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Abstract—This paper proposes new integer approximations
of the lapped transforms, called the integer lapped transforms
(ILT), and studies their applications to image coding. The ILT are
derived from a set of orthogonal sinusoidal transforms having
short integer coefficients, which can be implemented with simple
integer arithmetic. By employing the same scaling constants
in these integer sinusoidal transforms, integer versions of the
lapped orthogonal transform (LOT), the lapped biorthogonal
transform (LBT), and the hierarchical lapped biorthogonal
transform (HLBT) are developed. The ILTs with 5-b integer
coefficients are found to have similar coding gain (within 0.06 dB)
and image coding performances as their real-valued counterparts.
Furthermore, by representing these integer coefficients as sum of
powers-of-two coefficients (SOPOT), multiplier-less lapped trans-
forms with very low implementation complexity are obtained. In
particular, the implementation of the eight-channel multiplier-less
integer LOT (ILOT), LBT (ILBT), and HLBT (IHLBT) require
90 additions and 44 shifts, 98 additions and 59 shifts, and 70
additions and 38 shifts, respectively.

I. INTRODUCTION

PERFECT reconstruction (PR) critically decimated quadra-
ture mirror filter (QMF) banks have many important appli-

cations in speech, audio and image processing. The theory and
design of -channel PR maximally decimated uniform filter
bank has been extensively studied [7]. The cosine modulated
filter banks (CMFB) [9] and the lapped transforms [2], [4], [6]
are two efficient classes of filter banks with low implementa-
tion complexity and good performance. The lapped orthogonal
transform (LOT) is an -channel orthogonal linear-phase PR
filter bank with filter length . It has slightly higher arithmetic
complexity than the DCT but the coding gain is significantly
higher with much less blocking artifacts. Other generalizations
of the LOT include the biorthogonal generalized lapped trans-
form (GLT) in [4], [6], the lapped biorthogonal transform (LBT)
and the hierarchical lapped biorthogonal transform (HLBT) in
[14]. These biorthogonal lapped transforms have higher coding
gain and reduced blocking artifacts than the LOT. Moreover, the
HLBT, when cascaded in a tree structure, can achieve a perfor-
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mance comparable to the embedded zero-tree wavelet coding
with very low implementation complexity [14].

Recently, there has been an increasing interest in designing
filter banks with low implementation complexity. Approaches
based on the sum of powers-of-two (SOPOT) coefficients [3] or
integer coefficients [12] have been proposed. By representing
the filter coefficients in SOPOT or canonical signed digits repre-
sentation, coefficient multiplications can be implemented with
simple shifts and additions, giving rise to multiplier-less re-
alization. In [12], a subspace approach was proposed to de-
sign CMFB with integer-coefficient prototype filter. Since in-
teger-coefficient filter banks require only integer arithmetic (ad-
ditions and possibly multiplications), the implementation can be
greatly simplified. Also, if sufficient word length is used to rep-
resent the intermediate data, round off error can be completely
eliminated. In practice, rounding has to be performed at var-
ious stages of the computation so that the intermediate data can
be accommodated in reasonable wordlength, say in 16 or 32 b.
Usually, the wordlength of the filter coefficients is chosen to be
as small as possible so that only a few or no rounding of the
intermediate integer values are required for a certain internal
wordlength for storing the intermediate data.

In this paper, integer versions of the various lapped trans-
forms, called the integer lapped transforms (ILT), are proposed
and evaluated for image coding applications. The proposed
ILT are derived from a set of orthogonal sinusoidal transforms
having integer coefficients with small wordlength. An integer
wordlength of 5 b is chosen in this work so that no rounding
or a few rounding is necessary for 32-b and 16-b internal
wordlength, respectively. By properly designing these integer
sinusoidal transforms, integer versions of the lapped orthogonal
transform (LOT), the lapped biorthogonal transform (LBT),
and the hierarchical lapped biorthogonal transform (HLBT)
are developed. These ILTs have similar coding gain and
image coding performances as their real-valued counterparts.
Furthermore, by representing the integer coefficients as sum of
powers-of-two coefficients (SOPOT), multiplier-less ILT with
very low implementation complexity are obtained.

