature of the
ambiguities. Of this probability mass function, the
probability of correct integer estimation — also referred
to as the success rate — is of particular interest. This
probability depends on three contributing factors: the
functional model, the stochastic model and the chosen
method of integer estimation. Changes in any of these
will affect the ambiguity success rate.

In this contribution we address the probabilistic as-
pects of integer ambiguity estimation in the presence of
biases. We will refrain however, from discussing the
computational intricacies of integer estimation. For a
discussion of these aspects, we refer to, for example,
Teunissen (1993) and de Jonge and Tiberius (1996a), or
to the textbooks of Hofmann-Wellenhof et al. (1997),
Strang and Borre (1997) and Teunissen and Kleusberg
(1998). A very efficient way of solving the integer esti-
mation problem is provided by the LAMBDA method.
A description of the LAMBDA method can be found in
the aforementioned publications, while practical results
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obtained with it can be found in, for example, Boon and
Ambrosius (1997), Boon et al. (1997), Cox and Brading
(1999), de Jonge and Tiberius (1996b), de Jonge et al.
(1996), Han (1995), Jonkman (1998), Peng et al. (1999),
Tiberius and de Jonge (1995) and Tiberius et al. (1997).

Since unaccounted biases in the functional model will
produce biases in the ambiguity ‘float’ solution, they will
also affect the performance of ambiguity resolution. In
order to evaluate the bias robustness of ambiguity res-
olution, we need to be able to assess the impact these
biases have on the probability of correct integer esti-
mation. In this contribution, we present diagnostic tools
for evaluating this impact.

This contribution is organized as follows. In Sect. 2
we first present a brief review of the general problem of
integer ambiguity estimation. The class of admissible
integer estimators is described and conditions for unbi-
ased integer estimation are given. Each member from
this class is uniquely defined by its ambiguity pull-in
region. It is also shown how these pull-in regions govern
the success rates of the admissible integer estimators.
Well-known examples of integer estimators that belong
to this class are ‘integer rounding’, ‘integer bootstrap-
ping’ and ‘integer least-squares (LS)’.

In Sect. 3 we study the impact of unaccounted biases.
It is shown that biases in the ‘float’ solution reduce the
ambiguity success rate and that this reduction increases
with the size of the bias along a fixed direction. We also
present different methods for evaluating the bias-affect-
ed success rates. For bootstrapping we present an exact
and easy-to-evaluate formula for the bias-affected suc-
cess rate. For other integer estimators, such as ‘integer
rounding’ and ‘integer LS’, it is generally very difficult to
obtain such analytical expressions. For these two esti-
mators, easy-to-compute lower and upper bounds of
their bias-affected success rates are given. Finally, it is
shown how the method of simulation can be used to
compute the bias-affected success rates of arbitrary
integer estimators.

In this contribution we will make frequent use of the
following notation. The canonical unit vector having as
its ith entry a 1, and zero entries otherwise, is denoted as
¢;. The weighted norm of a vector x will be denoted
as || x |[a. Thus || x |2, = x"M~'x. Also the triangular
factorization Q; = LDL” of the ambiguity variance—co-
variance matrix Q; will often be used. Matrices L and D
are then, respectively, a unit lower triangular matrix and
a diagonal matrix. The diagonal entries of matrix D are
the sequential conditional variances of the ambiguities.
Thus D = diag(. . ., agm, ...), with aﬁu the variance of the
ith LS ambiguity obtained through a conditioning on
the previous 7 = {1,..., (i — 1)} ambiguities.

2 Integer estimation
2.1 Admissible integer estimators
GNSS ambiguity resolution is the process of resolving

the unknown cycle ambiguities of the carrier phase data
as integers. When solving for the carrier phase ambigu-

ities, we still have to decide which integer estimation
principle to choose. Various choices are possible. In this
section we will define the class of admissible integer
estimators. Members from this class are uniquely
determined by their so-called pull-in regions.

