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Integer-Forcing Source Coding
Or Ordentlich and Uri Erez, Member, IEEE

Abstract—Integer-Forcing (IF) is a new framework, based
on compute-and-forward, for decoding multiple integer linear
combinations from the output of a Gaussian multiple-input
multiple-output channel. This work applies the IF approach
to arrive at a new low-complexity scheme, IF source coding,
for distributed lossy compression of correlated Gaussian sources
under a minimum mean squared error distortion measure. All
encoders use the same nested lattice codebook. Each encoder
quantizes its observation using the fine lattice as a quantizer
and reduces the result modulo the coarse lattice, which plays the
role of binning. Rather than directly recovering the individual
quantized signals, the decoder first recovers a full-rank set of
judiciously chosen integer linear combinations of the quantized
signals, and then inverts it. In general, the linear combinations
have smaller average powers than the original signals. This
allows to increase the density of the coarse lattice, which in turn
translates to smaller compression rates. We also propose and
analyze a one-shot version of IF source coding, that is simple
enough to potentially lead to a new design principle for analog-
to-digital converters that can exploit spatial correlations between
the sampled signals.

I. INTRODUCTION

The distributed lossy compression problem, depicted in

Figure 1, consists of multiple distributed encoders and one

decoder. The encoders have access to correlated observations

which they try to describe to the decoder with minimum rate

and minimum distortion [1]–[3]. This problem naturally arises

in numerous scenarios. For instance, consider a sensor network

where multiple sensors that observe correlated random vari-

ables are connected via finite rate links to a central processor,

but not to one another, and have to describe their observations

to the central processor with minimum distortion. As another

example, consider two competing television channels that

cover the same event and have to broadcast their programs to

the same end-users (that may choose which channel to watch

and therefore need to be able to recover both programs with

low distortion). Although the distributed lossy compression

problem is usually classified as a pure source-coding problem,

it is also an important building block in network channel

coding problems. For instance, multiple relays may observe

correlated signals that describe the messages transmitted by the

different encoders in the network. The relays can compress-

and-forward these signals further down the network in order to

ultimately help the decoder recover the transmitted messages.

A special case that received considerable attention is that

of distributed lossy compression of jointly Gaussian random
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Fig. 1. The distributed source coding problem. The kth encoder Ek has
access to the vector xk that contains n i.i.d. realizations of the random
variable xk. It encodes xk to an index taking values in 1, . . . , 2nRk . The
sources x1, . . . , xK are assumed correlated and the encoders are not allowed
to cooperate. The decoder’s goal is to produce estimates of each xk with
average distortions dk using the K indices it received from the encoders.

variables under a quadratic distortion measure. The best known

achievable scheme is that of Berger and Tung [1], [2], al-

though some examples where Berger-Tung compression can

be outperformed are known [4]–[6]. In the Gaussian case, the

Berger-Tung approach reduces to each encoder compressing

its source using a standard point-to-point quantizer, followed

by Slepian-Wolf [7] encoding. For the quadratic Gaussian case

with K = 2, Wagner et al. [8] proved that this approach is

optimal.

The importance of the quadratic-Gaussian distributed lossy

compression problem has motivated researchers to design low-

complexity encoding schemes that approach the performance

of the Berger-Tung inner bound. This line of work was pio-

neered in [9], [10] and remains an active area of research, see,

e.g., [11]–[13] and references therein. However, at a high level,

the existing approaches for distributed source coding are either

notably asymmetric in the rates they require from the encoders,

as they rely on the lattice-based implementation of Wyner-Ziv

coding [13], [14] and successive Wyner-Ziv coding [11], or

specifically tailored to predefined correlation characteristics of

the sources [10]. In general, the rate requirements in schemes

that are based on Wyner-Ziv coding can be symmetrized

by time-sharing between different compression/decompression

orders [13]. Nevertheless, schemes using time-sharing have a

few drawbacks. First, it requires the encoders and the decoders

to use a larger number of codebooks, which complicates

implementation. Second, it requires coordination between the

distributed encoders, which is less crucial when time-sharing

is not used. Finally, the compression block must be at least as

long as the number of operation points that are time-shared.

In this work we propose a novel framework, integer-

forcing source coding, for distributed lossy compression with

symmetric rate and distortion requirements for all encoders.

http://arxiv.org/abs/1308.6552v1
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This scheme does not incorporate time-sharing. As in previ-

ous works, our approach is based on standard quantization

followed by lattice-based binning. However, in contrast to

previous works, in the proposed framework the decoder first

uses the bin indices for recovering linear combinations with

integer coefficients of the quantized signals, and only then

recovers the quantized signals themselves. The decoder is

free to optimize the full-rank set of integer-valued coefficients

such as to best exploit the correlations between the quantized

signals. Choosing these coefficients appropriately results in

performance that is close to that of a joint typicality decoder,

with a substantially smaller computational burden. In fact, the

only operations performed by the encoders are quantization

and lattice-binning which corresponds to nearest neighbor de-

coding, whereas the decoder is only required to perform matrix

multiplications and nearest neighbor decoding operations.

An important feature of the proposed approach is that

it allows the system designer to trade-off performance and

complexity. At one extreme, integer-forcing (IF) source coding

can be implemented using high-dimensional nested lattices

that have near-optimum quantization and channel coding per-

formance. At the other extreme, IF source coding can be

implemented with the low-complexity one-dimensional scaled

integer lattice Z, used as a quantizer as well as a channel code.

Surprisingly, the rate loss from using the 1D lattice rather than

“good” high-dimensional nested lattices, amounts to about 2
bits per sample per encoder, at any distortion level. At high

resolution, where the compression rate is high, this loss of 2
bits is insignificant.

Implementing the 1D version of IF source coding only

requires each encoder to reduce its observation modulo the

lattice 2R∆Z and then quantize the obtained signal onto ∆Z,

for some ∆ > 0 which depends on the required distortion.

This simple operation can actually be implemented using an

analog-to-digital converter (ADC).1 The observation that at

high resolution 1D IF source coding does not lose much

w.r.t. the asymptotic performance achieved by Berger-Tung’s

compression may challenge the current paradigm of ADC

design - rather than sample each source at a high rate and

then compress it, why not sample at the compression rate

to begin with? An idea in a similar spirit lies at the heart

of compressed sensing [16], where the number of samples

required to reconstruct a sparse signal is reduced according to

its sparseness level. Here, the number of sampled bits required

for reconstructing a source is reduced towards the source’s

rate-distortion function. The power consumption of an ADC

depends on the number of bits it produces per second [17]. If

the front end of the ADC includes an analog modulo operation,

the ADC will need less quantization levels, i.e., less bits. Thus,

if analog modulo reduction can be implemented efficiently,

the IF approach may potentially lead to a more efficient ADC

architectures.

IF source coding can be seen as the source coding dual of IF

equalization [18]. IF equalization is a low complexity receiver

architecture for the Gaussian MIMO channel. The IF receiver

1The analog modulo operation is actually already implemented, to some
extent, in a class of ADCs called folding ADCs [15].

first decodes integer linear combinations of the transmitted

codewords, which is possible if all transmitted codewords

were taken from the same linear code [19], and then solves

these linear combinations for the transmitted codewords. In IF

source coding, all encoders first quantize their observations to

the desired distortion level, and then reduce them modulo the

same lattice Λ.2 The decoder receives the quantized modulo

reduced signals. In order to form estimates of the original

signals with the desired distortion level, it has to figure

out what was the effect of the modulo reduction on each

observation. Rather than doing this directly, it first tries to

figure out what is the effect of reducing K linear combinations

with integer-valued coefficients of the original signals modulo

Λ, and only then extract the desired effects. See Figure 2.

The rest of the paper is organized as follows. In Section II

we formally define the distributed lossy compression problem

at hand, and introduce the performance benchmark we use

throughout the paper which is based on the Berger-Tung

inner bound. Basic lattice definitions and figures of merit

are recalled in Section III, where standard results on lattice

quantization are also reviewed. The IF source coding scheme

is presented in Section IV, and the performance limits of

the scheme are derived for the asymptotic case of high-

dimensional “good” nested lattice codebooks. In Section V, a

comparison between the performance of IF source coding and

other known coding schemes is given for several scenarios.