Thepaper isorganizedas follows.Section II reviews the theory
and design of integersinusoidal transforms, which was originally
proposed by Cham [1]. Section III is devoted to the theory, design
and implementationof the IntegerLappedOrthogonalTransform
(ILOT).TheresultssoobtainedarefurthermoredevelopedinSec-
tions IV and V to obtain the Integer Lapped Biorthogonal Trans-
form (ILBT) and the Integer Hierarchical Lapped Biorthogonal
Transform (IHLBT), respectively. Their performances in image
coding are then evaluated in Section VI. Finally, the results are
summarized in Section VII, the conclusion.
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II. I NTEGERSINUSOIDAL TRANSFORMS

According to Wang [10], there are four types of DCTs and
DSTs (type I to IV). DCT-II and DCT-III are the commonly
used discrete cosine transform (DCT) and its inverse transform
(IDCT). In this paper, integer versions of the DCT-II (DST-II)
and the DCT-IV (DST-IV) are developed to construct the integer
lapped transforms (ILT). The definitions of the real-valued
DCT-II, DCT-IV, DST-II, and DST-IV are summarized as
follows.

DCT

(2.1)

(2.2)

DST

(2.3)

(2.4)

where

or
otherwise.

The subscript and the superscript ofand denote, respec-
tively, the length and the type of the transformation. The type-II
integer cosine transform (ICT), , proposed in [1] has the
following matrix representation:

(2.5)

where is a real diagonal matrix and is an or-
thogonal matrix approximating DCT-II. Again, the superscript
and subscript denote, respectively, the type and the length of the
transformation. For example, means type-II discrete co-
sine transform and so on. Using the concept of dyadic symmetry,
Cham [1] proposed the following construction for order-8 ICT

(2.6)

where , , , , , , and are integer parameters. It can be
verified that the rows of are orthogonal to each other if

(2.7)

In addition, , , , , , and are chosen to satisfy the conditions

and (2.8)

so that the basis functions of the ICT will more closely resemble
those of the DCT-II. In [1], the constants, , , , , , and
are chosen to be 8-b integers and the th entry of the nor-
malization matrix , , is used to normalize theth row
of so that is orthogonal. If is the -norm of
the th row of , then is given by

(2.9)

An exhaustive search is then performed to maximize the coding
gain for common AR(1) process. The multiplications withs
are usually absorbed into the quantization process to reduce the
arithmetic complexity required. The inverse of the ICT can be
obtained from (2.5) as follows:

(2.10)

Similarly, the scaling can be absorbed into the de-
quantization process to reduce the arithmetic complexity. Using
these integer sinusoidal transforms, it is possible to construct
lapped transforms with integer coefficients, as we shall see in
the following section.

III. I NTEGERLAPPEDORTHOGONAL TRANSFORM(ILOT)

A. Theory and Design of ILOT

As mentioned earlier, the LOT is an orthogonal linear phase
-channel PR filter bank with length . Its trans-

form matrix is given by [2]

(3.1)

where and are matrices containing the
even and odd basis functions of DCT-II, respectively. is a
permutation matrix which permutes theth and the th
rows to the th and the th
rows, respectively. Fig. 1 shows the flow graph of an eight-
channel LOT. It is natural to consider replacing the eight-point
DCT in the LOT by the ICT to construct an integer
LOT (ILOT). Unfortunately, the scaling matrix, , is real-
valued. Therefore, it is necessary to perform real multiplica-
tions immediately after before subsequent additions in
the LOT can be performed. A method to avoid this problem is to
design an integer cosine transform with all the scaling constants
being identical. In this case, the scaling constant can be moved
to the end of the transformation and absorbed in the quantiza-
tion process. The remaining problem is to find similar integer
transforms for the four-point DCT-II and the four-point DST-IV.
Using the same concept as in [1], we propose the order-4 type-II
integer cosine transform as follows:

(3.2)



1154 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 10, OCTOBER 2002

Fig. 1. Flow graph of eight-channel LOT.

