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Abstract

Inference in Conditional Random Fields and
Hidden Markov Models is done using the
Viterbi algorithm, an efficient dynamic pro-
gramming algorithm. In many cases, general
(non-local and non-sequential) constraints
may exist over the output sequence, but can-
not be incorporated and exploited in a nat-
ural way by this inference procedure. This
paper proposes a novel inference procedure
based on integer linear programming (ILP)
and extends CRF models to naturally and
efficiently support general constraint struc-
tures. For sequential constraints, this proce-
dure reduces to simple linear programming
as the inference process. Experimental evi-
dence is supplied in the context of an impor-
tant NLP problem, semantic role labeling.

1. Introduction

A large number of real world inference problems in-
volve predicting values to sets of variables where com-
plex and expressive structure can influence, or even
dictate, what assignments are possible – predictions
must respect constraints that could arise from the na-
ture of the data or task specific conditions. For exam-
ple, these problems are common in natural language
processing tasks such as labeling words of a sentence
with part-of-speech tags, identifying phrases in sen-
tences or identifying and classifying the arguments of
a verb in a sentence. In the latter task, for example,
predictions must respect constraints such that “a verb
cannot take two subject arguments” or “this verb does
not take an indirect object,” and others.

One of the most common approaches studied in the
last few years to the problem of learning classifiers
over structured output suggests to incorporate the de-
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pendencies among the variables into the learning pro-
cess, and directly induces estimators that optimize a
global performance measure. These solutions can be
based on probabilistic models, as in Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001) – perhaps
the most commonly used technique in this paradigm –
or be discriminative as in (Collins, 2002; Taskar et al.,
2004; Punyakanok et al., 2005).

In all these approaches, incorporating the dependen-
cies is done by making Markovian assumptions among
the output variables, which can be exploited via ef-
ficient inference algorithms. Specifically, CRFs can
handle linear state sequences and tree structures el-
egantly and enjoys advantages of both generative and
discriminative models. A rich set of feature functions
can be used to model state sequences, capturing infor-
mation on states, observations and state transitions.
When used for predicting the state sequence, a dy-
namic programming algorithm, Viterbi, can be used
to efficiently output the labels that maximize the joint
conditional probability given the observation.

The efficiency of the CRF approach heavily depends on
its first order Markov property – given the observation,
the label of a token is assumed to depend only on the
labels of its adjacent tokens. While this property does
not need to hold for CRFs to be used in applications,
it does prevent explicit modeling and exploiting more
general constraints such as long distance dependen-
cies. Indeed, recently Sarawagi and Cohen attempted
to relax the Markov property to better tackle a phrase
labeling problem (2005). This is a problem not only
for training CRFs but also for incorporating additional
constraints during inference. Although changing the
transition matrices helps the Viterbi algorithm to han-
dle certain types of constraints in evaluation (Krist-
jannson et al., 2004), so far there has not been any
suggestion on how to handle more general constraints.

In this paper, we propose a novel inference procedure
based on integer linear programming (ILP) to replace
the Viterbi algorithm in the context of learning with
structured output. The new model, ILP-CRF incor-
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porates the ILP general optimization procedure seam-
lessly into the CRF model. This modeling allows one
to add general constraints over the output space in a
natural and systematic fashion. The constraint lan-
gauge is very expressive – general Boolean functions
over the variables of interests can be expressed as lin-
ear (in)equalities. Yet, this modeling still allows, as we
show, practically efficient solutions to large scale real
world problems1. One of the nice properties of the pro-
posed approach is that when no additional constraints
are added, the problem reduces back to one that can
be solved efficiently by linear programming. We ex-
periment with this approach on an important large
scale natural langauge problem, Semantic Role Label-
ing (Carreras & Màrquez, 2004) and exhibit significant
improvement of the ILP-CRF over the standard CRF.