Applications of IF source coding to several communication

problems that are not restricted to pure lossy compression

are also given. In particular, we study the performance of

a compress-and-forward scheme for relay networks where

the compression is performed via IF source coding. We also

study the problem of distributively transmitting K correlated

Gaussian random variables over K parallel AWGN channels,

and show that IF source coding can improve over standard

approaches. In Section VI we describe and analyze the one-

shot version of IF source coding, where the scaled 1D integer

lattice is used for quantization and channel coding.

Notation. We denote scalars by lowercase letters, vectors by

boldface lowercase letters and matrices by boldface uppercase

letters, e.g., x, x and X. Column vectors usually represent

the spatial dimension whereas row vectors represent the time

dimension. For example x = [x1 · · · xK ]T ∈ RK×1 may

represent a Gaussian vector of correlated random variables,

whereas xk ∈ R1×n may represent n i.i.d. realizations of the

random variable xk . We denote the Euclidean norm of a vector

by ‖ · ‖ and the absolute value of the determinant of a square

matrix by | · |. All variables in the paper are real-valued and

all logarithms are to the base 2.

II. PROBLEM STATEMENT

We consider a distributed source coding setting with K
encoding terminals and one decoder. Each of the K encoders

has access to a vector xk ∈ Rn of n i.i.d. realizations of

the random variable xk, k = 1, . . . ,K . The random vector

2If the quantization is performed by the 1D lattice Λf = ∆Z and the

coarse lattice used for binning is Λ = 2R∆Z, where 2R is a positive integer,
the order of the modulo and quantization operations can be switched.
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Fig. 2. A schematic overview of the integer-forcing source coding framework with the nested lattice pair Λ ⊂ Λf . Each encoder adds a dither dk uniformly
distributed over the Voronoi region of the fine lattice Λf and statistically independent of all other quantities, quantizes the dithered signal onto Λf and reduces

the result modulo the coarse lattice Λ. The encoding rate is 1

n
log(Vol(Λ)/Vol(Λf )). The decoder subtracts back the dithers and reduces the results modulo

Λ (this modΛ reduction is actually not necessary and is only illustrated for didactic purposes). Then, the decoder multiplies the signals by a full-rank integer
matrix A ∈ ZK×K , reduces the results modΛ and multiplies by A−1 to form the estimates x̂1, . . . , x̂K .

x = [x1 · · · xK ]T is assumed Gaussian with zero mean and

covariance matrix

Kxx , E(xxT ).

Each encoder maps its observation xk to an index using the

encoding function

Ek : R
n → {1, . . . , 2nRk},

and sends the index to the decoder.

The decoder is equipped with K decoding functions

Dk : {1, . . . , 2nR1} × · · · × {1, . . . , 2nRK} → R
n,

for k = 1, . . . ,K . Upon receiving K indices, one from each

terminal, the decoder generates estimates

x̂k = Dk (E1(x1), . . . , EK(xK)) , k = 1, . . . ,K.

A rate-distortion vector (R1, . . . , RK , d1, . . . , dK) is achiev-

able if there exist encoding functions E1, . . . , EK and decoding

functions D1, . . . ,DK such that

1

n
E
(
‖xk − x̂k‖2

)
≤ dk, (1)

for all k = 1, . . . ,K . Let X , [xT
1 · · · xT

K ]T . A conditionally

unbiased rate-distortion vector (R1, . . . , RK , d1, . . . , dK) is

achievable if in addition to (1), the condition

E(x̂k|X) = xk, k = 1, . . . ,K (2)

is satisfied for any realization of X. Note that this condition

is equivalent to

E(xk − x̂k|X) = 0, k = 1, . . . ,K.

Although condition (2) is not as common in the literature as

condition (1), in this paper we restrict attention to the condi-

tionally unbiased case, i.e., we impose condition (2). Several

applications of interest require the estimates formed by the

decoder to be conditionally unbiased. For instance, consider a

communication scenario where distributed antenna terminals

observe noisy linear combinations of the signals transmitted

by several encoders and want to forward a compressed version

of these signals to a central processor that needs to decode the

transmitted messages. In such a scenario it is most convenient

to treat the quantization noise as an additive one, meaning

that it is statistically independent of the signals that are

being quantized. This amounts to requiring condition (2).

Moreover, when the conditionally unbiased requirement (2)

is not essential to the application at hand, one can always

perform minimum mean-squared estimation of X from X̂ and

further reduce the MSE distortion.

We further focus on the symmetric case where R1 = · · · =
RK = R and d1 = · · · = dk = d. We do this for three

reasons. First, such a symmetry constraint naturally arises in

many applications, where the coding burden has to be equally

split between the distributed encoders. Second, this allows for

a simpler description of the proposed coding scheme and the

rate-distortion region it achieves. Finally, in an asymmetric

setting there exist several examples where structured binning

outperforms the standard approach of Berger-Tung compres-

sion [4]–[6]. Focusing on the symmetric case eliminates the

possibility of such examples that are, to some extent, skewed

towards using structured binnining. Nevertheless, we stress

that the scheme proposed in this paper is not restricted to

the symmetric case, and can be easily extended to achieve

asymmetric rate-distortion vectors by using a more compli-

cated chain of nested lattices, rather than the nested lattice

pair we use in the sequel.

Finding the full rate-distortion region, i.e., the set of all

achievable rate-distortion vectors, for the described setup is an

open problem for K > 2. For K = 2, Wagner et al. [8] showed

that the Berger-Tung approach is optimal. This approach

consists of quantizing each source using standard single-source

rate-distortion theory with a Gaussian test channel, and then

using Slepian-Wolf encoding for compressing the quantization

indices. For K > 2 it is now known that the Berger-Tung

approach does not attain the full rate-distortion region (see

e.g. [5]). However, to the best of our knowledge, it is not

known whether the Berger-Tung inner bound is loose for the

symmetric case. In the absence of a better known coding

scheme, we take the symmetric rate from Berger-Tung’s inner
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bound as our benchmark. More specifically, the sum-rate in

Berger-Tung’s inner bound is given by

K∑

k=1

Rk ≥ I(x;u), (3)

where u = [u1 · · ·uK ]T is a vector of auxiliary random

variables that satisfy the set of Markov chains

uk − xk − ({xj , uj}j 6=k)

and such that there exist functions x̂k(u1, . . . , uK) satisfying

E(xk − x̂k)
2 < dk for all k = 1, . . . ,K . Optimizing over u is

a difficult task. A common and natural choice in the quadratic-

Gaussian case is taking

uk = αkxk + wk, k = 1, . . . ,K, (4)

where w1, . . . , wK are statistically independent zero mean

Gaussian random variables that are also independent of x,

and α1, . . . , αK are some constants [20]. Such a choice was

shown to be optimal for K = 2 [8], but may be suboptimal for

larger dimensions. Since we are after conditionally unbiased

estimates for the K components of x, we set αk = 1,

wk ∼ N (0, d) and x̂k(u1, . . . , uK) = uk for all k = 1, . . . ,K .

Substituting this choice in (3) gives

K∑

k=1

Rk ≥ 1

2
log

|Kxx + dI|
|dI|

=
1

2
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ . (5)

This sum-rate is achievable using Berger-Tung compression.

In this paper we are interested in the symmetric rate-distortion

region. To this end, we take (5) normalized by K as our

benchmark

RBT
bench(d) ,

1

2K
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ . (6)

Note that RBT
bench(d) is not a lower bound on the minimal

symmetric rate-distortion function achieved by Berger-Tung

compression, as our choice of u is not necessarily the best one.

It is also not an upper bound on the minimal symmetric rate-

distortion function achieved by Berger-Tung compression, as

the symmetric rate with our choice of u may not be dominated

by the sum-rate constraint.

III. PRELIMINARIES

In this section we recall several lattice properties that will

be useful in the sequel and review the concept of dithered

lattice quantization.