Fig. 2. Flow graph of eight-channel ILOT (LS: left shift).

where , , and are integers to be determined. Like ,
and have to satisfy

(3.3)

Similarly, the order-4 type-IV integer sine transform is defined
as follows:

(3.4)

Again, the rows of will be orthogonal to each other if

(3.5)

Moreover, to approximate the basis functions of DST-IV, the
following condition is imposed

(3.6)

For simplicity, the scaling constants for the matrix product,
, are also designed to be identical. Finally,

the following transform matrix for the order-8 ILOT is obtained

(3.7)

where and are (4 8) matrices containing the even
and odd basis functions of , respectively. The scaling
constant for is . For the odd-indexed outputs, the
scaling constants of and are merged
together to form . These multiplications can readily be
absorbed into the quantization process. Fig. 2 shows the flow
graph of the integer LOT with eight channels. This ILOT
is parameterized by a set of integers and is referred to as
ILOT .

We now proceed to the design of the ILOT. An important issue
in transform and subband coding is the efficiency of the trans-
form or filter bank employed. The coding gain is frequently used
as an effective measure of transform efficiency. For orthogonal
transform, the coding gain, , is given by

(3.8)

where is the variance of the output at theth analysis filter.
For subband coding, the general coding gain formula is given
by [11]

(3.9)
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where

and

(3.10)

and are the impulse responses of theth analysis
and synthesis filters of length . Here, the input is assumed to
be a first-order auto-regressive process with correlation coeffi-
cient .

To reduce the wordlength for the integer implementation, the
kernel for , and are chosen to be 5-b inte-
gers. Exhaustive search is performed to optimize the coding gain
of this ILOT. The optimal solution was found to be ILOT(24,
20, 12, 6, 23, 7, 17, 17, 7, 13, 3, 6, 10, 12) with a coding gain of
9.16 dB for AR(1) process with correlation coefficient of 0.95.
This is close to the coding gain of the LOT, which is 9.22 dB.
They also have similar frequency responses [13], which is not
shown here due to page limitation. The diagonal scaling values

and are 0.0104 and 0.000 023 53, respectively. The multi-
plier-less implementation of this ILOT will be described in the
next section.

B. Multiplier-Less ILOT

It can be seen from Section III-A that the arithmetic com-
plexity of the ILOT is mainly due to the matrix multiplica-
tions of , and . In the LOT, fast algo-
rithms for and are available [5], [15], which
can be implemented either in fixed-point or floating-point arith-
metic. Due to the use of integer arithmetic, such fast algorithms
are in general not available. Fortunately, because of the small
word-length of the integer coefficients, the arithmetic computa-
tions required can be significantly reduced by exploiting the ac-
tual values and the sum of powers-of-two representation of the
coefficients. As a result, multiplier-less implementation of the
ILOT becomes feasible. First of all, let us consider the multipli-
cation of . It can be seen that 3,
6, and 12 are multiples of 3, and 10 can be rewritten
as 6 4. By proper arranging the operation, we can imple-
ment , where
and , as follows:

(3.11)

Careful examination reveals that (3.11) can be implemented in
18 additions and 14 shifts. The implementation of and

are slightly simpler due to the dyadic symmetry. In fact,
they can be further decomposed as follows:

(3.12)

where

and

(3.13)

where

and

Here, is the exchange matrix. The
flowgraphs for decomposing and are
shown in Fig. 3(a) and (b), respectively. Next, we
shall consider the multiplication of . Using sim-
ilar rearrangement as in (3.11), one can implement

, where and
, as follows:

(3.14)

which requires 18 additions and 16 shifts. To perform the matrix
multiplication for , we can decompose 23 and 7
into SOPOT coefficients and implement the matrix multiplica-
tion in six additions
and four shifts as follows:

(3.15)

Therefore, can be implemented with 40 additions
and 22 shifts (two additions and two shifts for multiplica-
tion with 17). On the other hand, the multiplication of

can be implemented by transposing both sides of
(3.13) as follows:

(3.16)
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Fig. 3. Flow graphs for computing (a)TTT and (b)TTT .

