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Integer Lapped Transforms and Their Applications to
Image Coding

W. C. Fong Member, IEEES. C. Chan, Arumugam Nallanathaember, IEEEand K. L. Hg Member, IEEE

Abstract—This paper proposes new integer approximations mance comparable to the embedded zero-tree wavelet coding
of the lapped transforms, called the integer lapped transforms \yith very low implementation complexity [14].
(ILT), and studies their applications to image coding. The ILT are Recently, there has been an increasing interest in designing
derived from a set of orthogonal sinusoidal transforms having . T . . .
short integer coefficients, which can be implemented with simple filter banks with low implementation complexity. A_p_proaches
integer arithmetic. By employing the same scaling constants Pased on the sum of powers-of-two (SOPQOT) coefficients [3] or
in these integer sinusoidal transforms, integer versions of the integer coefficients [12] have been proposed. By representing
lapped orthogonal transform (LOT), the lapped biorthogonal the filter coefficients in SOPOT or canonical signed digits repre-
transform (LBT), and the hierarchical lapped biorthogonal  gentation, coefficient multiplications can be implemented with

transform (HLBT) are developed. The ILTs with 5-b integer imole shift d additi . ise t ttiolier-|
coefficients are found to have similar coding gain (within 0.06 dB) simple Shifts and additions, giving rise 1o mufliplier-less re-

and image coding performances as their real-valued counterparts. alization. In [12], a subspace approach was proposed to de-
Furthermore, by representing these integer coefficients as sum of sign CMFB with integer-coefficient prototype filter. Since in-
powers-of-two coefficients (SOPOT), multiplier-less lapped trans- teger-coefficient filter banks require only integer arithmetic (ad-

forms with very low implementation complexity are obtained. In  jtinns and possibly multiplications), the implementation can be
particular, the implementation of the eight-channel multiplier-less

integer LOT (ILOT), LBT (ILBT), and HLBT (IHLBT) require greatly simplified. Also, if sufficient word length is used to rep-
90 additions and 44 shifts, 98 additions and 59 shifts, and 70 resent the intermediate data, round off error can be completely

additions and 38 shifts, respectively. eliminated. In practice, rounding has to be performed at var-
ious stages of the computation so that the intermediate data can
I. INTRODUCTION be accommodated in reasonable wordlength, say in 16 or 32 b.

Usually, the wordlength of the filter coefficients is chosen to be
PERFECT reconstruction (PR) critically decimated quadrggs small as possible so that only a few or no rounding of the
ture mirror filter (QMF) banks have many important appliyntermediate integer values are required for a certain internal
cations in speech, audio and image processing. The theory W&ﬁldlength for storing the intermediate data.
design ofM-channel PR maximally decimated uniform filter | this paper, integer versions of the various lapped trans-
bank has been extensively studied [7]. The cosine modulaiggns called the integer lapped transforms (ILT), are proposed
filter banks (CMFB) [9] and the lapped transforms [2], [4], [6lind evaluated for image coding applications. The proposed
are two efficient classes of filter banks with low implementay 1 are derived from a set of orthogonal sinusoidal transforms
tion complexity and good performance. The lapped orthogonglying integer coefficients with small wordlength. An integer
transform (LOT) is an}/-channel orthogonal linear-phase PRyordlength of 5 b is chosen in this work so that no rounding
filter bank with filter length2 M . It has slightly higher arithmetic o 5 few rounding is necessary for 32-b and 16-b internal
complexity than the DCT but the coding gain is significantly,ordiength, respectively. By properly designing these integer
higher with much less blocking artifacts. Other generalizatioRgysoidal transforms, integer versions of the lapped orthogonal
of the LOT include the biorthogonal generalized lapped trangznsform (LOT), the lapped biorthogonal transform (LBT),
form (GLT) in [4], [6], the lapped biorthogonal transform (LBT)ang the hierarchical lapped biorthogonal transform (HLBT)
and the hierarchical lapped biorthogonal transform (HLBT) igre developed. These ILTs have similar coding gain and
[14]. These biorthogonal lapped transforms have higher codifigage coding performances as their real-valued counterparts.
gain and reduced bIocki_ng artifacts than the LOT. Moreover, th®rthermore, by representing the integer coefficients as sum of
HLBT, when cascaded in a tree structure, can achieve a perfgéwers_of_two coefficients (SOPOT), multiplier-less ILT with
very low implementation complexity are obtained.
The paperis organized asfollows. Section Il reviews the theory