Let @ € R” be the real-valued ‘float’ solution of the
vector of carrier phase ambiguities. Deciding on an in-
teger estimator implies that a mapping F : R" — Z" is
chosen, from the n-dimensional space of reals to the
n-dimensional space of integers, such that the corre-
sponding integer vector of ambiguities is obtained as
a = F(a). Due to the discrete nature of Z”, the map F
will not be one-to-one, but instead a many-to-one map.
Hence, different real-valued ambiguity vectors will be
mapped to the same integer vector. We can therefore
assign a subset S; C R" to each integer vector z

S, ={xeR"|z=F(x)}, ze Z" (1)

This subset, referred to as the pull-in region of z, contains
all real-valued ambiguity vectors that will be mapped by
F to the same integer vector z. It is the region in which
all ambiguity ‘float’ solutions are pulled to the same
‘fixed” ambiguity vector z. Using the pull-in regions, the
integer estimator can be defined as ¢ =z<=-a € S..
Using the indicator function of the pull-in regions, the
integer estimator can then be written as

1 ifaes,
0 otherwise

G = Zzsz(fz) with s,(a) =

zeZ"

()

Since the pull-in regions define the integer estimator
completely, we can define classes of integer estimators by
imposing various conditions on the pull-in regions. In
Teunissen (1999), the class of admissible integer estima-
tors was defined as follows.

Definition. The integer estimator a = ___,, zs-(a) is said
to be admissible if

(1) Uzezn Sz =R"
(11) intSZl N int522 = @, Vzi,20 € Zn,Zl #ZQ
(ili) S =z + Sy, Vze Z"

This definition was motivated as follows. Each one of
the above three conditions describes a property which it
seems reasonable is possessed by an arbitrary integer
ambiguity estimator. The first condition states that the
pull-in regions should not leave any gaps and the second
that they should not overlap. The absence of gaps is
required in order to be able to map any ‘float’ solution
a € R" to Z", while the absence of overlaps is required to
guarantee that the ‘float’ solution is mapped to just one
integer vector. Note that we allow the pull-in regions to
have common boundaries. Only their interiors (int) are
not allowed to overlap. The common boundaries are
permitted if we assume to have zero probability that a
lies on one of these boundaries. This will be the case
when the probability density function (PDF) of a is
continuous.

The third and last condition follows from the re-
quirement that F(x+z)=F(x)+z Vx€R", z€Z".



This condition is also a reasonable one to ask for.
It states that when the ‘float’ solution is perturbed by
an integer vector z, the corresponding integer solution
is perturbed by the same amount. This property allows
us to apply the integer remove—restore technique:
F(a—z)+z=F(a). It therefore allows us to work with
the fractional parts of the entries of a, instead of with its
complete entries.

2.2 Unbiased integer estimation

Each integer estimator has its own probability distribu-
tion. Since the integer estimator is of the discrete type,
its distribution will be a probability mass function
(PMF). It will be denoted as P(ad =z), with z € Z". In
order to determine this distribution we first need the
PDF of a. It will be denoted as p;(x), with x € R". Since
a=z<=ae€s, it follows that P(a=1z)=P(a€S.).
Hence, the PMF of a reads

Pla=z)= /p,g(x)dx, VzeZ" (3)
S:

The probability masses of the PMF therefore follow
from integrating the PDF over the pull-in regions. The
PMF of @ can be used to study various properties of the
integer estimator. One such property is the possible
unbiasedness of the integer estimator. This property will
depend on the PDF p;(x) and on the geometry of the
pull-in regions. In the following we will assume that
both the PDF and the pull-in regions are integer-
symmetric. The pull-in region S, is said to be u-
symmetric if it is symmetric with respect to u € Z". That
18, x € S,<=2u — x € S,. Similarly, the PDF is said to be
u-symmetric if p;(x) = pa(2u —x), Yx € R". Based on
these two properties, we have the following result.

Corollary 1. If'the PDF p;(x) and the pull-in region S, are
both u-symmetric, then the mean of the corresponding
admissible integer estimator a equals u € Z"

E{a} = u 4)

Proof. We clearly have E{a} = u, when the PMF is
symmetric about w: Pla=u+z)=Pla=u—7z),
Vz € Z". The symmetry of the PMF is shown as follows:

Pla=u+z)= /pa(x)dx:/pa(y+u)dy

Su+z SZ

= /pa(u —y)dy = / pa(u+y)dy
s S

= / pa(x)dx = P(a =u —z)
S!(*Z

The second and fifth equations follow from the trans-
lational property of pull-in regions, while the third and
the fourth equations follow from, respectively, the
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symmetry of the PDF and the symmetry of the pull-in
regions. O

The above result can now be applied to the integer
estimator of the carrier phase ambiguities. It is usually
assumed that the ‘float’ solution is unbiased and
normally (Gaussian) distributed: @ ~ N(a,Q;), with
a € Z" the true, but unknown, integer ambiguity vec-
tor, and Q; the variance—covariance matrix of the
‘float’” solution. The PDF of the ‘float’ solution is then
symmetric with respect a € Z". From the above
corollary it then follows that any integer ambiguity
estimator, for which the pull-in regions are integer-
symmetric, is unbiased.