A lattice Λ is a discrete subgroup of Rn which is closed

under reflection and real addition. We denote the nearest

neighbor quantizer associated with the lattice Λ by

QΛ(y) = argmin
t∈Λ

‖y − t‖. (7)

The basic Voronoi region of Λ, denoted by V , is the set of all

points in Rn which are quantized to the zero vector, where

ties in (7) are broken in a systematic manner. The modulo

operation returns the quantization error w.r.t. the lattice,

[y] mod Λ = y −QΛ(y)

and satisfies the property

[a[y] mod Λ] mod Λ = [ay] mod Λ (8)

for any a ∈ Z and y ∈ Rn. This property will be used

extensively in the sequel. The second moment of Λ is defined

as

σ2(Λ) =
1

n

1

Vol(V)

∫

u∈V

‖u‖2du,

where Vol(V) is the volume of V . The effective radius of a

lattice reff(Λ) is defined as the radius of an n-dimensional ball

whose volume equals Vol(V).
The lattice Λ can be used for quantizing continuous sources.

In particular, an encoder which is interested in conveying a

source y ∈ Rn to a decoder can compute QΛ(y), which

is a lattice point in Λ, and send a description of this point

to the decoder. The quantization error of such a scheme is

e = y−QΛ(y), which is a deterministic function of y. Recall

that in this paper we are interested in encoder/decoder pairs

that produce conditionally unbiased estimates of the source,

which is clearly not the case for a standard lattice quantizer.

This may be overcome by allowing the encoder and decoder

to use common randomness. Let d ∼ Unif(V) be a random

dither vector uniformly distributed over V and statistically

independent of y, known to both the encoder and the decoder.

The dithered lattice qunatizer associated with the lattice Λ
computes QΛ(y+ d) and sends a description of the obtained

lattice point to the decoder. The decoder produces the estimate

ŷ = QΛ(y + d)− d

= y +QΛ(y + d)− (y + d)

= y − [y + d] mod Λ.

The Crypto Lemma [21, Lemma 1] ensures that the estimation

error −[y+d] mod Λ is statistically independent of y and is

uniformly distributed over V . The symmetry of the Voronoi

region V guarantees that the estimation error has the same

distribution as d and has zero mean. Thus, ŷ = y + d in

distribution, and is a conditionally unbiased estimate of y.

Clearly, the average MSE distortion attained by dithered lattice

quantization is given by

1

n
E
(
‖y − ŷ‖2

)
=

1

n
E(‖d‖2) = σ2(Λ).

Of course, dithered lattice quantization, as described above,

requires an infinite rate as there is an infinite number of points

in Λ. This can be handled using an entropy coded dithered

quantizer (ECDQ) [22]–[24], or a nested lattice codebook [13].

In this work we take the latter approach.

The following definitions characterize the lattice “goodness”

properties needed in this paper.

Definition 1 (Goodness for MSE quantization): A lattice

Λ, or more precisely, a sequence of lattices with growing
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dimension n, is said to be good for MSE quantization if3

lim
n→∞

σ2(Λ) = lim
n→∞

r2eff(Λ)

n
.

Definition 2 (Semi-norm ergodic noise): We say that a ran-

dom noise vector z, or more precisely, a sequence of random

noise vectors with growing dimension n, with (finite) effective

variance σ2
Z
, E‖z‖2/n, is semi norm-ergodic if for any

ǫ > 0, δ > 0 and n large enough

Pr
(
‖z‖ >

√
(1 + δ)nσ2

z

)
≤ ǫ. (9)

Note that by the law of large numbers, any i.i.d. noise is semi

norm-ergodic.

The next Lemma restates Corollary 2 from [25] to fit our

purposes.

Lemma 1: Let d1, · · · ,dK be statistically independent ran-

dom dither vectors, each uniformly distributed over the

Voronoi region V of a lattice Λ that is good for MSE quantiza-

tion. Let z be an i.i.d. random vector statistically independent

of {d1, · · · ,dK}. Any deterministic linear combination of

d1, · · · ,dK , z is semi norm-ergodic.

Definition 3 (Goodness for channel coding): A lattice Λ,

or more precisely, a sequence of lattices with growing

dimension n, is said to be good for channel coding if

for any 0 < δ < 1 and any n-dimensional semi norm-

ergodic vector z with zero mean and effective variance

E‖z‖2/n < (1− δ)r2eff(Λ)/n

lim
n→∞

Pr (z /∈ V) = 0.

A lattice Λ is said to be nested in Λf if Λ ⊆ Λf . The coding

scheme presented in this paper utilizes a pair of nested lattices

such that the fine lattice Λf is good for MSE quantization and

the coarse lattice Λ is good for channel coding. An ensemble

for drawing pairs of nested lattices that satisfy these goodness

properties is described in [25],4 and the existence of lattice

pairs with slightly more demanding “goodness” requirements

was shown in [5], [26]. A nested lattice code C = Λf ∩V with

rate

R =
1

n
log

(
Vol(Λ)

Vol(Λf )

)
=

1

2
log

(
r2eff(Λ)

r2eff(Λf )

)
(10)

is associated with the nested lattice pair.

Before describing the integer-forcing source coding scheme,

let us illustrate how the codebook C described above can

be used for compressing n samples of a single memoryless

Gaussian source Y ∼ N (0, P ) with distortion d. Assume that

3Note that our condition for MSE goodness is equivalent to the more
commonly used condition σ2(Λ)/Vol(V)2/n → 1/(2πe) since the volume

of a unit n-dimensional ball grows like (2πe/n)n/2.
4In [25] the definition of goodness for channel coding was weaker than

that needed here. In particular, only the existence of lattices that achieve
a vanishing error probability under coset nearest neighbor decoding in the
present of semi-norm ergodic noise was proved. However, a more careful
inspection of the derivation in [25] reveals that the probability of decoding
an erroneous point in the correct coset also vanishes with the dimension n
for the choice of lattice parameters made in [25]. Thus, the existence of pairs
of nested lattices such that both fine and coarse lattices are good for MSE
quantization and channel coding follows.

the fine lattice Λf , which is good for MSE quantization, has

second moment σ2(Λf ) = d. This implies that r2eff(Λf )/n →
d. The coarse lattice Λ, which is good for AWGN channel

coding, has effective radius r2eff(Λ) = n(P + d+ ǫ), for some

arbitrarily small ǫ > 0. A dither d uniformly distributed over

Vf is known to both the encoder and the decoder. The encoder

computes

[QΛf
(y + d)] mod Λ ∈ C,

and sends its index to the decoder. The decoder computes

ŷ =
[
[QΛf

(y + d)] mod Λ− d
]
mod Λ

(i.d.)
= [y + d] mod Λ

(w.h.p.)
= y + d (11)

where
(i.d.)
= stands for equality in distribution and

(w.h.p.)
=

for equality with high probability. The equality (11) follows

from the fact that the random vector y + d is semi-norm

ergodic due to Lemma 1 and has effective variance E(‖y +
d‖2)/n = P + d. Since Λ is good for channel coding and

E‖y+d‖2/n < r2eff(Λ)/n, the probability that QΛ(y+d) 6= 0

vanishes, and hence, [y + d] mod Λ
(w.h.p.)

= y+d. Thus, with

high probability

1

n
E(‖y − ŷ‖2) = 1

n
E(‖d‖2) = d,

as desired. The required rate for achieving this distortion is

R(d) =
1

2
log

(
r2eff(Λ)

r2eff(Λf )

)

=
1

2
log

(
n(P + d+ ǫ)

nd

)

=
1

2
log

(
1 +

P + ǫ

d

)
(12)

where the additional +1 inside the logarithm, w.r.t. the stan-

dard Gaussian rate-distortion function, is a consequence of our

requirement that the reconstruction ŷ forms a conditionally

unbiased estimate of y. In fact, we can eliminate this term by

performing an additional Wiener estimation step on ŷ, at the

expense of introducing bias [24].

IV. INTEGER-FORCING SOURCE CODING

In the IF distributed source coding scheme all encoders use

the same nested lattice codebook C = Λf ∩ V , constructed

from the nested lattice pair Λ ⊂ Λf , with rate

R =
1

2
log

(
r2eff(Λ)

r2eff(Λf )

)
.

As in the previous section, the fine lattice Λf is good for

MSE quantization with σ2(Λf ) = d whereas the coarse

lattice Λ is good for channel coding. All encoders employ

a similar encoding operation. The kth encoder uses a dither

dk, statistically independent of everything else and uniformly

distributed over Vf , and employs dithered quantization of xk

onto Λf . Then, it reduces the obtained lattice point modulo

the coarse lattice Λ and sends nR bits describing the index of
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the resulting point to the decoder. Specifically, the kth encoder

conveys the index corresponding to the point
[
QΛf

(xk + dk)
]
mod Λ

to the decoder.