. . . _ and design of integer sinusoidal transforms, which was originally
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[I. INTEGER SINUSOIDAL TRANSFORMS so that the basis functions of the ICT will more closely resemble

According to Wang [10], there are four types of DCTs anffiose of the DCT-Il. In [1], the constanis b, c. d, ¢, f, andk

DSTs (type | to IV). DCT-Il and DCT-IIl are the commonly"j‘rel.‘:ho.sen to b.;?gb_i[}te]?ers and dmei)th e”tlfy tht;:r? nor-
used discrete cosine transform (DCT) and its inverse transfoF&?J%a_t}?n mt?]t”tpd\_f e tlhs use Itol rr}ormtarlllzLe t I’OV\:‘
(IDCT). In this paper, integer versions of the DCT-Il (DST-1°' £~ sothad IS orthogonal. 1i; 1S the L>-norm o

. i o
andthe DCT-IV (DST-IV) are developed to construct the integé'?etth row Ofof , thenk; is given by

lapped transforms (ILT). The definitions of the real-valued ki = |1/T3). (2.9)
DCT-Il, DCT-IV, DST-ll, and DST-IV are summarized as
follows. An exhaustive search is then performed to maximize the coding
DCT gain for common AR(1) process. The multiplications wit}s
T are usually absorbed into the quantization process to reduce the
[C11] = V2/M{er cos(k(n + 1/2)m /M)}, arithmetic complexity required. The inverse of the ICT can be
k,n=0,1,..., M—1. (2.1) obtained from (2.5) as follows:
(€Y = V2/M{cos((k + 1/2)(n +1/2)r/M)}, (PG = (P = (RS
k,n=0,1,..., M —1. (2.2) _ (Tf[H)T (Kf[H)T. (2.10)
DST

== Similarly, the scaling K¢, *#)T can be absorbed into the de-

[S31] = V2/M{ey sin(k(n — 1/2)m /M)}, quantization process to reduce the arithmetic complexity. Using
these integer sinusoidal transforms, it is possible to construct

k,n=1,..., M. 2.3 g - :
o L (2:3) lapped transforms with integer coefficients, as we shall see in
[S57] = V2/M{sin((k + 1/2)(n + 1/2)7/M)}, the following section.
k,n=0,1,...., M —1. (2.4)
[ll. I NTEGERLAPPED ORTHOGONAL TRANSFORM (ILOT)
where A. Theory and Design of ILOT
e = { 1/v2, i=0 or M As mentioned earlier, the LOT is an orthogonal linear phase
1, otherwise. M-channel PR filter bank with leng®W/. Its (M x 2M ) trans-

The subscript and the superscript@fand .S denote, respec- form matrix is given by [2]

tively, the length and the type of the transformation. The type-lI
integer cosine transform (IC IiZ,’CM_”, proposed in [1] has the PJ’(;)T =Py
following matrix representation:

Iyso On/o
\T
Onryo (Cﬁ/QSJI\}m)
P g1 et (2.5) . {De -D, Jyp(D.—-D,)

where K$, "' is a real diagonal matrix an#? is an or- De— Do —Jyyp2(De = Do)
thogonal matrix approximating DCT-II. Again, the superscripvhere D, and D, are (M/2) x (M) matrices containing the
and subscript denote, respectively, the type and the length of &ven and odd basis functions of DCT-II, respectivély; is a
transformation. For examplé; — 11 means type-Il discrete co- permutation matrix which permutes thth and the £+ A /2)th
sine transform and so on. Using the concept of dyadic symmetmyws to the2ith and the(2k + 1)th (k = 0, ..., M/2 — 1)
Cham [1] proposed the following construction for order-8 ICTrows, respectively. Fig. 1 shows the flow graph of an eight-
-1 1 1 1 1 1 1 I channel LOT. It is natural to consider replacing the eight-point
0 b e d o—d e b _a DCT in the LOT by the ICTPS ™’ to construct an integer
P e —e —f f e LOT (ILOT). Unfortunately, the scaling matri¥ § %/, is real-
valued. Therefore, it is necessary to perform real multiplica-
—-d —a -c c a d —=b : . . C—I1 . )
ko _k 1 ok _k 1 tions immediately afteff’s before subsequent additions in
a d b b —d 0 —c the LOT can be performed. A method to avoid this problem is to
design an integer cosine transform with all the scaling constants
e —f —f e —e f SO . . .
being identical. In this case, the scaling constant can be moved
—c b —a a —b c —d] . . .
to the end of the transformation and absorbed in the quantiza-
(2.6) .. - . ! A
tion process. The remaining problem is to find similar integer