Although it is nice to know whether an integer esti-
mator ¢ is unbiased or not, the property of unbiasedness
does not reveal too much about the shape of the prob-
ability mass function. It only implies that the total
probability mass is evenly (not necessarily symmetri-
cally) distributed about a € Z". The property of ‘unbi-
asedness’ therefore implies only that we will obtain the
correct solution ‘on the average’. For GNSS ambiguity
resolution, however, this is not enough. In order to be
able to assess the reliability of ambiguity resolution, we
also need to know how often we can expect the integer
solution to coincide with the correct integer. For that we
need to know the probability of correct integer estima-
tion. This probability, also referred to as the ambiguity
success rate, is given as

P(a=a) = / pa(x)dx (5)

Sa

The success rate is a very important diagnostic measure
for assessing the reliability of ambiguity resolution. It is
particularly important because of the way estimated
integer ambiguities are treated in practice. In the
processing steps following integer estimation, it is
common practice to consider the integer ambiguity
solution to be deterministic. However, this is only
permitted when the success rate is sufficiently large, i.e.
when it is sufficiently close to 1. Only then will we be
allowed to assume safely that the uncertainty in the
integer ambiguity solution can be neglected. A too low
success rate will too often lead to incorrect estimates of
the integer vector and consequently to unacceptable
errors in the GNSS positioning results.

Note that the ambiguity success rate exists whether
the integer estimator is biased or not. In the next section
we will evaluate the success rate in the presence of biases.

3 The bias effect
3.1 The success rate in the presence of biases

In order to discuss the impact biases have on the
performance of ambiguity resolution, we start by
assuming that the ‘float’ solution is biased. We therefore
assume that the ‘float’ solution is distributed as

a~N(a+b,0;), withaeZ" beR" (6)
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The vector a equals the true but unknown integer
ambiguity vector, and » denotes the real-valued bias
vector. Biases in the ‘float’ solution will generally occur
when the assumptions underlying its computation are
mis-specified. Mis-specifications in the functional model,
for instance, will generally lead to a biased ‘float’
solution. In the case of GNSS, such biases could be
generated by outliers in the code data, cycle slips in the
phase data, multipath or the presence of unaccounted
atmospheric delays.

With Eq. (6), the corresponding ambiguity success
rate is given as

Pla=a) = [ (20 fda(g; )

Sa
1 2
xexp{2||xab|Qd}dx (7)

The success rate has been given the subscript 5 to show the
success rate’s dependence on the bias. Note that the
success rate, when considered as function of the bias
vector b, is symmetric about the origin. Also note that the
success rate is independent of the unknown integer
ambiguity vector a. This is due to the translational
property of the pull-in regions and of the PDF of 4. Thus
instead of integrating the PDF over the pull-in region S,
we might as well centre the PDF at b and integrate over S.

The following corollary shows the effect biases have
on the ambiguity success rate.

Corollary 2. Let the ‘float’ solution a be distributed as in
Eq. (6) and let the integer estimator a be admissible. If the
pull-in regions of a are integer-symmetric and convex,
then

Py—o(a = a) > Pyyo(d = a) > Pyppo(d=a), Vu>1 (8)

Proof. The proof follows from applying a theorem due
to Anderson (1955). Anderson’s theorem states that, if
f(x): R" — [0,00) is symmetric about the origin and
unimodal, and 4 C R" is symmetric about the origin and
convex, then

[ rwas [ roe

A+iy A+y

for any y € R" and any 1€ [0,1). In order to obtain
Eq. (8), we set 4 =S8y, Ay=b, y=ub and f(x)x
exp{—13 [ x[p,}, and easily verify that f(x) is both
symmetric about the origin and unimodal. O

This result confirms that the performance of ambi-
guity resolution is degraded by the presence of unac-
counted biases. Biases in the ‘float’ solution reduce the
ambiguity success rate and this reduction increases with
the size of the bias along a fixed direction. The above
result does not state, however, by how much the success
rate is reduced due to the presence of the bias. This
reduction could be unacceptably large or it could be so
small that it is negligible.