The rest of the paper is organized as follows. Sec. 2
briefly reviews CRFs models along with the Viterbi
algorithm. The limitation of the Viterbi algorithm in
incorporating constraints is discussed in Sec. 3. We
present the ILP-CRF approach and discuss modeling
problems in this paradigm in Sec. 4. Experimental re-
sults are presented in Sec. 5, along with a discussion of
some general issues that pertain to efficiency and mod-
ularity on learning and maintaining structured output.
Finally, Sec. 6 concludes this paper.

2. Conditional Random Fields

When used for sequential labeling problems, Condi-
tional Random Fields are linear-chain Markov Ran-
dom Fields that model Pr(y|x), where each node rep-
resents an element in the structured output y and
the potential functions are decided by the observation
through features over the input sequence x.

Assume there are K feature functions, f1, · · · , fK .
Each of them maps a pair of sequence (y,x) and a
token index i to fk(y,x, i) ∈ R. The global feature
vector is defined by

F (y,x) =
∑

i

〈f1(y,x, i), · · · , fK(y,x, i)〉

Following (Lafferty et al., 2001; Sha & Pereira, 2003),
the probability distribution is defined as

Prλ(y|x) =
exp(λ · F (y,x))

Zλ(x)

where λ is the global weight vector, and Zλ(x) =∑
exp(λ · F (y,x)) is a normalization factor.

1Integer linear programming is NP-Hard; however, to-
day’s commercial packages can solve sparse problems with
thousands of variables and constraints in a second, making
this a realistic approach in many real world problems.

2.1. Inference

Given a chain-structured CRFs model, the general in-
ference task is to find the the label sequence that max-
imizes the joint conditional probability, which can be
calculated efficiently through the Viterbi algorithm.
Let Y be the set of possible labels, where |Y| = m.
A set of m × m matrices {Mi(x)|i = 0, . . . , n − 1} is
defined over each pair of labels y′, y ∈ Y

Mi(y
′, y|x) = exp(

∑

j

λjfj(y
′, y,x, i)).

By augmenting two special nodes y−1 and yn before
and after the sequence with labels start and end re-
spectively, the sequence probability is

p(y|x,λ) =
1

Z(x)

n∏

i=0

Mi(yi−1, yi|x).

Z(x) can be computed from the Mi’s but not needed
in evaluation. Therefore, we only need to find the
label sequence y that maximizes the product of the
corresponding elements of these n + 1 matrices. The
Viterbi algorithm is the standard method that com-
putes the most likely label sequence given the obser-
vation. It grows the optimal label sequence gradually
by scanning the matrices from position 0 to n. At
step i, it records all the optimal sequences ending at a
label y,∀y ∈ Y (denoted by y∗

i (y)), and also the cor-
responding product Pi(y). The recursive function of
this dynamic programming algorithm is as follows.

1. P0(y) = M0(start, y|x) and y∗
0(y) = y

2. For 1 ≤ i ≤ n, y∗
i (y) = y∗

i−1(ŷ).(y)
and Pi(y) = maxy′∈Y Pi−1(y

′)M(y′, y|x), where
ŷ = argmaxy′∈Y Pi−1(y

′)M(y′, y|x) and “.” is the
concatenation operator.

The optimal sequence is therefore y∗
n−1 = [y∗

n]0..n−1,
which is the best path to the end symbol but taking
only position 0 to position n − 1.

2.2. Training

Training of CRFs requires estimating the values of
the weight vector, λ, which is usually done by maxi-
mizing the log-likelihood of a given training set T =
{(xk,yk)}N

k=1:

Lλ =
∑

k

log(pλ(yk|xk)) =
∑

k

[λ ·F (yk,xk)− log Zλ(xk)]

Popular training methods include generalized itera-
tive scaling, conjugate-gradient and limited-memory
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quasi-Newton. Interested readers may refer to (Sha
& Pereira, 2003) for detailed comparison. In addi-
tion to the common maximum log-likelihood training,
Collins (2002) suggests discriminatively learning the
global weight vector by reducing the number of error
predictions directly using the (voted) perceptron (Fre-
und & Schapire, 1999). It iterates on each sequence,
and updates the weight vector as follows.