whereq, b, ¢, d, e, f, andk are integer parameters. It can pdransforms for the four-point DCT-1l and the four-point DST-IV.
verified that the rows of’{ ~! are orthogonal to each other if USing the same concept as in [1], we propose the order-4 type-lI

integer cosine transform as follows:
L L L L

Inaddition,a, b, ¢, d, ¢, andf are chosen to satisfy the conditions To-1_ | @ b —b —m (3.2)
£ - 4 £ '
a2b202d207 and CZfZO (28) bl —day ay _bl

} (3.1)

C—TIT7
M

C—TT _
T =

A~ O S0
|
o

a-b=a-c+b-d+c-d (2.7)
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Fig. 1. Flow graph of eight-channel LOT.
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Fig. 2. Flow graph of eight-channel ILOT (LS: left shift).

whereay, by, and? are integers to be determined. L& ~*!, where D, and D, are (4 x 8) matrices containing the even
a; andb; have to satisfy and odd basis functions &S/, respectively. The scaling
constant forT{~* is ky. For the odd-indexed outputs, the
ap by 0. (3-3)  scaling constants &S 27 and (TS~ 175 1V)T are merged
Similarly, the order-4 type-IV integer sine transform is definetpgether to formk,. These multiplications can readily be
as follows: absorbed into the quantization process. Fig. 2 shows the flow
s by . do graph of the. integer LOT With eight channgls. This ILOT
. b d aw  —c is parameterized by a set of integers and is referred to as
7771V = c2 a“’ _d2 1;2 . (34) ILOT(a, b, ¢, d, e, f, k, a1, by, £, az, by, 2, da).
dz _cj bj —az We now proceed to the design of the ILOT. Animportantissue
in transform and subband coding is the efficiency of the trans-
Again, the rows ofl’;f‘”f will be orthogonal to each other if form or filter bank employed. The coding gain is frequently used
as an effective measure of transform efficiency. For orthogonal
transform, the coding gaitdyr, is given by
Moreover, to approximate the basis functions of DST-IV, the

Co-do=ag-by+by-dy+co-an. (35)

following condition is imposed 1 Mil o2
M £ 7
ay 2 by 2 ¢z 2 dy 2 0. (3.6) Gr=—r (3.8)
2
For simplicity, the scaling constants for the matrix product, <7¢1;[o Ui’)

(r$=T;=1V)T, are also designed to be identical. Finally,
the following transform matrix for the order-8 ILOT is obtainedvheres? is the variance of the output at thth analysis filter.

For subband coding, the general coding gain formula is given
pitor _ p,, [Fols 0 [ 1Ls 0 by [11]
Lo kI o, (Tf_HT:f_IV)T
D.-D, Ju (DF, - Do) Gspe = (3.9)

3.7) M1 i
D.-D, —-J, (DF, — Do) M < I1 AkBk>

k=0
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where where

—1N-— N—-1
o 1 :
Ak—E S hk Yhi(D)p"~and Br=— 3 gi(5).
j=0 =0 j=0
(3.10) Py =

hi(n) andgx(n) are the impulse responses of ttth analysis
and synthesis filters of lengtN. Here, the input is assumed to
be a first-order auto-regressive process with correlation coeffi-
cientp.