That the success rate can still be large enough, even in
the presence of biases, can be seen as follows. The success
rate equals the integral of the PDF of & over the pull-in
region. In the absence of any bias, the PDF of a will be
centred at a € Z". However, when bias is present it will
translate over b and be centred at a 4+ . The translation
over b will reduce the success rate. However, if the PDF is
sufficiently peaked, the success rate could still be large
enough, even though the PDF is now centred at a + b. In
fact, if the PDF is sufficiently peaked, the success rate will
not change by much, provided the vector a + b remains
located within the pull-in region. A dramatic drop in the
success rate’s value will then only occur when the vector
a + b crosses the boundary of the pull-in region.

The fact that the success rate needs to be close to one,
combined with the fact that the success rate gets reduced
due to the presence of unaccounted biases, again em-
phasizes the importance of being able to evaluate the
ambiguity success rates. In the next and following sec-
tions we will show how the success rates can be com-
puted in the presence of biases. These results then allow
us to study and evaluate the bias robustness of ambi-
guity resolution. We first consider the integer ambiguity
estimator obtained by bootstrapping.

3.2 The bias-affected bootstrapped success rate

Integer bootstrapping is an often-used method of integer
ambiguity estimation. It is a simple method, which, when
combined with the decorrelation process of the LAMB-
DA method, can achieve good results. The method is a
generalization of the ‘integer rounding’ method and it
goes as follows. If n ambiguities are available, we start
with the first ambiguity 4; and round its value to the
nearest integer. Having obtained the integer value of this
first ambiguity, the real-valued estimates of all remaining
ambiguities are then corrected by virtue of their corre-
lation with the first ambiguity. Then the second, but now
corrected, real-valued ambiguity estimate is rounded to
its nearest integer. Having obtained the integer value of
the second ambiguity, the real-valued estimates of all
remaining n — 2 ambiguities are then again corrected, but
now by virtue of their correlation with the second
ambiguity. This process is continued until all ambiguities
are taken care of. In essence this ‘bootstrapping’
technique boils down to the use of a sequential condi-
tional LS adjustment, with a conditioning on the integer
ambiguity values obtained in the previous steps. Hence,
the bootstrapped estimator is given as

ap = ([@], @], - [agw))" 9)

in which [] denotes the operation of rounding to the
nearest integer and a;; is the ith real-valued LS
ambiguity obtained through a conditioning on the
previous I ={l1,...,(i— 1)} ambiguities. As it was
shown in Teunissen (1999), the bootstrapped estimator
is an admissible integer estimator of which the origin-
centred pull-in region is given as

Spo={xeR"||cL7'x|< L i=1,....n} (10)



The bootstrapped pull-in regions are integer-symmetric,
convex subsets, which have a volume equal to 1. In two
dimensions, they reduce to parallellograms. From Cor-
ollary 1 it follows that the bootstrapped estimator is
unbiased in the case that the ‘float’ solution is unbiased
and normally distributed. In the presence of biases, the
bootstrapped success rate is given as

Py(ap = a) = /( ) ty/det 0;!

:pr{—%@ . e b)}dx (11)

Since the conditions of Corollary 2 apply, the boot-
strapped success rate gets smaller when unaccounted
biases are present in the ‘float’ solution. The following
theorem gives an exact and easy-to-compute expression
for the bias-affected bootstrapped success rate.

Theorem 1 (the bias-affected bootstrapped success rate).
Let a be distributed as N(a+ b,Q;), a € Z", b € R", and
let ag be the corresponding integer bootstrapped estima-

tor. Then
o 1—-28; i 1+ 2p; _
20&f\1 20&1’\1
(12)

n
Pb(dB = a) = H
with B; the ith entry of the bias vector L™'b, o> the
variance of the ith LS ambzgulty obtained thiough a
conditioning on the previous I = {1,...,(i — 1)} ambigu-
ities, and

):Z \/Lz_nexp{—%uz}du

The unit lower triangular matrix L follows from the
factorization Q; :LDLT, with the diagonal matrix
D = diag(...,02 ,...).

) a‘l

Proof. We will first transform the integral of the
bootstrapped success rate into a simpler form. As the
transformation we choose f : x = Ly, with L the trian-
gular factor of Q; = LDL”. Then

Pb(le = a) = / (27‘5)_%V det D!
f(SBo)

X exp{—;(y L '0)'D(y - le)}dy

with the transformed pull-in region

fﬁl(SBvo) ={yerR"| |ciTy|§ %,i: l,...,n}

Recognizing that D is a diagonal matrix and that the
transformed pull-in region has become an origin-centred
cube with all sides equal to 1, we may write the above
multivariate integral as a product of one-dimensional
integrals

from which the result follows.