λt+1 = λt + F (yk,xk) − F (ŷk,xk)

where ŷk is derived by the Viterbi inference algorithm
based on the weight vector λt. The algorithm cycles
through the training data several times. The voted
version reduces overfitting by using the average of the
weight vectors during the training process as the final
model parameters.

3. Incorporating Constraints in Viterbi

The Viterbi algorithm used for inference in CRFs can
be extended, as is done with HMMs, to satisfy some
types of additional constraints on the label sequence
(e.g., constrained Viterbi described in (Kristjannson
et al., 2004)). Consider, for example, NLP problems
such as chunking (Tjong Kim Sang & Buchholz, 2000),
semantic role labeling (Carreras & Màrquez, 2004), or
information extraction (Kristjannson et al., 2004). In
all these cases the task is to identify segments of con-
secutive words in the sentence and classify them to one
of several classes. A word based representation called
the BIO representation is often used for that purpose.
The label B- (Begin) represents the first word of a seg-
ment, where - indicates the phrase type; I- (Inside)
indicates that the word is part of, but not first in the
segment, and the label O (Outside) is assigned to all
other words in the sentence. When no two consecutive
segments share the same type, the BIO representation
can be simplified to the IO representation.

When an inference procedure like Viterbi is used, it is
possible to modify the values of some elements in the
matrices in order to enforce additional sequential con-
straints, beyond those encoded by the transition prob-
abilities. For example, the BIO representation natu-
rally disallows a label sequence that has an O label
followed immediately by an I label. To avoid choos-
ing this transition, the corresponding matrix entries
can be set to 0 (or a very small number). Namely,
Mi(yi−1 = O, yi = I|x) = 0 ∀i s.t 1 ≤ i ≤ n− 1, where
n is the sentence’s length.

Other types of enforced constraints may disallow some
labels or ensure that some tokens are assigned some
labels. For example, in an interactive information ex-
traction scenario, the system may assume that the la-

bels of some tokens are given by the user during evalu-
ation (Kristjannson et al., 2004). This is easy to satisfy
through a similar mechanism: if a token at the posi-
tion i has to be labeled a, then no path is allowed to
pass the state where yi 6= a. That is, set Mi(yi−1, yi)
to be 0 for all yi−1 ∈ Y and all yi ∈ Y − {a}.

However, this matrix modification mechanism cannot
be applied when the constraints define the relation of
two distant tokens. One example of this type of con-
straints is the “no duplicate segments” in several tasks
(e.g., semantic role labeling), where two different seg-
ments in a sentence cannot have the same label. An-
other example of a potential constraint in information
extraction is “if FirstName appears in the sentence,
then LastName must also appear.” While these gen-
eral constraints may not be exploited by the Viterbi
algorithm, they can be easily represented as Boolean
rules, and exploited using a different inference proce-
dure based on integer linear programming.

4. Inference using ILP

The solution that Viterbi outputs is in fact the shortest
path in the graph constructed as follows. Let n be the
number of tokens in the sequence, and m be the num-
ber of labels each token can take. The graph consists
of nm+2 nodes and (n−1)m2+2m edges. In addition
to two special nodes start and end that denote the start
and end positions of the path, the label of each token
is represented by a node vij , where 0 ≤ i ≤ n− 1, and
0 ≤ j ≤ m− 1. If the path passes node vij , then label
j is assigned to token i. For nodes that represent two
adjacent tokens v(i−1)j and vij′ , where 0 ≤ i ≤ n, and
0 ≤ j, j′ ≤ m − 1, there is a directed edge xi,jj′ from
v(i−1)j to vij′ , with the cost − log(Mi(jj

′|x)).