Since the multiplication with 13 requires four additions and
four shifts, the arithmetic complexity required for is
16 additions and eight shifts. Combining all these results, the
arithmetic complexity of the eight-point ILOT is 90 additions
and 44 shifts.

IV. I NTEGERLAPPEDBIORTHOGONAL TRANSFORM(ILBT)

A. Theory and Design of Eight-Point ILBT

The LBT is a biorthogonal linear-phase-channel perfect
reconstruction filter banks with length . It and the GLT are
biorthogonal generalizations of the LOT. The advantages of
these biorthogonal filter banks are that they can be designed
to reduce blocking artifacts and improve the coding gain. The
polyphase matrix of the GLT is defined as follows [4]:

(4.1)

where and are block diagonal nonsingular matrices

and is a diagonal matrix.

GLT with greater overlap can similarly be defined. In the LBT

and

(4.2)

which was first reported in [14]. The signal flow graph for the
LBT is shown in Fig. 4. By approximating the constantas
the rational number 17/12 and using the previous results for
the ILOT, the integer eight-channel length-16 LBT (ILBT) in
Fig. 5 is obtained. Its arithmetic complexity is 98 additions and
59 shifts. The frequency responses of the LBT and its integer
version are shown in Fig. 6. It can be seen that they are similar
to each other. In the next section, we shall consider the construc-
tion of the eight-channel integer HLBT from an four-channel
ILBT.

V. INTEGER HIERARCHICAL LAPPED BIORTHOGONAL

TRANSFORM(IHLBT)

A. Theory and Design of IHLBT

Although the LBT has a higher coding gain and lower
blocking artifacts than the LOT, it is not very suitable to be used
in a hierarchical manner like the wavelet transform. This is be-
cause the high frequency basis functions will become very long
producing excessive ringing artifacts if several such-channel
filter banks are cascaded together. One solution to this problem
is to design lapped transforms having basis functions with
different lengths. The HLBT proposed by Malvar [14] is a
nonuniform filter bank, which is constructed by combining two
LBTs with half the desired block size, as shown in Fig. 7(a).
More specifically, the lowest coefficients of the low-order LBT
are further transformed using a length-2 DCT in the second
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Fig. 4. Flow graph of eight-channel LBT.

Fig. 5. Flow graph of eight-channel ILBT.k = k =12 andk = k =12.

level. The first two basis functions and the high frequency basis
functions are therefore of length and , respectively.
When cascaded in a tree structure, performance comparable to
the embedded zero-tree wavelet coding can be achieved with
very low implementation complexity [14].

With the help of the integer sinusoidal transforms and
their multiplier-less implementation, the construction of the
integer HLBT (IHLBT) can be considerably simplified. More
precisely, the IHLBT is obtained by replacing the four-channel
LBT by the four-channel ILBT developed in Section IV. The
diagonal scaling values and for the four-channel LBT
are 0.019 230 7 and 0.002 027 1, respectively. The four-channel
ILBT involves the implementation of the integer matrices

, , and . The implementation of
has been discussed in Section III, which requires 16 additions
and eight shifts. Whereas, the implementation of and

require, respectively, two additions and
four additions and four shifts.