The above result can now be used to evaluate the bias
robustness of carrier phase ambiguity resolution. In
order to evaluate P,(ag = a) we need the bias vector b
together with the triangular factorization Q; = LDL'.
The entries of the diagonal matrix D provide the con-
ditional variances, and the triangular factor L, together
with b, determines the bias components f3;.

The outcome of bootstrapping is known to depend on
the chosen ambiguity parametrization. Bootstrapping of
double-differenced (DD) ambiguities, for instance, will
produce an integer solution which generally differs from
the integer solution obtained from bootstrapping of re-
parametrized ambiguities. Since this dependency also
holds true for the bootstrapped success rate, we should
ensure, when using bootstrapping, that an appropriate
parametrization of the ambiguities is used. The method of
bootstrapping is known to perform poorly, for instance,
when applied to the DD ambiguities. This is due to the
usually high correlation between the DD ambgiuities. The
method should therefore only be applied in combination
with the decorrelating Z-transformation of the LAMB-
DA method (Teunissen 1993; de Jonge and Tiberius
1996a). When this transformation is applied, we work
with the decorrelated ambiguity vector 2 = Z74, instead
of with the original ambiguity vector a. But when the
original ambiguities are biased, the transformed ambi-
guities will be biased too. Instead of Eq. (6), we will have

2~ N(z+Z"b, 27 047) (13)

with z the true, but unknown, transformed integer
ambiguity vector and Z”h the transformed bias vector.
The above theorem can then be applied again to obtain
the bias-affected success rate P, (25 = z).

For integer estimators other than the bootstrapped
estimator, it is usually very difficult to obtain exact and
easy-to-evaluate expressions for the success rate. The
reason for this lies in the combination of the pull-in
region’s geometry and the non-zero correlation of the
ambiguities. For such estimators we will therefore have
to consider alternative means of evaluating the ambi-
guity success rates. One such approach is discussed in
the next section.

3.3 Lower and upper bounds

In this section we will develop easy-to-compute lower
and upper bounds for the bias-affected ambiguity
success rate. Since the success rate
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So
(14)

is equal to the probability that a random vector x € R",
with distribution x ~ N(b, Q;), lies in the origin-centred
pull-in region Sy, we have Py,(d =a) =P(x € S)). To
determine lower bounds and upper bounds of the
success rate, the idea is to construct subsets Ly and U
such that Ly C Sy C Uy. Then

P(XEL())SPZ,([I:G)SP(XEU()) (15)

Both types of subsets, Ly and Uy, should of course be
chosen such that the corresponding probabilities are
easily evaluated. We will determine such subsets for the
following three integer estimators: integer rounding
(ar = ([a1],]a2], - - [dn])T), integer bootstrapping (dg
= ([a1], [ay], - - EN and integer LS (drs=
arg min,cz» a—z| . We have included the boot-
strapped estimator, because of its close relation to
integer rounding. The pull-in regions of these three
estimators are given as [see Teunissen 1999]

Sp-={xeR"||cf(x—2)|< Li=1,....n}

Sp.={xeR"||c]L ' (x—2)| < Li=1,....n}

Sts.={xeR"||T0; ' (x—2) | < LcTQ7le, Ve € 2"}
(16)

It can be shown that the two integer estimators dr and
ars are admissible and that their pull-in regions are
integer-symmetric and convex. It then follows from
Corollary 1 that both integer estimators are unbiased in
the case that the ‘float’ solution is unbiased and
normally distributed. And since the conditions of
Corollary 2 apply, their success rates will get smaller
in the presence of unaccounted biases.