Obviously, the path from start to end will pass exactly
one node on position i. That is, exactly one of the
nodes vi,j , 0 ≤ j ≤ m − 1, will be picked. Figure 1
illustrates the graph. Suppose that y = y0y1 · · · yn−1
is the label sequence determined by the path. Then:

argmin
y

−

n−1∑

i=0

log(Mi(yi−1yi|x)) = argmax
y

n−1∏

i=0

Mi(yi−1yi|x).

Namely, the nodes in the shortest path are exactly
the labels returned by the Viterbi algorithm.

4.1. Solving General Shortest Path Problems
Using ILP

A general shortest path problem can be reduced to an
integer linear programming problem via the following
straightforward setting (Wolsey, 1998). Given a di-
rected graph G = (V,E), two different nodes s, t ∈ V ,
and the nonnegative cost cuv of each edge (u, v) ∈ E,
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Figure 1. The graph that represents the labels of the tokens
and the state transition (also known as the trellis in hidden
Markov models)

we are seeking a path from s to t with the mini-
mum cost. For each edge (u, v) ∈ E, we introduce
an indicator variable xuv. If (u, v) is in the minimum
cost (shortest) path, then xuv will be set to 1; oth-
erwise, it will be 0. The cost function is therefore∑

(u,v)∈E cuv · xuv.

For each node in the graph except s and t, the number
of inward edges in the path should be the same as the
number of the outward ones. To nodes s and t, the
differences of the numbers of inward edges and outward
edges should be -1 and 1 respectively. If we use V −(v)
to denote the nodes connected by the inward edges
of v, and V +(v) to denote the nodes connected by
the outward edges, then the complete (binary) integer
linear program is:

min
∑

(u,v)∈E

cuv · xuv

subject to:

∑

u∈V −(v)

xuv −
∑

w∈V +(v)

xvw = 0, ∀v ∈ V − {s, t}

∑

u∈V −(s)

xus −
∑

w∈V +(s)

xsw = −1

∑

u∈V −(t)

xut −
∑

w∈V +(t)

xtw = 1

xuv ∈ {0, 1}, ∀(u, v) ∈ E

This integer linear programming representation for the
shortest path problem can be solved directly by linear
programming. In other words, even when the inte-
ger constraints (i.e., xuv ∈ {0, 1},∀(u, v) ∈ E) are
dropped, the optimal LP solution is still an integral
solution. This is due to the theory of unimodularity.

Definition 1 (TU) A matrix A is totally unimodular

if the determinant of every square submatrix of A is
+1, -1, or 0.

Theorem 1 (Veinott & Dantzig) Let A be an
(m,n)-integral matrix with full row rank m. Then the

max
∑

0 ≤ i ≤ n − 1
0 ≤ y, y′ ≤ m − 1

log Mi(y, y
′) · xi,yy′

subject to:

∑

0≤y1≤m−1

xi−1,y1y −
∑

0≤y2≤m−1

xi,yy2
= 0,

for all i, y such that 0 ≤ i ≤ n − 1, 0 ≤ y ≤ m − 1.

∑

0≤y≤m−1

x−1,0y = 1 and

∑

0≤y≤m−1

xn,y0 = 1

x−1,0y, xi,y1y, xn,y0 ∈ {0, 1},

for all i, y1, y such that 0 ≤ i ≤ n − 1, 0 ≤ y1, y ≤ m − 1.

Figure 2. The integer linear program for solving the short-
est problem described in Fig. 1. The positions for the start

and end nodes are -1 and n. Variables x−1,0y and xn,y0 rep-
resent the special edges connecting the start and end nodes
respectively.

solution to the linear program max{cx : Ax ≤ b,x ∈
Rn

+} is integral for each integral vector b, if and only
if A is totally unimodular.

It can be shown that the coefficient matrix of the linear
program for the shortest path problem is totally uni-

modular (Wolsey, 1998). Therefore, solving it takes
only polynomial time using interior point algorithms
for linear programming.