The decoder first subtracts back the dithers from each of

the reconstructed signals and reduces the results modulo Λ,

giving rise to

x̃k =
[[
QΛf

(xk + dk)
]
mod Λ− dk

]
mod Λ

=
[
xk +

[
QΛf

(xk + dk)
]
mod Λ− (xk + dk)

]
mod Λ

(i.d.)
= [xk + dk] mod Λ (13)

If the coarse lattice Λ is chosen such that its effective radius

is large enough, the modulo operation in (13) would have no

effect on xk + dk, and the decoder would have estimates of

each xk with average MSE of d, as desired. However, the

encoding rate grows with r2eff(Λ), and we would therefore

prefer to choose it as small as possible.

The key idea behind IF source coding is that if the elements

of x are correlated, then linear combinations of {xk+dk}Kk=1

with integer-valued coefficients may have smaller effective

variances than the original signals. The IF decoder therefore

first estimates K integer linear combinations of {xk+dk}Kk=1,

and then uses these estimates for estimating the desired

signals. Using this approach, r2eff(Λ) should only be greater

than the largest effective variance among the K linear combi-

nations. When the entries of x are sufficiently correlated, and

the integer-valued coefficients are chosen appropriately, this

may significantly reduce the required encoding rate.

Let X = [xT
1 · · · xT

K ]T , D = [dT
1 · · · dT

K ]T and X̃ =
[x̃T

1 · · · x̃T
K ]T . Using this notation, the decoder has access to

X̃ = [X+D] mod Λ,

where the notation mod Λ is to be understood as reducing

each row of the obtained matrix modulo the coarse lattice. The

decoder chooses a full-rank integer-valued matrix A ∈ ZK×K

and computes

ÂX ,

[
AX̃

]
mod Λ

= [A [X+D] mod Λ] mod Λ

= [A(X+D)] mod Λ (14)

where (14) follows from the modulo property (8).

Let aTk be the kth row of the matrix A. The random vector

aTk (X+D) satisfies the conditions of Lemma 1 as aTkX is an

i.i.d. Gaussian vector and each of the statistically independent

dithers d1, . . . ,dK is uniformly distributed over the Voronoi

region of a lattice that is good for MSE quantization. There-

fore, aTk (X + D) is semi-norm ergodic. It follows from the

goodness of Λ for channel coding that if

E
(
‖aTk (X+D)‖2

)

n
<

r2eff(Λ)

n

then for n large enough

[
aTk (X+D)

]
mod Λ

(w.h.p.)
= aTk (X+D).

Moreover, if this holds for all k = 1, . . . ,K , i.e., if

max
k=1,...,K

E
(
‖aTk (X+D)‖2

)

n
<

r2eff(Λ)

n

then for n large enough

ÂX
(w.h.p.)

= A(X+D). (15)

Noting that

E
(
‖aTk (X+D)‖2

)

n
= aTk (Kxx + dI)ak,

this implies that for (15) to hold, it suffices to set

r2eff(Λ)

n
= max

k=1,...,K
aTk (Kxx + dI)ak + ǫ

for some arbitrarily small ǫ > 0, which corresponds to a rate

of

R =
1

2
log

(
maxk=1,...,K aTk (Kxx + dI)ak + ǫ

d

)
.

The decoder proceeds by computing

X̂ = A−1ÂX
(w.h.p.)

= X+D,

which is (w.h.p.) a conditionally unbiased estimate of X with

average MSE distortion d per component. The next theorem

summarizes the performance of IF source coding.

Theorem 1 (Performance of IF source coding):

For any distortion d > 0 and any choice of

A = [a1 · · · aK ]T ∈ ZK×K , there exists a (sequence

of) nested lattice pair(s) Λ ⊂ Λf such that IF source coding

can achieve any rate satisfying

R > RIF(A, d) ,
1

2
log

(
max

k=1,...,K
aTk

(
I+

1

d
Kxx

)
ak

)
.

For the optimal choice of A, IF source coding can achieve

any rate satisfying

R > RIF(d) ,
1

2
log


 min

A∈Z
K×K

det(A) 6=0

max
k=1,...,K

aTk

(
I+

1

d
Kxx

)
ak


 .

The matrix I + 1
d
Kxx is symmetric and positive definite,

and therefore it admits a Cholesky decomposition

I+
1

d
Kxx = FFT , (16)

where F is a lower triangular matrix with strictly positive

entries. With this notation,

RIF(d) =
1

2
log


 min

A∈Z
K×K

det(A) 6=0

max
k=1,...,K

‖F ak‖2

 . (17)

Denote by Λ(FT ) the K dimensional lattice spanned by the

matrix FT , i.e.,

Λ(FT ) ,
{
FTa : a ∈ Z

K
}
.
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It follows that the problem of finding the optimal matrix A

is equivalent to finding the K shortest linearly independent

vectors of Λ(FT ). Although this problem is NP-hard in

general, its solution can be efficiently approximated using the

LLL algorithm [27], whose running time is polynomial.

Moreover, we can express the rate-distortion function

achieved by IF source coding using the successive minima

of the lattice Λ(FT ).

Definition 4 (Successive minima): Let Λ(G) be the lat-

tice spanned by the full-rank matrix G ∈ RK×K . For

k = 1, . . . ,K, we define the kth successive minimum as

λk(G) , inf
{
r : dim

(
span

(
Λ(G)

⋂
B(0, r)

))
≥ k

}

where B(0, r) =
{
x ∈ RK : ‖x‖ ≤ r

}
is the closed ball of

radius r around 0. In words, the kth successive minimum of

a lattice is the minimal radius of a ball centered around 0 that

contains k linearly independent lattice points.

Using Definition 4 and (17), the IF rate-distortion function

is given by

RIF(d) =
1

2
log
(
λ2
K(FT)

)
, (18)

where the dependence of the r.h.s. on d is through the matrix

F defined in (16).

Next, we show in Lemma 2 that the performance of IF

source coding, in the symmetric setting considered, is inferior

to the Berger-Tung benchmark, i.e., RIF(d) ≥ RBT
bench(d). We

will need the simple following proposition.

Proposition 1: For a lattice spanned by some full rank

matrix G ∈ RK×K

|G| ≤
K∏

k=1

λk(G)

Proof: Let a1, . . . , aK ∈ ZK be K linearly independent

vectors such that λk(G) = ‖Gak‖ for all k = 1, . . . ,K , and

let A = [a1 · · · aK ]. Since all entries of A are integer-valued

we must have |A| ≥ 1, and therefore

|G| ≤ |G| |A| = |GA|

= |[Ga1 · · · GaK ]| ≤
K∏

k=1

‖Gak‖

=

K∏

k=1

λk(G).

Lemma 2: For any d > 0 and for any choice of full-rank

A ∈ ZK×K we have

1

2
log

(
max

k=1,...,K
aTk (I+

1

d
Kxx)ak

)
≥ 1

2K
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ ,

and therefore, in the considered symmetric setting, the rate-

distortion function RIF(d) of IF source coding is never smaller

than the benchmark RBT
bench(d).

Proof: Let F be as defined in (16). For the optimal choice

of A and for any d > 0 we have

1

2
log

(
max

k=1,...,K
aTk (I+

1

d
Kxx)ak

)
=

1

2
log
(
λ2
K(FT)

)

≥ 1

2

1

K

K∑

k=1

log
(
λ2
k(F

T)
)

(19)

=
1

2K
log

(
K∏

k=1

λ2
k(F

T)

)

≥ 1

2K
log
(
|F|2

)
(20)

=
1

2K
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ , (21)

where (19) follows from the monotonicity of λk(F
T) in k

along with the monotonicity of the logarithm function, (20)

follows from Proposition 1 and (21) follows from (16).

As discussed in Section II, in an asymmetric problem

setting, structured binning may result in a better rate-distortion

region than the one obtained by Berger-Tung compression.

Lemma 2 shows that under the symmetric setup, at least with

IF source coding, this may not be the case. Nevertheless,

the complexity reduction obtained by using IF source coding

rather than Berger-Tung compression makes it an attractive

candidate for practical implementation. Moreover, as we shall

see in Section VI, a one-shot version of IF source coding can

be easily derived and analyzed. Although one-shot versions of

Berger-Tung compression were also considered in [28] and an

inner bound was derived, it is unclear how to interpret this

inner bound for the problem at hand.