We will now first describe the approach taken for
constructing the upper bounds. To this end, we first note
that the three pull-in regions of Eq. (16) are given as
intersections of pairs of parallel half spaces. This implies
that the pull-in region itself is a subset of any such single
pair of intersecting parallel half spaces. The three upper
bounds will therefore all be based on a subset of the type

Up={xeR"[|fTx|< 3} (17)

in which the normal vector f € R" still needs to be
appropriately chosen. Since it follows from x ~ N (b, Q;)
and x € Uy, that

ST b)

L 70 L N(O,1

g~ VO

and

fT(x—b) 71—|—2fTb l—2fTb
e < | 217 T 217 o

the upper bound follows as

1 2f7h L+2/"b
o ® -
P(x € Up) (2 7 ||le) " (2 Il ”Qal>
(18)

For the three lower bounds, an alternative approach is
taken. All three lower bounds will be based on an
ellipsoidal subset of the type

Ly={xerR" |xTlex§X2} (19)

in which »? is a positive constant that still needs to be
determined. The subset Ly is thus chosen as the ellipsoid
that just fits the pull-in region S;. Once the constant y?
has been determined, the lower bound follows as

P(x € L) = P(2’(n, || b II5,) < 1) (20)

with »*(n, || b [|,), the noncentral Chi-square distribu-

tion with n degrees of freedom and noncentrality
parameter | b ||, =b"Q;'b. This result follows from
the fact that if x ~ N (b, Q;), then || x ||Q ~ 7 (n, || b ||Q )
(see e.g. Koch 1980). We are now in a position to
formulate the three lower bounds and the three upper
bounds.

Theorem 2 (bounds on bias-affected success rates). The
bias-affected ambiguity success rates of, respectively,
‘rounding’, ‘bootstrapping’ and ‘integer LS’, are bounded

from above and below as:

_ T
P((n,|| b 13,) < 7)) < Pola=a) < @(ﬂ)

2017 g
1+2f7h
+ P —— | -1 (21)

(z 17 g

with

, 11 .

r=g——s f =c¢i for rounding
max,»a&/

, 1 1 . .

=g f=L""¢; for bootstrapping
max; oz

I .
=7 min |z f=

1 — .
4 zez /{0} |2 A 0; 'z for integer LS

122,

and where c¢; is one of the canonical unit vectors and
zeZ".

Proof. The proof for the upper bounds is rather
straightforward. It follows once the normal vector f of
the pair of parallel half spaces is given. For ‘rounding’,
‘bootstrapping’ and ‘integer LS’, we choose the three
subsets respectively as Urg={x € R"||c[x|<1},
UBO —{xGR" | ‘CTL x|< 2} and ULS()—{XERn |
|20 X |<5 Mz 15,2 € Z”} The vector f is therefore
0.2

[EF%

In order to prove the lower boundé7 we make use of
the following planes of support description of an ellip-
soid (Teunissen and Kleusberg 1998, p 334):

given as, respectively, ¢;, L~ '¢; and



{xeR [xXQ;'x </} ={xeR" | (¢'%)
<7°9"0ag, Vg € R"}
For ‘rounding’ this gives

Lro={x€R"| (¢"x)* < 1*¢" Qag, Vg € R"}

C{xer"|(c x)? <ya,i:1,...,n}
C{xeR | (Ix)? <y maxaﬁi,izl,...,n}
1 1
=Spo for P =————
RO 0T X 4max; o

The second line follows from replacing Vg € R" by the
finite set of canonical unit vectors ¢;, i = 1,...,n, while
the third line follows from replacing the variable upper
bounds by the largest. For ‘bootstrapping’ we obtain in
a similar way

(
={xeR | (L'x)?< ychDc Ve e R"}
C{xeR"|(cL %)? < 4o av i=1,...,n}
C{xeR"| (clTL*lx) <y mlaxaﬁm, i=1,...,n}
1 1
=Spg for > =————
B “ 4max; o2

aj|r

The second line follows from using the triangular

factorization Q; = LDLT and from setting g = L~ 7c.

For ‘integer LS’ we find
Liso={x€R" | (¢"%)’ < 1’g Qag, VgeR"}
={xeR"|(Z'0Q; 1x) <7207z, Vz e R}

C{xeRr"| (ZTQalx) 2270z, Yz ez}
I 2 II¢

C {XER" | (ZTQa lx) < ¥2 : Qa -
mngzn/{o} ‘ z ”Qa
Vze Z”}
= SIso for*zzl min ||z||2
: 4zcz/{0) Qi

The second and third line follow from setting g = Q; 'z
and restricting z to the space of integers.

The following remarks can be made with respect to
the above result. The lower bounds, when large enough,
are useful to show that ambiguity resolution — despite
the presence of biases — can still be expected to be suc-
cessful, while the upper bounds, when small enough, are
useful to show that successful ambiguity resolution will
probably fail.