4.2. Replacing Viterbi with ILP

Following the formulation used in the linear-chain
CRFs model, we can represent the corresponding
shortest path problem using the ILP representation in
Fig. 2. The power of this ILP formalism is its ability
to represent expressive constraints in the output space.
In fact, it is known that all possible Boolean functions
over the variables of interest can be represented as sets
of linear (in)equalities (Guéret et al., 2002); any con-
straint of interest can therefore be added to the basic
program shown above. To illustrate this expressivity,
we provide below a few detailed examples.

Example 1: In order to force the label of token i to
be 0, we can add the following constraint:

∑

0≤y≤m−1

xi,y0 = 1.

Example 2: Consider the “no duplicate segment”
constraint. We enforce it by making sure that a seg-
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ment by type a that ends never starts again. Assuming
label 0 means the O label in the IO representation, the
constraint on the token level can be described by the
following rule.

xi,ab, a 6= b, 0 ⇒ ¬xj,ya, i + 1 ≤ j ≤ n − 1.

The indicator variable xi,ab represents the antecedent,
and xi+1,ya ∧ · · · ∧ xn−1,ya for all labels y (i.e., 0 ≤
y ≤ m − 1) are the consequence. Since x = 1 − x

and the logic rule “x → x1 ∧ x2 ∧ · · · ∧ xn” can be
represented by the linear inequality “nx ≤

∑n

i=i xi”,
this constraint can be represented by the following set
of linear inequalities:

m(n − 1 − i)xi,ab ≤
∑

0 ≤ y ≤ m − 1
i + 1 ≤ j ≤ n − 1

1 − xj,ya,

for all i, a, b such that 1 ≤ i ≤ n − 2, 1 ≤ a ≤ m − 1,
0 ≤ b ≤ m − 1, and a 6= b.

Example 3: The constraint: “if label a appears,
then label b must also appear” can be represented us-
ing the following linear inequality.

∑

0≤y≤m−1

xi,ya ≤
∑

0 ≤ y ≤ m − 1
0 ≤ j ≤ n − 1

xj,yb

for all i such that 0 ≤ i ≤ n − 1.

Example 4: When a segment A of tokens share the
same label, then this constraint can be rephrased as “if
a token a ∈ A is assigned label l, then all the tokens
in A have to be l.” Assume A ranges from tokens p to
q. This constraint can be written as

vi,y =
∑

0≤y′≤m−1

xi,y′y, (q − p)vp,l ≤
∑

p+1≤i≤q

vi,l,

for all l s.t. 0 ≤ l ≤ m−1. vi,y is a new binary variable
that indicates whether token i is assigned label y.

Example 5: Finally, if we know that each sequence
must have at least one segment of interest (i.e., not
all tokens are the label O), this information can be
encoded as follows:

∑

0 ≤ i ≤ n − 1
0 ≤ y ≤ m − 1

xi,y0 ≤ n − 1

Note that all these constraints except the first one reg-
ulate the labels of distant tokens. This type of con-
straints cannot be satisfied by the Viterbi algorithm

through the trick of modifying matrix elements, but
can be easily represented in ILP. Although the new
matrix may not be, in general, totally unimodular,
and therefore linear programming relaxation does not
guarantee an integer solution, commercial numerical
packages usually solve this problem fairly efficiently
given the size of the problem in practice. This is due
the fact that despite the relatively large number of
variables and constraints in our application, the con-
straints matrix is very sparse. In addition, if the opti-
mal path in the original problem already satisfies the
new constraint, adding this constraint will not make
the problem harder.

We note that our work on this new inference procedure
is inspired by (Punyakanok et al., 2004), which has
shown that integer linear programming can be used
efficiently in the context of large scale NLP problems.
However, several differences in the formulation and
modeling make our inference procedure a significant
extension of previous work. In (Punyakanok et al.,
2004), only hard constraints are incorporated to con-
strain the labels taken by local variables. The objec-
tive function is the expected number of correct local
predictions, which is equivalent to the summation of
local variables’ conditional probabilities estimated by
the classifiers. In addition, since there is no graph that
describes the local constraints, the indicator variables
introduced represent only the values of each segment
variable rather than relations.