To reduce the wordlength for the integer implementation, the
kernel forrS =1, T ~1 andT; ~'" are chosen to be 5-b inte- T¢IV = | T T
gers. Exhaustive search is performed to optimize the coding gain
of this ILOT. The optimal solution was found to be ILOT(24, B
20,12,6,23,7,17,17,7,13, 3, 6, 10, 12) with a coding gain of kTg_H 0 } {

S OO, OO o0
(ool e Bl en li oo i en Bl e Bl e}
SO, OO0 o0
O OO oo oo

oo oo o oo
SO0 oo ~, OO
=N eleleBoBol "
[ eNeNell S = Nolo)

and

[
SEEWRS

|
Q
o

|
o

9.16 dB for AR(1) process with correlation coefficient of 0.95. T~/ = P,

This is close to the coding gain of the LOT, which is 9.22 dB. 0
They also have similar frequency responses [13], which is nghere
shown here due to page limitation. The diagonal scaling values

ko andk; are 0.0104 and 0.000 023 53, respectively. The multi-

plier-less implementation of this ILOT will be described in the Py =
next section.

oo o
o= OO

B. Multiplier-Less ILOT po-1T _ {1 1}
§—1 = )

It can be seen from Section IlI-A that the arithmetic com- 1 -1

plexity of the ILOT is mainly due to the matrix multiplica- Here, Jy is the (N x N) exchange matrix. The
tions of 7§ 1, T¢ ! and T V. In the LOT, fast algo- flowgraphs for decomposingZ¢~*! and TS are
rithms for C{’ and(C}’S.")” are available [5], [15], which shown in Fig. 3(a) and (b), respectively. Next, we
can be implemented either in fixed-point or floating-point arithshall consider the multiplication off’{~’". Using sim-
metic. Due to the use of integer arithmetic, such fast algorithritar rearrangement as in (3.11), one can implement
are in general not available. Fortunately, because of the smagll= 7¢~"" z, whereX = [X(0), X(1), X(2), X(3)]” and
word-length of the integer coefficients, the arithmetic computa- = [z(0), z(1), z(2), 2(3)]*, as follows:
tions required can be significantly reduced by exploiting the ac-
tual vaIues and the sum of powers -of- two representation of the X(0) =6((«(0) + 22(1)) + 42(2) + 42(3)) — 4z(2)
(1) =6(=2(x(0) + 22(1)) — =(2) + 42(3)) — 4z(3)

ILOT becomes feasible. Flrst of all, let us consider the multipli-
cation of (7% IV)T =151V Itcanbe seenthat, = 3,b, = X(2) =6(42(0) + x(1) — 2(22(2) — 2(3))) — 4x(0)
6, andd, = 12 are multiples of 3, ané, = 10 can be rewritten X(3) (—4z(0) + 2(1) — (22(2) — 2(3))) — 4z(1)
asco = 6+ 4. By proper arranging the operation, we can imple-
mentX = 751"z, whereX — [X(0), X(1), X(2), X(3)|Z (3.14)
andz = [z(0), z(1), z(2), z(3)]*, as follows: which requires 18 additions and 16 shifts. To perform the matrix

multiplication forZs =", we can decompose= 23 andf =7

)
)

=

X(0) =3((x(0) + 22(1)) + 22(2) + 42(3)) + 4x(2) ipto SOPOT coefﬁcientsTgP}jVimplement thg ma}trix mg!tiplica—

=500 20 025 i) SO S0 O s

X(2) =322(0) + #(1) — 2(22(2) — x(3)) + 4=(0) X(0) =16z(1) + (8 — 1)((0) + (1))

X(3) =3(42(0) = 22(1) + (22(2) — 2(3))) — 4z(1)- X(1) =(8 = 1)(—2(0) + (1)) — 162(0).  (3.15)
(3.11)

Therefore, TS ~'" can be implemented with 40 additions

Careful examination reveals that (3.11) can be implementeddfd 22 shifts (two additions and two shifts for multiplica-
18 additions and 14 shifts. The implementatioriff—'* and 1O, "ﬁh k = 17). On the other hand, the multiplication of
TS~11 are slightly simpler due to the dyadic symmetry. In fac{ L4 can be implemented by transposing both sides of

they can be further decomposed as follows: (3.13) as follows:

ETC 17 0
B —inT 2 I, T
¢ o } {14 4 (i) = Tg—IV} [JQ —JJP

0 Y i

1, —JJ (3.12) (3.16)
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Fig. 3. Flow graphs for computing (&5 ~** and (b)T'5 ~*'.