Remark 1: The crucial element in the IF source coding

scheme is that all encoders reduce their quantized signals

modulo the same coarse lattice. The modulo reduction plays

the role of binning. Theoretically, each encoder can first

reduce its observation modΛ and only then quantize it using

a quantizer designed for the modulo reduced source [24].

No nesting is required between the quantizer and the coarse

lattice. This results in the decoder receiving the signals

x̃k = [xk] mod Λ + dk, k = 1, . . . ,K , where dk is quanti-

zation noise. The decoder can proceed to compute ÂX as

described above. The difficulty with such an implementation

is that the quantizer needs to be matched to the modulo re-

duced source, which requires some sort of (high-dimensional)

entropy coding. As we shall see in Section VI-A, in the 1D
version of IF source coding, where the coarse lattice as well as

the quantizer are scaled integer lattices, the modulo reduction

can precede quantization without increasing complexity.

Remark 2: Another implementation issue to consider is the

goodness requirements on Λ. When Λ is used for modulation

over the AWGN channel, it suffices to require that Λ is good

under coset nearest neighbor decoding. This means that Λ is

split into cosets, usually using a coarse lattice nested inside it,

and the decoder only needs to choose the coset the transmitted

point belongs to. As a result, when coding for the AWGN

channel is considered, a construction A lattice [29], [30] with

a linear codebook of small prime cardinality p suffices to

achieve a vanishing error probability. In such a construction,
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the minimum distance is limited by p, and the error probability

for decoding the actual point transmitted, rather than the coset,

cannot vanish with the dimension. However, all pairs of points

with nonincreasing (as a function of n, the code dimension)

Euclidean distance belong to the same coset, and therefore

such a lattice is still good for coset nearest neighbor decoding.

In IF source coding, the decoder needs to decode the actual

lattice point of Λ closest to aTk (X + D), rather than just its

coset. Therefore, construction A lattices obtained from a linear

codebook with small p do not suffice in order to achieve a

vanishing error probability. However, one can still achieve

a very small error probability, though not vanishing with

the dimension, using standard Construction A lattices with

moderate values of p. See Section VI for further discussion of

implementation issues.

V. EXAMPLES AND APPLICATIONS

This section provides several examples that demonstrate the

performance of IF source coding, along with applications and

communication scenarios where IF source coding is advanta-

geous. The section consists of three parts. First we compare the

performance of IF source coding to that of a naive distributed

compression scheme that ignores the correlation between the

sources and to the Berger-Tung benchmark. Then, we use IF

source coding as a building block in a Gaussian layered relay

network, and demonstrate its advantages compared to other

known low complexity schemes. Finally, we show how the

idea behind IF source coding can be extended to form a signal-

to-noise ratio (SNR) independent joint source channel coding

scheme, whose distortion decreases as the SNR improves.

A. Examples

In this subsection we evaluate the minimal symmetric rate

needed in order to achieve a conditionally unbiased average

MSE of d for two schemes:

1) IF source coding - this rate is given in Theorem 1.

2) Compressing each source using standard rate-distortion

theory without exploiting the correlations between the

sources - this rate is given by

Rnaive(d) = max
k=1,...,K

1

2
log

(
1 +

Kxx(k, k)

d

)
, (22)

and is identical to the rate obtained using IF source coding

with the choice A = I.

We also compare these rates to the Beger-Tung benchmark

RBT
bench(d) (6).

Example 1 (Integer decomposable covariance matrix): As

a first example, consider the case where x is a Gaussian source

with zero mean and covariance matrix Kxx = B−1B−T for

some full-rank integer matrix B ∈ ZK×K with determinant

|B| = 1.

The Berger-Tung benchmark symmetric rate-distortion

function is given by

RBT
bench(d) =

1

2K
log

∣∣∣∣I+
1

d
B−1B−T

∣∣∣∣

=
1

2K

(
log |B|−2 + log |BBT +

1

d
I|
)

=
1

2K
log |BBT +

1

d
I|.

It can be seen that RBT
bench(d) → −1/2 log(d) as d → 0.

For IF source coding, one can choose A = B. This choice

gives

RIF(B, d) =
1

2
log

(
max

k=1,...,K
bT
k

(
I+

1

d
Kxx

)
bk

)

=
1

2
log

(
max

k=1,...,K
‖bk‖2 +

1

d

)

It is easy to see that RIF(B, d) → −1/2 log(d) as d → 0,

just as the benchmark rate-distortion function, and therefore,

according to Lemma 2, the choice A = B is optimal at high

resolution.

The naive approach that compresses each source without

exploiting the existing correlations fails to achieve the bench-

mark rate-distortion function. In fact, it can only achieve

Rnaive(d) =
1

2
log

(
1 +

maxk=1,...,K ‖b̃k‖2
d

)
, (23)

where b̃T
k is the kth row of B−1. All entries of b̃k are integer-

valued since the matrix B is integer-valued with determinant

1. Therefore ‖b̃k‖2 ≥ 1 for all k = 1, . . . ,K . The obtained

compression rate approaches 1
2 log(max ‖b̃k‖2) − 1/2 log(d)

as d → 0. Thus, at high resolution, IF source coding requires
1
2 log(max ‖b̃k‖2) bits less than the naive approach in order

to achieve the same distortion. This improvement can be made

unbounded by choosing B appropriately.

Example 2 (Compressing observations of correlated relays):

Consider the problem of distributively compressing a K-

dimensional Gaussian source x with zero mean and covariance

matrix Kxx = SNRHHT + I for some SNR > 0 and some

matrix H ∈ RK×K . This choice of covariance matrix

corresponds to the joint distribution of the signals observed

by K relays in the Gaussian network depicted in Figure 3,

where it is assumed that each of the K transmitters uses a

random i.i.d. Gaussian codebook such that each of the signals

s1, . . . , sK behaves statistically as white Gaussian noise. This

network will be studied in more detail in the next subsection.

We plot the averages of the minimal required compression

rates for the two schemes, i.e. the ergodic rate-distortion func-

tions of the two schemes, along with the ergodic benchmark

rate-distortion function, under the assumption that the entries

of H are i.i.d. standard normal random variables. Figure 4a

depicts these rates for K = 4 and SNR = 20dB as a function

of d. It is seen that at moderate to high resolution (small to

moderate values of d) IF source coding closes about half of the

gap between the naive compression scheme and the benchmark

which corresponds to the Berger-Tung compression scheme.

One can argue that in the considered scenario the gap be-

tween the performance of the naive scheme and the benchmark
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w1 Tx 1
s1

...

wK Tx K
sK

H

x1

z1

Relay 1

R0

...

xK

zK

Relay K

R0

CP

ŵ1

...

ŵK

Fig. 3. A Gaussian network with K users and K relays. Each relay sees
one output of the channel x = Hs + z and has a clean bit-pipe of R0

bits/channel use to the central processor (CP). The CP tries to estimate the
messages transmitted by the K users.

is quite small, and therefore it is not clear if IF source coding

only slightly improves over the naive scheme, or closely

follows the performance of the Berger-Tung benchmark. To

illustrate that the latter is true, in Figure 4b we consider a

similar scenario where now H ∈ R8×2 with i.i.d. N (0, 1)
entries. This models a network with 2 transmitters and 8 relays.

This choice of distribution tends to induce more correlation

between the entries of x, which enlarges the performance gap

between Berger-Tung’s compression and the naive compres-

sion approach. Nevertheless, as seen from Figure 4b, the gap

between the performance of the Berger-Tung benchmark and

IF source coding remains approximately the same.

B. Layered Gaussian relay network

In this subsection we consider the Gaussian network from

Figure 3, and show that for a wide regime of parameters using

IF source coding as a building block improves upon other

competing low-complexity coding schemes.

The Gaussian network we consider consists of K non-

cooperating transmitters, each with message wk and rate Rk.

A central processor (CP) is interested in decoding all K
messages. However, it does not have a direct access to the

signals transmitted by the K transmitters. Instead, there are

K relays, each of which observes a noisy linear combination

of the transmitted signals. Each relay has a clean bit-pipe of

rate R0 bits/channel use connecting it to the CP which it uses

for helping the CP decode all messages.