On the other hand, our inference procedure here pro-
vides an elegant way to augment CRFs with hard
constraints, where the local and sequential constraint
structure is still preserved. The objective function
here maximizes the probability of the output sequence
given the observation sequence. Moreover, indicator
variables are used to describe the edges in the graph,
and to facilitate the search of the shortest path, which
corresponds to the most probable assignment.

5. Experiments

We conducted experiments on the semantic role label-

ing (SRL) task. This is an important and difficult nat-
ural language problem that attempts to discover the
verb-argument structure for a given input sentence.
The semantic argument identified for each verb in a
given sentence may represent roles such as Agent, Pa-
tient or Instrument. We follow the definition of the
PropBank (Kingsbury & Palmer, 2002) project and
the CoNLL-2004 shared task definition (Carreras &
Màrquez, 2004). Propbank defines six different types
of arguments labelled as A0-A5 and AA, which have
different semantics for each verb (as specified in the
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I left my pearls to my daughter-in-law in my will .
I-A0 O I-A1 I-A1 I-A2 I-A2 I-A2 O O O O
A0 V A1 A2

Figure 3. The semantic role labels in the IO representation of an example sentence. The verb here is left.

PropBank Frame files) and a number of other types
of modifiers and adjuncts. Figure 3 shows the SRL
label sequence of the sentence, “ I left my pearls to my
daughter-in-law in my will.” Here A0 represents the
leaver, A1 represents the thing left and A2 represents
the benefactor. Among the full set of PropBank labels,
we only consider in the current experiments the core
arguments, namely Arg0, Arg1, ..., Arg5.

For each verb in a sentence, a semantic argument is a
segment of consecutive chunks (atomic phrases), and
no two arguments share the same label. Therefore, we
use the IO representation described in Sec. 3. The goal
is to assign each chunk with one of the following labels:
O, I-A0, I-A1, I-A2, I-A3, I-A4, and I-A5, as in Fig. 3.

Since the arguments of a given verb do not overlap, we
can easily cast the task as a sequence labeling problem.
To reduce the length of the sequence, we first trans-
form the data from the original word-based format to
a chunk-based format, as suggested by Hacioglu et al.
(2004). In this representation, the basic token is a
chunk, and its spelling and part-of-speech (POS) tag
are replaced by those of its head word.

The state features (features of each chunk) we choose
are a subset of features that are used in most SRL
systems (Carreras & Màrquez, 2004), which include:
word, pos, chunk type, verb’s pos, verb’s lemma form,
verb’s voice (active or passive), position (whether the
target chunk is before or after the verb), chunk path

(the chunk label sequence from the predicate to the
target chunk), clause path (the path from the verb to
the target chunk following clauses and chunks), posi-

tion relative to the verb (whether the target chunk and
verb are in the same clause), verb class, and named en-

tity. In addition, features word, pos, chunk type of the
neighboring chunks (with window size -2 to +2) are
also extracted. Other standard and transition features
used in the CRFs model include: edge (the current la-
bel and the previous label), start (whether the current
label can be a start state or not), and end (whether
the current label can be an end state or not).

The data we use is provided by the CoNLL-2004
shared task of semantic-role labeling (Carreras &
Màrquez, 2004), which is a subset of the PropBank
corpus. The training set covers sections 15-18 and the
testing set is section 20.

5.1. Applying General Constraints

We first observe the effect of applying general con-
straints in the proposed inference procedure for CRFs.
In this set of experiments, we train two basic CRF
models using the maximum log-likelihood approach
(Quasi-Newton optimization algorithm, LBFGS; with
Gaussian prior σ2 = 0.01) and the discriminative
method (based on voted perceptron, suggested by Sha
and Pereira (2003); Collins (2002))2. The number of
training iterations is 100 for both methods.