Since the multiplication witlf = 13 requires four additions andand
four shifts, the arithmetic complexity required i %)% is m=+/2 4.2)
16 additions and eight shifts. Combining all these results, the

arithmetic.complexity of the eight-point ILOT is 90 additionSyhich was first reported in [14]. The signal flow graph for the
and 44 shifts. LBT is shown in Fig. 4. By approximating the constantas
the rational number 17/12 and using the previous results for
IV. INTEGERLAPPEDBIORTHOGONAL TRANSFORM(ILBT)  {he |LOT, the integer eight-channel length-16 LBT (ILBT) in
A. Theory and Design of Eight-Point ILBT Fig. 5 is obtained. Its arithmetic complexity is 98 additions and
59 shifts. The frequency responses of the LBT and its integer
version are shown in Fig. 6. It can be seen that they are similar

reconstruction filter banks with lengtth/. It and the GLT are . )
biorthogonal generalizations of the LOT. The advantages tgfeach other. In the next section, we shall consider the construc-
! tion of the eight-channel integer HLBT from an four-channel

these biorthogonal filter banks are that they can be desigrﬁ T
to reduce blocking artifacts and improve the coding gain. The™
polyphase matrix of the GLT is defined as follows [4]:

The LBT is a biorthogonal linear-phagdé-channel perfect

V. INTEGER HIERARCHICAL LAPPED BIORTHOGONAL

By 1Pt [ Uoo OM/ﬂ Lyiyo Onr/2 TRANSFORM (IHLBT)
zZ)= = . T .
2 Oppe U Ori/a (C’ﬁ/QSﬁ}/Q) A. Theory and Design of IHLBT

Although the LBT has a higher coding gain and lower
. Ingyz o Ing2] [Ty Omy2 blocking artifacts than the LOT, it is not very suitable to be used
R, (41) | ) . . .
Iy —Ipgyo ] LOngyo z*llM/Q in a hierarchical manner like the wavelet transform. This is be-
cause the high frequency basis functions will become very long

] 7 i i i . . .o . .
wherel/oo and/y, are block diagonal nonsingular matrices producing excessive ringing artifacts if several sdgkchannel

R, =P, diag{B;--- B,}DCYL Ty, filter banks are cascaded together. One solution to this problem
is to design lapped transforms having basis functions with
B, = [1 1} 7 andD is a diagonal matrix. different lengths. The HLBT proposed by Malvar [14] is a
1 -1 nonuniform filter bank, which is constructed by combining two

GLT with greater overlap can similarly be defined. In the LBTLBTS with half the desired block size, as shown in Fig. 7(a).
More specifically, the lowest coefficients of the low-order LBT

Uoo =U11 = Iy 2, D =diag(1l, m, 1, ... 1) are further transformed using a length-2 DCT in the second
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level. The first two basis functions and the high frequency basisthout using any human visual model. The coders were tested
functions are therefore of length//2 and M, respectively. with the “Lena” image (512x 512 8-b gray scale) and the
When cascaded in a tree structure, performance comparabledding results are summarized in Table I. It can be seen that the
the embedded zero-tree wavelet coding can be achieved wdifierence in PSNR of the proposed integer lapped transforms
very low implementation complexity [14]. and their real-valued counterparts is within 0.1 dB. Their vi-
With the help of the integer sinusoidal transforms ansual qualities are also found to be close to each other. The arith-
their multiplier-less implementation, the construction of thmetic complexities and the coding gains of the various lapped
integer HLBT (IHLBT) can be considerably simplified. Moretransforms withA/ = 8 are summarized in Table II. The arith-
precisely, the IHLBT is obtained by replacing the four-channehetic complexities of the real-valued DCT-Il and DST-IV are
LBT by the four-channel ILBT developed in Section IV. Theobtained from [15].
diagonal scaling valueg, and k; for the four-channel LBT  Asmentionedinthe introduction, rounding ofthe intermediate
are 0.019 2307 and 0.002 027 1, respectively. The four-chanmdkgers might be needed to avoid the growth in wordlength of the
ILBT involves the implementation of the integer matricegntermediate data, depending on the internal wordlength of the
¢, 15~ andT5~!V. The implementation of’{~*/  processing unit. For example, in the implementation of the ILOT
has been discussed in Section Ill, which requires 16 additionsing 32-b internalwordlength, the even outp{ty), (2), y(4),
and eight shifts. Whereas, the implementatior‘il‘@f‘H and andy(6) before multiplying by the constaiky can be limited to
T; 'V = [ _*] require, respectively, two additions andL6 b by shifting them to the left by 2 b. Similarly, for the odd-in-
four additions and four shifts. dexed outputs, the results before multiplying by the congtant
can be limited to 16 b by shifting the results by 10 b. Therefore,
after performing the row and column transformations, the output
will be limited to 32 b by carrying out only one rounding opera-
In this section, we shall compare the image coding perfdien per transformation without any multiplication. The outputs
mance of the integer lapped transforms with their real-valuage then quantized (a division or compare operation) with a step-
counterparts. Separable eight-channel length-16 LOT, LBT, aside of2”°k;k; A, i = 0, 1 (depending on their indices), where
the HLBT are used for simulation. For a fair comparison beA is the stepsize for the real-valued transformation&afids the
tween the systems, we follow the JPEG Baseline quantizatitmtal amount of left shifts that has been performed for the given
scheme with the default Huffman code tables. The DCT is reutput. This differs from using fixed-pointarithmetic, which usu-
placed by the various transforms and the quantization tableaity requires a hardware multiplier togetherwith arounding oper-
obtained by using the bit allocation algorithm proposed in [1&{tion sothatthe intermediate data after multiplication canbefitted