Let sk ∈ R1×n be the signal transmitted by the kth

transmitter during n consecutive channel uses. We assume all

transmitters are subject to the same power-constraint such that

E‖sk‖2 ≤ nSNR for all k = 1, . . . ,K . Let xk ∈ R1×n be the

signal received by the kth relay during n consecutive channel

uses, and let S = [sT1 · · · sTK ]T and X = [xT
1 · · · xT

K ]T . The

signals are related by

X = HS+ Z, (24)

where H ∈ RK×K is the channel matrix between the K
transmitters and the K relays and the entries of Z ∈ RK×n

are i.i.d. N (0, 1). We are interested in the maximal achievable

sum-rate Rsum =
∑K

k=1 Rk.

Clearly, Rsum cannot exceed the MIMO capacity5 corre-

sponding to the channel (24) between the transmitters and

relays, and it also cannot exceed KR0 because even if each

relay could decode all messages, the K relays cannot convey

more than KR0 bits/channels use to the CP through the bit-

pipes. Thus, we have

Rsum ≤ RMIMO , min

(
1

2
log |I+ SNRHHT |,KR0

)
.

(25)

An inner bound for Rsum can be attained by the following

scheme. Each relay can compress its observation xk with

rate R0 and send the compression index to the CP. The CP

obtains K estimates x̂k = xk+dk of the relays’ observations,

where dk ∈ R1×n is the quantization error, and can use these

estimates in order to decode the desired messages. Specifically,

using this approach the CP decodes the messages from

X̂ = HS+ Z+D, (26)

where D = [dT
1 · · · dT

K ]T . If the quantization errors are

statistically independent of everything else, as in IF source

coding, D can be treated as another additive noise. Let

d(R0) = max
k=1,...,K

1

n
E(‖dk‖2).

Assuming that all transmitters use i.i.d. Gaussian codebooks, it

follows from the entropy power inequality [31, Problem 9.21]

that the CP can decode all messages w1, . . . , wK from the

channel (26) if

Rsum ≤ 1

2
log

∣∣∣∣I+
SNR

1 + d(R0)
HHT

∣∣∣∣ (27)

Clearly, the degradation of this scheme w.r.t. the MIMO capac-

ity depends on the value of d(R0). Improving the compression

scheme decreases d(R0) which in turn increases Rsum. One

can use the conditionally unbiased version of Berger-Tung

in order to obtain a small d(R0). However, this solution

requires joint typicality decoding at the CP which is difficult to

implement. Alternatively, IF source coding can be employed,

which considerably reduces the implementation complexity at

the price of slightly increasing d(R0). The relays can also

employ naive conditionally unbiased compression, which is

also a low-complexity scheme. This reduces to performing

IF source coding with the choice A = I which is often

suboptimal. The latter approach is often termed compress-and-

forward in the literature [19].

Alternatively, instead of compressing their noisy obser-

vations, the relays can attempt to decode the transmitted

messages, or a function of the transmitted messages. In the

decode-and-forward scheme [32] each relay decodes one of

the messages and forwards this message to the CP. The

compute-and-forward scheme [19] generalizes decode-and-

forward and allows each relay to decode a linear combination

of the messages, which is forwarded to the CP. Since decode-

and-forward is a special case of compute-and-forward, its

performance is never better.

5Here, by capacity we mean the mutual information corresponding to a
white input, as the transmitters are non-cooperating.
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Fig. 4. Comparison between the ergodic rates for the various compression schemes from Example 2.

In Figure 5a we plot the ergodic rates achieved using

IF source coding, compress-and-forward and compute-and-

forward, over the Gaussian network from Figure 3 For R0 = 2
and K = 4, where the entries of H are assumed i.i.d. N (0, 1).
Figure 5b depicts the same ergodic rates for R0 = 3.

The figures demonstrate that while compute-and-forward

outperforms both compression-based schemes when R0 is

the system’s bottleneck, for relatively large R0 (w.r.t. the

1/K times the MIMO capacity) compression is preferable

over decoding. The gains of IF source coding over naive

compression are evident.

One can further improve performance using a quantize-map-

and-forward like scheme [33], [34] where each relay quantizes

its observation, bins it, and sends the bin index to the CP.

The difference between such schemes and the compression

based schemes described above is that in quantize-map-and-

forward the CP decodes the messages from the bin indices

themselves without “decompressing” the relays’ observations.

Such an approach improves upon compression based schemes.

However, to date it lacks a signal processing based architecture

allowing to reduce the problem to multiple instances of a

point-to-point problem, as is the case for IF source coding.

We note however that progress in the direction of developing

a low-complexity architecture for quantize-map-and-forward

has been made in [35].

C. Distributed joint source-channel coding

In this subsection we consider the setup depicted in Fig-

ure 6. In this setup, there are K distributed encoders, each

with access to the vector xk that contains n i.i.d. samples of

the random variable xk . We assume that the random vector

x = [x1 · · · xK ]T is a Gaussian vector with zero mean and

covariance matrix Kxx. Each encoder is equipped with an

encoding function Ek : Rn → Rn, such that the signal it

transmits to the decoder is sk = Ek(xk). All encoders are

subject to the same power constraint E(‖sk‖2) = nP . The

decoder observes the transmitted signals through K parallel

AWGN channels

yk = sk + zk, k = 1, . . . ,K

where the entries of z1, . . . , zK are i.i.d. Gaussian random

variables with zero mean and variance N . The decoder has K
functions Dk : Rn × · · · × Rn → Rn that it uses in order to

form estimates x̂k = Dk(y1, . . . ,yK) for each source.

Let SNR , P/N . An SNR-distortion vector

(SNR, d1, . . . , dK) is achievable if there exist encoding

functions E1, . . . , EK and decoding functions D1, . . . ,DK

such that

1

n
E
(
‖xk − x̂k‖2

)
≤ dk, (28)

for all k = 1, . . . ,K . A conditionally unbiased SNR-distortion

vector (SNR, d1, . . . , dK) is achievable if in addition to (28),

the condition

E(x̂k|X) = xk, k = 1, . . . ,K (29)

is satisfied. As before, we restrict attention to conditionally un-

biased estimates, and focus on the maximal distortion among

the K vectors, i.e., d = maxk=1,...,K dk.

An obvious approach for the considered problem is separa-

tion of source coding and channel coding. This corresponds to

using AWGN capacity achieving codebooks for transforming

the K AWGN channels into K bit-pipes each with capacity

C = 1/2 log(1 + SNR) bits/channel use, and then using

distributed source coding with rate C bits/sample at each

encoder in order to describe the sources to the decoder. The

main drawback of this approach is that it must be designed for

specific values of SNR and required distortions d1, . . . , dK .

The predefined SNR acts as a threshold. If the actual SNR

experienced by the communication system turns out to be

higher than this threshold, the expected distortions would be

d1, . . . , dk, but would not improve when the actual SNR is

improved.

Taking K = 1 in our setup reduces it to a point-to-point

problem of Gaussian source transmission over an AWGN

channel. It is well known [36] that analog transmission of the
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Fig. 5. Ergodic rates over the network from Figure 3 for K = 4
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Fig. 6. A distributed joint source-channel coding setting. Each encoder wishes
to describe its observation xk to the decoder through an AWGN channel, with
minimal average MSE distortion. The sources are correlated and the encoders
are distributed.

source with appropriate scaling at the encoder and decoder

achieves the optimal performance. Moreover, the transmitter’s

operation does not depend on the noise’s variance at the

receiver. As a result, if the noise variance turns out to be

smaller than expected, the decoder can improve the quality

of its estimate for the source. This desirable phenomena was

extended to the Wyner-Ziv/dirty-paper setting in [37]. Here,

we use the idea of IF source coding for constructing a joint

source-channel coding scheme for our setup with an arbitrary

number of users. The encoders’ operation in the proposed

scheme is independent of the noise variance, and the obtained

expected distortion at the decoder decreases with N , provided

that N is below some predefined threshold.

The proposed coding approach utilizes a single lattice Λ
with σ2(Λ) = P , that is good for channel coding and for MSE

quantization. In particular, its goodness for MSE quantization

implies that r2eff(Λ)/n ≈ P . The coding scheme is designed

assuming that the AWGN variance is not greater than some

nominal value N nom. However, when N < N nom, the obtained

distortion decreases as N decreases.