General constraints are not used in training but only
in evaluation. In particular, we would like to know
to what extent the additional constraints, which can-
not be modeled in the standard Viterbi inference, can
improve the SRL predictions. We incrementally add
the following constraints, modeled via the ILP based
inference procedure.

1. No duplicate argument labels: In the SRL
task, a verb in a sentence cannot have two argu-
ments of the same type.

2. Argument candidates: Following the heuristic
suggested by Gueret and Palmer (2004), we can
generate a candidate list with high recall but low
precision. Each candidate argument is a segment
of consecutive chunks. Although not every candi-
date is an argument of the target verb, each chunk
in the candidate has to be assigned the same la-
bel. This is an effective constraint that provides
argument-level information.

3. At least one argument: Since we know that
each verb in a sentence must have at least one
core argument, at least one chunk will be assigned
a label other than O.

4. Known verb position: Because the position of
the active verb in the sentence is given, this knowl-
edge can be added as one additional constraint –
for chunks that are the active verbs, we know in
advance that the labels are O.

5. Disallow arguments: Given a particular verb,
not every argument type is legitimate. The ar-
guments that a verb can take are defined in the
frame files in the PropBank corpus.

2We build our systems based on the CRF package de-
veloped by Sarawagi (2004).
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CRF-ML CRF-D
Rec Prec F1 Rec Prec F1

basic 62.53 70.91 66.46 66.64 71.83 69.14
1 + no dup 62.52 72.41 67.10 66.21 73.66 69.74
2 + candidate 65.61 79.23 71.78 68.64 79.44 73.64
3 + argument 66.54 77.76 71.71 69.42 78.57 73.71
4 + verb pos 66.56 77.75 71.72 69.52 78.59 73.78
5 + disallow 66.70 78.08 71.94 69.62 78.76 73.91

Table 1. The overall recall, precision, and F1 of two SRL
systems. Learning algorithms include: CRF-ML (maxi-
mum log-likelihood), CRF-D (discriminative).

Among the above constraints, only (4) and (5) can be
exploited by the constrained Viterbi algorithm. The
other constraints regulate the labels of distant tokens
without specifying which labels are not allowed or
must be assigned. Table 1 shows the performance in
recall, precision and F-measure. As is clearly shown in
the table, these general constraints improve the results
significantly, for both CRF training algorithms.

At this stage, our approach is able to acquire the
best global assignment y∗ = argmax p(y|x) and its
score using the current model parameters, but not the
marginal probability p(y|x), where y is the individual
token and x is the observation. While this implies
that our inference procedure cannot be incorporated
in the maximum log-likelihood training (CRF-ML),
it still allows us to interleave inference and training
in the discriminative method (CRF-D). Although the
training process is more time-consuming, the result
is not satisfactory. By adding all 5 additional con-
straints in both training and testing, the F-measure is
69.82% – about 4% lower than the basic CRF-D plus
inference with 5 constraints. One explanation is that
the inference-based training method may require more
training examples (Punyakanok et al., 2005).

5.2. Local Training and Inference

Given the significant impact of the post-learning in-
ference, we decided to evaluate also the approach of
decoupling learning and inference completely. That is,
a local multi-class classifier is trained to predict the
label of each token as one of O, I-A0, I-A1, I-A2, I-A3,
I-A4, and I-A5. During learning, it has no knowledge
of the sequential constraints nor the global hard con-
straints. Only at evaluation time the hard constraints
were incorporated through inference. The learning al-
gorithms we used are regularized versions of percep-
tron, winnow, voted perceptron and voted winnow3.

3We use the version implemented in SNoW (Carl-
son et al., 1999), which can be downloaded from
http://l2r.cs.uiuc.edu/ cogcomp/.