Note that the lower bounds for rounding and boot-
strapping are dependent on the chosen ambiguity
parametrization, whereas the lower bound for integer
LS is not. The lower bounds for rounding and boot-
strapping will become sharper when, respectively, the
largest variance or largest conditional variance gets
smaller. This can be achieved by means of the decorre-
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lation process of the LAMBDA method. Also note that
the three lower bounds depend only on the bias-to-noise
ratio || b [|g,. Different bias vectors having the same
norm will therefore produce the same lower bound. This
is in contrast with the success rate itself, which will
generally also change when the direction of the bias
vector changes.

There exists an ordering between the three lower
bounds of Eq. (21). This is due to the inequalities

1 1

<
2 o2
max; oz

<

(22)

min
max; o z€Z"/{0}
This ordering implies that the lower bounds for
rounding and bootstrapping are also lower bounds for
integer LS, and that the lower bound for rounding is
also a lower bound for bootstrapping.

The validity of the above two inequalities can be
shown as follows. The first inequality follows, since
04 > 04y, Vi, and thus max; o;, > 04, Vi. To prove the
second inequality, let Z be the integer vector of minimum
norm and let Q; = LDL” be the triangular factorization
of the variance—covariance matrix. Then D = diag
(...,oﬁiu,...) and

2
R o L
Qﬁ_z
i=1 O-a:\l

This shows, since L~! is a unit lower triangular matrix,
that l/oa‘ <|| z ||Q, when z; > 1 is the first nonzero

[

entry of z (2, = 0 for i < j). The reciprocal value of the
maximum conditional variance is therefore certainly less
than or equal to the squared norm of z.

As to the upper bounds, note that we still have
some freedom left in choosing them. The upper
bounds for ‘rounding’ and ‘bootstrapping’ hold true
for any vector ¢;, while the upper bound for ‘integer
LS’ holds true for any nonzero z € Z". Since we would
like the bounds to be as tight as possible, the upper
bounds should be as small as possible. The upper
bounds depend on the width and location of the in-
tegration interval. A large offset and a small width of
the integration interval will produce a small upper
bound. It follows from Eq. (18) that the width of the
integration interval equals || 7 [|-! o1 which is indepen-
dent of the bias vector . A good choice for f, when
chosen to be independent of b, would therefore be the
one that minimizes the width of the integration in-
terval. For the three upper bounds, || / HQ4 will then
equal (max; o) "', (max; o5, ) "and min.ez 0y || 2 [,
respectively. With these choices, the lower bounds
become identical to the upper bounds when n = 1. In
that case, Lo={r€R[x* <1} and Uy={xeR|x
|<1}, and thus Lo = Up.

Finally note that the three integer estimators dg, dg
and arg become identical in the case that the ambi-
guity variance—covariance matrix is diagonal. The
same holds true for the three lower bounds and also
for the three upper bounds when f is appropriately
chosen.
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3.4 Simulating the success rate

Instead of using the results from the previous two
theorems, we can choose the method of simulation to
obtain an approximation of the success rate P,(d = a).
We know that the ‘float’ solution is distributed as
@~ N(a+b,0;). We also know that the bias-affected
success rate is independent of the mean a. Hence, in
order to obtain the required success rate we may shift
the distribution over a and restrict our attention to
N(b, Qs), draw samples from it and use these samples to
obtain the corresponding integer samples of the integer
ambiguity estimator. Repeating this procedure a suffi-
cient number of times allows us to built up the required
frequency of correct integer estimation.

The following steps are followed when performing
the simulation. First we start generating, using a random
generator, n independent samples from the univariate
standard normal distribution, say si,...,s, from
N(0,1). These samples are then collected in the vector
s=(s1,... ,s,,)T and transformed by means of x = Gs,
where matrix G equals the Cholesky factor of the am-
biguity variance-covariance matrix Q;, i.e. Q; = GG.
Hence, x is now a sample from N(0, Q;). Adding the bias
b to x, will then give the corresponding sample of
a ~ N(b,Q;). Using this sample, we can decide whether
or not a € Sy. By repeating this process N number of
times, we can count the number of times, N, say, that the
sample falls inside the pull-in region. An approximation
to the success rate then follows as

Py(d=a) ~ ¢ (23)

Successful ambiguity resolution can now be expected to
be feasible when this probability is sufficiently close to 1.
Note that this procedure requires an N-time verification
of a € ). In the case of integer LS, with an inefficient
implementation of the search, this becomes a very time
consuming task when N is large. This shows that the
simulation should not be based on the original DD
ambiguities, but instead on the transformed ambiguities
obtained by means of the LAMBDA method. Although
the PMF of the transformed ambiguities differs from
that of the DD ambiguities, their success rates will be
the same.