Each encoder scales its observation by some β > 0 to be

defined shortly,6 adds a dither dk uniformly distributed over

V , and reduces the result mod Λ such that the transmitted

signals are

sk = [βxk + dk] mod Λ, k = 1, . . . ,K.

Note that the power constraints are satisfied as sk is uniformly

distributed over V and therefore its second moment equals

σ2(Λ). The decoder first performs MMSE estimation of each

sk, by scaling each yk by α =
√
P/(P +N), subtracting

back the dither and reducing mod Λ. This gives

ỹk = [αyk − dk] mod Λ

= [sk + (α− 1)sk + αzk − dk] mod Λ

= [βxk + zeff,k] mod Λ,

where

zeff,k , (α− 1)sk + αzk.

The noise zeff,k is statistically independent of xk, and has

effective variance of

1

n
E(‖zeff,k‖2) =

NP

N + P
, k = 1, . . . ,K.

Moreover, it is a linear combination of a dither uniformly

distributed over the Voronoi region of a lattice that is good for

MSE quantization and an AWGN, and therefore, by Lemma 1,

it is semi-norm ergodic.

As before, let X = [xT
1 · · · xT

K ]T , and define Ỹ and Zeff

in a similar manner. The decoder chooses a full-rank matrix

A ∈ ZK×K and computes

β̂AX ,

[
AỸ

]
mod Λ

= [A([βX+ Zeff] mod Λ)] mod Λ

= [A(βX + Zeff)] mod Λ.

6In general, performance can be improved by letting each encoder use a
different βk . We disregard this possibility for simplicity of exposition.
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Let aTk be the kth row of A. The random vector aTk (βX+Zeff)
is semi-norm ergodic with zero mean and effective variance

σ2
k ,

1

n
E(‖aTk (βX + Zeff)‖2)

= aTk

(
β2Kxx +

NP

N + P
I

)
ak.

Since Λ is good for channel coding, if σ2
k < P for all k =

1, . . . ,K , then

β̂AX
(w.h.p.)

= A(βX+ Zeff), (30)

and the decoder can further compute

X̂ =
1

β
A−1β̂AX

(w.h.p.)
= X+

1

β
Zeff,

which are unbiased estimates of each xk with average MSE

distortion of dIF = NP/β2(N + P ).

The remaining question is how to choose β such that (30)

indeed holds. Recall that β is chosen by the encoders that

only know that N < N nom, rather than the exact value of N .

Therefore, the encoders should choose β as

βopt(P,N
nom,Kxx) ,

max
β>0

s.t. min
A∈Z

K×K

det(A) 6=0

max
k=1,...,K

aTk (β
2Kxx +

N nomP

N nom + P
I)ak = P

and the symmetric distortion obtained by the proposed scheme

is

dIF =
N

β2
opt(P,N

nom,Kxx)

which decreases as N decreases, as desired.

A naive joint source-channel coding schemes that ignores

the correlations between the entries of x would be transmitting

each xk in an analog Goblick-like scheme. The distortion

achieved by such a scheme would be7

dnaive =
N

P
max

k=1,...,K
Kxx(k, k).

It can be easily verified that the same distortion is achieved if

one constrains A = I in the scheme proposed here. Therefore,

the proposed IF based joint source-channel coding scheme

strictly improves upon the naive one.

It is also worth mentioning that the proposed scheme easily

generalizes to a dirty paper scenario, where the output of

each AWGN channel is further corrupted by an arbitrary

interference vk known to encoder k but not to the decoder,

i.e., yk = sk +vk+zk. In the proposed scheme, the encoders

can transmit sk = [βxk − vk + dk] mod Λ and the decoder

remains the same.

7Taking into account the constraint that the estimate for each xk must be
conditionally unbiased.

VI. ONE-SHOT INTEGER-FORCING SOURCE CODING

One of the advantages of IF source coding is that its

complexity and performance can be traded-off, by choosing

nested lattice codes that can be easily implemented, but are

less effective as channel codes and MSE quantizers.

In the previous sections we have considered the extreme

case of high-dimensional pairs of nested lattices where the fine

lattice is good for MSE quantization and the coarse lattice is

good for channel coding. In this section we consider the other

extreme, where both lattices are scaled versions of the integer

lattice Z. With this choice of nested lattice pair, IF source

coding becomes extremely easy to implement. Moreover, this

one-shot version of IF source coding does not induce any

latency and does not assume the existence of an unlimited

number of i.i.d. samples to be compressed.

Let Λf =
√
12dZ and Λ = 2R

√
12dZ. If 2R is a positive

integer then Λ ⊆ Λf , and the codebook C = Λf ∩ V with

rate R is a valid codebook for IF source coding. Let dk be a

random dither uniformly distributed over Vf , known to both

the kth encoder and the decoder. The kth encoder conveys the

index corresponding to the point
[
QΛf

(xk + dk)
]
mod Λ

to the decoder. Note that for a 1D lattice, the quantization

operation reduces to a simple slicer. Thus all operations are

easy to implement.

The decoder first subtracts back the dither and reduces

mod Λ to obtain

x̃k
(i.d.)
= [xk + dk] mod Λ,

and then chooses some full-rank matrix A ∈ ZK×K and

computes

Âx , [Ax̃] mod Λ = [A(x+ d)] mod Λ, (31)

where d = [d1 · · · dK ]T . In contrast to the case of a high-

dimensional nested lattice codebook, where the probability that

Âx 6= Ax could be made as low as desired if r2eff(Λ) is large

enough, here this probability is finite for any finite value of

2R
√
12d. In particular, let aTk be the kth row of A and define

the random variable

wk , aTk (x+ d)

with zero mean and variance

σ2
w,k = aTk (Kxx + dI)ak.

We have

Pr
(
Âx 6= Ax

)
= Pr

(
K⋃

k=1

[wk] mod Λ 6= wk

)

= Pr

(
K⋃

k=1

QΛ(wk) 6= 0

)

= Pr

(
K⋃

k=1

|wk| ≥
1

2
2R

√
12d

)

≤
K∑

k=1

Pr
(
|wk| ≥ 2R

√
3d
)
, (32)
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where the last inequality follows from the union bound. Next,

we apply the following Lemma from [38], [39]

Lemma 3: [39, Lemma 3] Consider the random variable

zeff =

L∑

ℓ=1

αℓzℓ +

K∑

k=1

βkdk

where {zℓ}Lℓ=1 are i.i.d. Gaussian random variables with zero

mean and some variance σ2
z and {dk}Kk=1 are i.i.d. random

variables, statistically independent of {zℓ}Lℓ=1, uniformly dis-

tributed over the interval [−ρ/2, ρ/2) for some ρ > 0. Let

σ2
eff , E(z2eff). Then

Pr(zeff > τ) = Pr(zeff < −τ) ≤ exp

{
− τ2

2σ2
eff

}
.

One can easily verify that wk satisfies the conditions of

Lemma 3 as aTk x is a Gaussian random variable statistically

independent of the dither vector d. Therefore, we can further

bound (32) as

Pr
(
Âx 6= Ax

)
≤

K∑

k=1

2 exp

{
− 22R3d

2aTk (Kxx + dI) ak

}

≤ 2K exp

{
−3

2
22(R− 1

2
log(maxk=1,...,K a

T
k (I+ 1

d
Kxx)ak))

}

= 2K exp

{
−3

2
22(R−RIF(A,d))

}
, (33)

where RIF(A, d) is the minimum required rate for a IF source

coding when a good nested lattice pair is used, as defined in

Theorem 1. The decoder proceeds by computing

x̂ = A−1Âx = x+ d+A−1
(
Âx−Ax

)
. (34)

Since dk is statistically independent of x and E(d2k) = d for

all k = 1, . . . ,K , we see that provided that Âx = Ax the

one-shot version of IF source coding produces conditionally

unbiased estimates of xk with distortion d. The probability

that Âx = Ax can be controlled by increasing R−RIF(A, d)
which is the coding overhead w.r.t. to IF source coding with

an optimal nested lattice pair. For instance, if K = 4, taking

R = RIF(A, d) + 2 results in Pr
(
Âx 6= Ax

)
≤ 3 · 10−10.