VI. IMAGE CODING PERFORMANCE



1158 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 10, OCTOBER 2002

TABLE |
CODING RESULTS OFVARIOUS ALGORITHMS FORIMAGE LENA [GREY SCALE (512 x 512)]

Lena PSNR (dB)
bpp DCT | LOT | ILOT | GLT | IGLT | HLBT | IHLBT
062 | 3627 | 3643 | 3623 | 3685 | 36.72 | 3625 | 3631

0.5 35.04 35.29 3508 | 3577 | 35.65 35.12 35.15
0.35 32.97 33.40 3322 | 3398 | 33.90 3322 33.32
0.26 30.88 31.42 3133 | 31.94 | 3191 31.14 31.23
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Fig. 7. Flow graphs: (a) eight-channel HLBT and (b) eight-channel IHLBT.

Fig.6. Frequency response of (a) eight-channel LBT (analysis filterbanks) and
(b) eight-channel ILBT (analysis filterbanks).
VIl. CONCLUSION

into the given internal wordlength. Simulation results also show A new generalization of lapped transforms with integer
that all the ILTs considered can be implemented in 16-b aritheefficients, called the integer lapped transform (ILT), for
metic without any notable differences in their PSNR and visumhage coding applications is presented. The ILT is derived
performances with proper rounding. For the ILOT, the outpufsom a set of orthogonal sinusoidal transforms having short
from TSC*H can be left shifted¥2 b (Fig. 2). Before performing integer coefficients, which allows them to be implemented with
TS =" andT; "V, the intermediate data can be left shifted by 3imple integer arithmetic. By employing the same scaling con-
b and 5 b, respectively. Finally, the even and odd indexed residtants for these integer sinusoidal transforms, integer versions
before multiplying byky andk; canbeleftshiftedby4and5b, re-of the lapped orthogonal transform (LOT), the generalized
spectively. Hence, the overall implementation can be accomniapped transform (GLT), and the hierarchical lapped transform
dated in 16-b arithmetic, with slightly more rounding than usin(HLBT) are developed. ILT with 5-b integer coefficients
32-b arithmetic. was found to have similar coding gain (within 0.06 dB) and
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image coding performances as their real-valued counterpa
Furthermore, by representing these integer coefficients as s
of powers-of-two coefficients (SOPOT), multiplier-less lappe
transforms with very low implementation complexity are
obtained. Image coding results also confirm that their PSN
and visual performances are very close to their real-valu
counterparts.
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(2]

(3]

[4]

(5]

(6]

(71

(8]

9]

(20]

(11]

(12]

(13]

[14]

[15]

[16]

TABLE I
CODING GAINS AND ARITHMETIC COMPLEXITIES OF VARIOUS ALGORITHMS (M = 8)

DCT ICT LOT ILOT GLT IGLT | HLBT | IHLBT

Coding Gain| 8.83 8.77 9.22 9.16 9.55 9.50 9.15 918
(dB)
Arithmetic | 29 Adds | 40 Adds | 66 Adds | 90 Adds | 66 Adds | 98 Adds | 46 Adds | 70 Adds
Complexity | 12 Mults| 22 Shifts |41 Mults|44 Shifts| 42 Mults | 59 Shifts | 14 Mults | 38 Shifts
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