VP VW P W
basic 58.15 54.32 53.03 50.78

1 + no dup 64.33 61.87 60.59 59.13
2 + candidate 74.17 71.72 70.03 70.20
3 + argument 74.02 71.76 69.98 70.32
4 + verb pos 74.03 71.84 70.05 70.42
5 + disallow 74.49 72.04 70.36 70.67

Table 2. The overall F1 of SRL systems based on local
learning. Learning algorithms include: VP (voted percep-
tron), VW (voted winnow), P (perceptron), W (winnow).

The regularization is done through the idea similar
to margin perceptron. The weights are updated not
only when it makes mistake, but also when the points
lie within a certain distance (margin) from the hyper-
plane. The voted version of perceptron and winnow
outputs the averaged weight vector during training in-
stead of the final parameters.

Table 2 shows the performance of the local learn-
ing algorithms, with the effect of incorporating these
constraints incrementally listed in each following row.
One of the most interesting observations from the ex-
perimental results is the dramatic performance differ-
ence of the local learning approaches. The basic per-
formance of the four systems based on local training
(i.e., (voted) perceptron and (voted) winnow) is sig-
nificantly worse than the two CRF systems. This is
not surprising given that in CRFs, the information on
state transition is encoded as features and has direct
influence on the potential function. However, as more
constraints are added to the inference procedure, this
new information, available to these algorithms only at
evaluation time, boosts the performance of the systems
based on local learning, and shrinks the performance
gap. In fact, when all five constraints are incorporated
via the inference, locally trained voted perceptron gen-
erates the best performance among all systems. These
results are even more significant if we consider the
training efficiency of the different systems, shown in
Table 3. It is well known that global training is a time
consuming task, as is shown for the CRF entries in
the table. The essential reason is that inference needs
to be done multiple times. On the other hand, train-
ing local learning algorithms such as perceptron and
winnow can be done very efficiently. Local training
has other advantages from the perspective of modu-
larity, and there is no need to know the constraints at
training time. It is therefore important to realize, as
we show, that in the presence of general constraints,
global training and local training provide comparable
results. We investigate this issue more thoroughly in
a companion paper (Punyakanok et al., 2005).
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CRF-ML CRF-D CRF-D (IBT) VP VW
Time (hrs) 48 38 145 0.8 0.8

Table 3. The training time of different SRL systems in
hours. CRF-D (IBT) is the inference based training that
interleaves discriminative learning and our inference proce-
dure. A Xeon 2.6GHz machine with 6GB memory is used
for all the experiments. The number of features is 810,451.

6. Conclusions

Although the Viterbi inference algorithm used in
CRFs provides a good way to incorporate sequential
constraints in training structured output predictors,
its ability to incorporate additional general constraints
over the output space is limited. This paper has devel-
oped an enhanced inference procedure, in which gen-
eral constraint structure can be encoded at evaluation
time, and can be incorporated as part of the discrim-
inative training algorithm. We have shown that the
shortest path problem solved by the Viterbi algorithm
can be represented and solved through integer linear
programming. While for the standard shortest path
problem the corresponding integer linear program can
be solved efficiently by linear programming relaxation,
this formalism provides a natural and systematic way
to incorporate general constraints and solve them in
the same way. This novel inference method was tested
on an important sequence labeling problem – seman-
tic role labeling, exhibiting significant improvement by
adding constraints that the Viterbi algorithm cannot
take. In addition, we have discussed efficiency issues;
we observed that, sometimes, in the presence of struc-
ture on the output, enforcing the constraints only at
the evaluation time results in comparable performance
at a much lower cost.

Acknowledgments

We thank Vasin Punyakanok for valuable discussions
and the anonymous reviewers for their helpful com-
ments. We are also grateful to Dash Optimization for
the free academic use of Xpress-MP. This research is
supported by NFS grant ITR IIS-0085836, a DOI grant
under the Reflex program, and an ONR MURI Award.

References

Carlson, A., Cumby, C., Rosen, J., & Roth, D. (1999).
The SNoW learning architecture (Technical Report
UIUCDCS-R-99-2101). Dept. of CS, UIUC.
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