The next theorem summarizes the discussion above.

Theorem 2 (One-shot IF source coding): Let RIF(d) be as

defined in Theorem 1 and set R = RIF(d) + ∆ for some

∆ > 0. If 2R is a positive integer, the one-shot version of IF

source coding with lattices Λf =
√
12dZ and Λ = 2R

√
12dZ

produces conditionally unbiased estimates with average MSE

distortion d for each xk, k = 1, . . . ,K with probability greater

than 1− 2K exp{− 3
22

2∆}.

A. Modulo Analog-to-Digital Converters

Theorem 2 shows that a simple implementation of IF source

coding with 1D lattices only requires a small rate overhead

w.r.t. to the asymptotic performance of IF source coding. The

simplicity of the one-shot IF source coding scheme suggests

that this framework may be useful for designing Analog-to-

Digital converters (ADCs) that can exploit correlations in a

distributed manner. To illustrate the problem, consider the

Gaussian MIMO channel x = Hs + z, where H ∈ RK×M

is the channel matrix, z ∈ RK×1 is a vector of AWGN

and s are the M inputs to channel, which are assumed to

be i.i.d. normally distributed. The front-end of the MIMO

receiver consists of K ADCs, one for the output of each

receive antenna. Today, each of these ADCs is designed w.r.t.

the marginal distribution of each output, ignoring the fact that

the K ADCs sample correlated signals. Often, the variance of

each output is quite large although the conditional variance

when all other samples are given is small. Thus, exploiting

the spatial correlation may significantly reduce the distortion

created by the ADCs. However, the ADCs are expected to

work at very high rates, which precludes cooperation between

their operations. We show that a variant of the one-shot IF

source coding scheme allows the ADCs to exploit the spatial

correlations with no cooperation and with roughly the same

encoding complexity as a standard ADC, and only a small

increase in the decoding complexity.

The one-shot version of IF source coding described above

requires each encoder to first quantize its observation using a

scaled integer lattice, and then reduce the result modulo the

coarse lattice, which is also a scaled version of Z. This can be

implemented by applying an ADC as the quantizer followed by

a digital modulo reduction. However, the power consumption

and the complexity of an ADC are dictated by the number

of bits it produces. Therefore, if the modulo operation can

be implemented efficiently in the analog domain, performance

can be improved by first applying the modulo reduction, and

only then incorporating the ADC. Since the modulo reduced

signal is of a smaller support, less bits are required for

describing it with the same average distortion level. The next

lemma shows that if Λf =
√
12dZ and Λ = 2R

√
12dZ the

operations QΛf
and mod Λ commute, i.e., one can first reduce

the signal modΛ and then quantize to Λf , rather than first

quantizing and then reducing modΛ.

Lemma 4: Let 2R be a positive odd integer and define the

nested lattices Λ =
√
12dZ and Λf = 2R

√
12dZ for some

d > 0. for any x ∈ R we have

[
QΛf

(x)
]
mod Λ = QΛf

([x] mod Λ) .

Proof: See Appendix A

Lemma 4 implies that the 1D version of IF source coding

can indeed be implemented by first reducing the source x
modulo Λ and only then quantizing it to Λf . The advantage in

switching the order of the operations is that if the 1D modulo

reduction, which is equivalent to the “saw-tooth” function,

can be efficiently implemented in the analog domain, then

the quantizer that follows it can be implemented using an

ADC with only R bits/sample. The relation between R, the

obtained distortion, and the error probability is characterized

in Theorem 2 and depends on RIF(d). Figure 7 depicts the

architecture of the proposed modulo ADC, that can replace

the encoders in the one-shot IF source coding scheme.
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x

modΛ

. . .. . .

QΛf
(·)

Modulo ADC

Fig. 7. A schematic illustration of the modulo ADC for 2R = 5. This
component can act as an encoder in the one-shot version of IF source coding.

VII. SUMMARY AND CONCLUSIONS

We have presented and analyzed a new low-complexity

framework for distributed lossy compression, which is based

on the integer-forcing architecture. This framework allows

the system designer to trade performance and complexity by

appropriately choosing the nested lattice codebooks that are

used. A remarkable feature of the proposed scheme is that it

admits a very simple one-shot version, whose performance

is not very far from that obtained using IF source coding

with asymptotically good nested lattice codes. We have also

shown that if one can implement the 1D modulo operation

with an analog circuit, which corresponds to implementing the

“saw-tooth” function, then the IF source coding approach can

translate to a novel ADC design, suitable for sampling spatially

correlated sources. Such ADCs can potentially be very useful

for the front-end of a MIMO receiver, where standard ADC

designs are already challenged by the growing transmission

rates.

We remark that the IF equalization framework for Gaussian

MIMO channels [18] has been extended to an equaliza-

tion framework for Gaussian intersymbol-interference chan-

nels [40]. In a similar manner, the IF source coding framework

proposed here, which is suitable for distributed lossy compres-

sion of spatially correlated signals, can be extended to an IF

compression framework for stationary temporally correlated

signals. Nevertheless, such a solution is less attractive as

one can always use a sequential Wyner-Ziv like compression

scheme for a stationary source. In such a scheme the first

samples of the source are compressed without binning/modulo

reduction, and the next samples are first binned/modulo re-

duced and then compressed. The decoder uses the samples

that are not binned for recovering the next samples in a

sequential manner. This Wyner-Ziv scheme suffers from the

intrinsic overhead of having to describe the first samples to

the decoder without binning. This overhead can be made

negligible by increasing the length of the compression block.

For spatially correlated sources a similar Wyner-Ziv like com-

pression scheme will result in asymmetric compression rates,

which is a consequence of the lack of “spatial stationarity”.

APPENDIX A

PROOF OF LEMMA 4

We begin with two general Lemmas from which Lemma 4

is immediately deduced.

Lemma 5: For any pair of n-dimensional nested lattices

Λ ⊆ Λf and any x ∈ Rn

[
QΛf

(x)
]
mod Λ = QΛf

([x] mod Λ)

+QΛ

([
QΛf

(x)
]
mod Λ + x−QΛf

(x)
)
.

Proof:
[
QΛf

(x)
]
mod Λ = QΛf

(x)−QΛ

(
QΛf

(x)
)

= QΛf
(x−QΛ(x) +QΛ(x))−QΛ

(
QΛf

(x)
)

= QΛf
(x−QΛ(x)) +QΛf

(QΛ(x))−QΛ

(
QΛf

(x)
)

= QΛf
([x] mod Λ) +QΛ(x) −QΛ

(
QΛf

(x)
)
, (35)

where in the last equality we have used the fact that

QΛf
(QΛ(x)) = QΛ(x) since Λ ⊆ Λf . We have,

QΛ(x) = QΛ

(
QΛf

(x) + x−QΛf
(x)
)

= QΛ

(
QΛf

(x) −QΛ

(
QΛf

(x)
)
+QΛ

(
QΛf

(x)
)
+ x−QΛf

(x)
)

= QΛ

([
QΛf

(x)
]
mod Λ + x−QΛf

(x)
)
+QΛ

(
QΛf

(x)
)
.

(36)

Substituting (36) in (35) gives the desired result.

Lemma 6: If the pair of nested lattices Λ ⊆ Λf satisfies the

tiling condition V = (Λf ∩ V) + Vf then
[
QΛf

(x)
]
mod Λ = QΛf

([x] mod Λ) .

for any x ∈ Rn.

Proof: For any x ∈ Rn we have
[
QΛf

(x)
]
mod Λ ∈ (Λf ∩ V) , and x−QΛf

(x) ∈ Vf .

Therefore
[
QΛf

(x)
]
mod Λ + x−QΛf

(x) ∈ (Λf ∩ V) + Vf ,

The tiling condition V = (Λf ∩ V) + Vf implies that
[
QΛf

(x)
]
mod Λ + x−QΛf

(x) ∈ V ,
which implies that

QΛ

([
QΛf

(x)
]
mod Λ + x−QΛf

(x)
)
= 0.

The result now follows immediately from Lemma 5.

It is easy to verify that if 2R is a positive odd integer the

nested lattices Λ =
√
12dZ and Λf = 2R

√
12dZ satisfy

the tiling condition V = (Λf ∩ V) + Vf , and Lemma 4

immediately follows from Lemma 6
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