VI. I MAGE CODING PERFORMANCE

In this section, we shall compare the image coding perfor-
mance of the integer lapped transforms with their real-valued
counterparts. Separable eight-channel length-16 LOT, LBT, and
the HLBT are used for simulation. For a fair comparison be-
tween the systems, we follow the JPEG Baseline quantization
scheme with the default Huffman code tables. The DCT is re-
placed by the various transforms and the quantization table is
obtained by using the bit allocation algorithm proposed in [16]

without using any human visual model. The coders were tested
with the “Lena” image (512 512 8-b gray scale) and the
coding results are summarized in Table I. It can be seen that the
difference in PSNR of the proposed integer lapped transforms
and their real-valued counterparts is within 0.1 dB. Their vi-
sual qualities are also found to be close to each other. The arith-
metic complexities and the coding gains of the various lapped
transforms with 8 are summarized in Table II. The arith-
metic complexities of the real-valued DCT-II and DST-IV are
obtained from [15].

Asmentioned in the introduction, roundingof the intermediate
integers might be needed to avoid the growth in wordlength of the
intermediate data, depending on the internal wordlength of the
processing unit. For example, in the implementation of the ILOT
using32-b internalwordlength, theevenoutputs , , ,
and before multiplying by the constant can be limited to
16 b by shifting them to the left by 2 b. Similarly, for the odd-in-
dexed outputs, the results before multiplying by the constant
can be limited to 16 b by shifting the results by 10 b. Therefore,
after performing the row and column transformations, the output
will be limited to 32 b by carrying out only one rounding opera-
tion per transformation without any multiplication. The outputs
are then quantized (a division or compare operation) with a step-
size of , 0, 1 (depending on their indices), where

is the stepsize for the real-valued transformation andis the
total amount of left shifts that has been performed for the given
output.Thisdiffers fromusing fixed-pointarithmetic,whichusu-
ally requiresahardwaremultiplier togetherwitharoundingoper-
ationsothat the intermediatedataaftermultiplicationcanbefitted
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TABLE I
CODING RESULTS OFVARIOUS ALGORITHMS FORIMAGE LENA [GREY SCALE (512� 512)]

Fig. 6. Frequency response of (a) eight-channel LBT (analysis filterbanks) and
(b) eight-channel ILBT (analysis filterbanks).

into the given internal wordlength. Simulation results also show
that all the ILTs considered can be implemented in 16-b arith-
metic without any notable differences in their PSNR and visual
performances with proper rounding. For the ILOT, the outputs
from can be left shifted by 2 b (Fig. 2). Before performing

and , the intermediate data can be left shifted by 3
b and 5 b, respectively. Finally, the even and odd indexed results
beforemultiplyingby and canbe left shiftedby4and5b, re-
spectively. Hence, the overall implementation can be accommo-
dated in 16-b arithmetic, with slightly more rounding than using
32-b arithmetic.

Fig. 7. Flow graphs: (a) eight-channel HLBT and (b) eight-channel IHLBT.

VII. CONCLUSION

A new generalization of lapped transforms with integer
coefficients, called the integer lapped transform (ILT), for
image coding applications is presented. The ILT is derived
from a set of orthogonal sinusoidal transforms having short
integer coefficients, which allows them to be implemented with
simple integer arithmetic. By employing the same scaling con-
stants for these integer sinusoidal transforms, integer versions
of the lapped orthogonal transform (LOT), the generalized
lapped transform (GLT), and the hierarchical lapped transform
(HLBT) are developed. ILT with 5-b integer coefficients
was found to have similar coding gain (within 0.06 dB) and
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TABLE II
CODING GAINS AND ARITHMETIC COMPLEXITIES OFVARIOUS ALGORITHMS (M = 8)

image coding performances as their real-valued counterparts.
Furthermore, by representing these integer coefficients as sum
of powers-of-two coefficients (SOPOT), multiplier-less lapped
transforms with very low implementation complexity are
obtained. Image coding results also confirm that their PSNR
and visual performances are very close to their real-valued
counterparts.
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