In order to obtain an idea of how large N should
be taken in the simulation, we consider the proba-
bility that Ny out of N samples fall inside the pull-in
region Sy. If the N samples are drawn independently
from the normal distribution N(b,Q;), then this
probability is governed by the binomial distribution
and is given as

|
N! pho (1

PMo) = (N — No)INy! " 0

_p )Nfzv0

where we made use of the abbreviation Py = P,(a = 0).
The mean (expectation) and variance (dispersion) of the
relative frequency Ny/N follow therefore as

E{N()/N}:P() and D{N()/N}:P()(l—P())/N

Note that the first expression is in fact the motivation
for using the relative frequency as an estimator for P,
the probability of correct integer estimation. The second
expression gives the precision of this estimator. It
depends on both Py and N.

Using the above mean and variance we may now
apply the Chebyshev inequality to obtain an upper
bound on the probability that the relative frequency
Ny /N differs more than e from Fy. The corresponding
Chebyshev inequality reads

P(NO ‘ . 6) _ R R

v Ne

The required number of samples N can be obtained by
setting both ¢ and the upper bound to a small enough
value. For instance, when the probability of correct
integer estimation equals Py = 1 — 1073, an upper bound
of 1% and a deviation of ¢ = 1073 lead to a required
number of samples of N = 10°. This shows that in
general a large number of samples are needed to obtain a
sufficiently precise estimate of the probability of correct
integer estimation. Instead of using the above Cheby-
shev inequality, we may also use the Gaussian approx-
imation for the binomial distribution to obtain an
estimate of the required number of samples, when N is
large. This will usually give a somewhat less conservative
estimate of N.

(24)

4 Summary

Carrier phase ambiguity resolution is the key to fast and
high-precision GNSS positioning. Critical in the appli-
cation of ambiguity resolution is the quality of the
computed integer ambiguities. Unsuccessful ambiguity
resolution, when passed unnoticed, will too often lead to
unacceptable errors in the positioning results. In this
contribution, the impact of unaccounted biases on the
performance of carrier phase ambiguity resolution was
evaluated for the first time. It was shown that biases in
the ‘float’ solution generally reduce the ambiguity
success rate. This reduction increases with the size of
the bias along a fixed direction. Different approaches
were discussed for evaluating the bias impact. The
method of success rate simulation applies to any integer
ambiguity estimator. In order to obtain an accurate
approximation of the success rate, usually a high
number of samples is needed. This implies that the
method can become computationally demanding if an
integer ambiguity estimator, such as the integer LS
estimator, is implemented as a search. Application of the
LAMBDA method will then help to ease the computa-
tional burden.

Simulation of the success rate is not needed for the
bootstrapped estimator. It was shown that its bias-
affected success rate could be given in closed form. It

reads
1-28. 1 +26.
) b + + 25, -1
26(;,’.‘[ 20'(;/.‘1

n

Pb([ZB = a) = H

i=1




This success rate is very easy to compute. We only need
the bias vector b together with the triangular factoriza-
tion Q; = LDL”. The entries of the diagonal matrix D
provide the conditional variances and the triangular
factor L, together with b, determines the bias compo-
nents f;.

For ‘integer rounding’ and ‘integer LS’ no such
simple formula could be given. This is due to the rela-
tionship of their pull-in region’s geometry with the
nondiagonal structure of the ambiguity variance—
covariance matrix. Instead of an exact expression, lower
and upper bounds were given for their bias-affected
success rates. For ‘integer rounding’ these bounds are
given as

1 1 .
P(Xz(n7 || b ||22a) S Zm) S Pb(aR = a)

1 —2b; 1 + 2b;
<@ ® —
- ( 20, >+ ( 204, ) :

For ‘integer LS’ a similar approach was used for
constructing the lower and upper bounds. They are
given as

. .
P(20lb 1) <51121,) < Plas=a)

<® 1—V2b_21 i 1+v2b_21 B
211 2 lig, 2112 lig,

in which Z denotes the nonzero integer minimizer of
|z |lo, and b: equals the ratio of the orthogonal
projection of b onto Z and the norm of Z.

The lower bounds, when large enough, are useful to
show that ambiguity resolution can still be expected tobe
successful, while the upper bounds, when small enough,
are useful to show that successful ambiguity resolution
will probably fail.
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