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ABSTRACT. Let a > 1 be a unit in a quadratic field. The integer part of

a™, denoted [an], is shown to be composite infinitely often. Provided a ^

(1 + \/5)/2, it is shown that the number of primes among [o], [a2], ■ ■ ■, [an] is

bounded by a function asymptotic to c ■ log2 n, with c = l/(21og2 ■ log3).

Let a > 1 be a unit in a quadratic field Q(\fD), with D > 1 a square-free

rational integer. It is known in some cases that the integer parts [an] of powers

of a (n = 1,2,3,... ) are composite infinitely often [1]. We show this in general,

the proof guaranteeing in fact that infinitely many of the [an] are divisible by [a].

(There is one exceptional case a = (1 + \/5)/2 wherein [a] = 1; here infinitely many

of the [an] are divisible by [a2] > 1.)

Define fa(x) to mean the number of n, 1 < n < x, for which [an] happens to be

prime. We derive a bound on fa(x) which is independent of both a and Q(\/~D)

(except that we require a ^ (1 + \/E)/2), namely

fa(x)<l + B(x),

where B(x) denotes here, and in what follows, the number of positive integers < x

of the form 2r3s, r > 0, s > 0.

HEURISTIC REMARK. As x —► oo the function 1+B(x) is asymptotic to clog2 x,

where c = l/(21og21og3). If one says "m is prime with probability 1/logm," then

[an] is prime with probability about \/n log a. Summing this for n < x we expect

~ (1/ log a) log x primes in the sequence [an], 1 < n < x. The latter function grows

more slowly than clog2 x, so in this sense the bound 1 + B(x) is not at odds with

probability.

We show first that for a with norm N(a) = —1, [a] divides [an] for all odd n.

This reduces us to the norm 1 case, in which we show that, if [an] is prime, then n

is of the form 2r3s (giving the above bound).

LEMMA 1. Suppose a > 1 is a unit of Q(\/~D) with D > 1 squarefree. Write tn

for [an], and let N(ß) denote the norm and ß' the conjugate of ß for ß any integer

ofQ(y/D).  Then:
(a) IfN(a) = 1, then tn = (an + a~n) - 1.

(b) IfN(a) = -l, then

j an — a~n, if n is odd,

n     \ (an + a~n) - 1,     if n is even.
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PROOF. N(a) = 1 means aa' — 1, so a' — a 1. Write a" in the form

(an +bn\/D)/2; then an and bn are rational integers, and we have an = an + a'n =

an + a~n, so that an = an — a~n. Since 0 < a~n < 1, part (a) follows.

Now assume N(a) = —1. Then aa' = —1 so a' — —a~1. Then an = an + a'n =

an + (-a-1)™ = a™ -I- (-l)"a-n. If n is odd, then from an = a" — a~n we have

an = an + a~n, and since 0 < a~n < 1, i„ = [an] = an = q" — a~™.

If n is even, then from an = an + a~n we conclude as in case (a) that t„ =
an + a~n-l.    D

LEMMA 2. Suppose N(a) = —1 and set tn = [an]. Then whenever m > n we

have the four following multiplication formulas for tmtn, depending on the parity of

m and n:

(a) m odd, n odd: tmtn = tm+n - im_„,

(b) m even, n odd: tmtn = tm+n - im_„ - tn,

(c) m odd, n even: tmtn = tm+n + im_n - tm,

(d) m even, n even: tmtn = tm+n + £TO_„ - tm - tn + 1.

Furthermore, in the case N(a) — 4-1, formula (d) holds (without the parity

restriction) for any m, n with m > n. In all the formulas to is allowed and is 1.

PROOF. Substitute for tm and tn their expressions from Lemma 1; the formulas

follow (after some algebra).

LEMMA 3. Suppose N(a) = —1 and tn = [an]. Then we have the congruences

(to the modulus ti):

j +1,    n even,

n= \0,       n odd.

PROOF. We have ¿o = 1, ¿i = 0. Apply Lemma 2 with n = 1. Then we only

use formulas (a) and (b), and to the modulus ti they both read

0 = ím+l — tm-i-

Therefore £2 = in — L t3 = ti = 0, and so on.

Note that (except when a = (1 + v/5)/2, when tx = 1), on considering when [an]

is composite where N(a) = — 1, the preceding lemma allows us to consider only

[a2], [a4],..., i.e. the sequence [/?"] = [a2n], where ß = a2 has norm +1. That

a = (1 + \/5)/2 is the only quadratic unit for which t\ = [a] = 1 follows easily from

4AT(a) = a2 - Db2.

LEMMA 4. Suppose N(ß) = +1 (ß > 1) and tn = [ßn]. Then we have the

congruences in the following table, to the modulus ti'.

n (mod6)      0    1 2        3        4    5

tn (mod ii)    10     -2     -3     -20

PROOF. In formula (d) of Lemma 2 (which applies here in all cases m> n) put

n — 1; to the modulus ¿i the formula reads

0 = £m+i + im-i — tm + 1,

which gives the tm (modii) recursively, producing the above table.    D
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COROLLARY.   Regardless of N(a), [a] divides [an] infinitely often.

If ají (1 + VE)/2, this [a] is > 1.

LEMMA 5. Suppose AT(7) = +1 (7 > 1) and set tn = [7™]. Then iftn is prime,

n is of the form 2r3s.

PROOF. First note that tx > 1 since N(i) = +1 precludes 7 = (1 + y/E)/2. It

follows that th > 1 for h > 1.

Suppose n is not of the form 2r3s. Then n has a factor 6fc + 5 or 6fc + 7 with

k > 0. Write n = h(6k + 5) or n = h(6k + 7), with h > 1. Then Lemma 4 with

ß = 7^ shows that tn is divisible by th, and 1 < th < tn so that tn is composite.    G

COROLLARY. If N(q) = +1 and f^(x) denotes the number of primes among

<i,i2,... ,tn with n — [x], then f^(x) < B(x).

THEOREM l. Suppose a>l(a^(l4- \/5)/2) is a unit in some quadratic field

Q(\fD), D > 1 squarefree.   With fa(x) as above, then

fa(x) <1 + B(x).

This bound is independent of a and Q(y/~D).
-

PROOF. First suppose N(a) = -1. Since a j¿ (1 + v5)/2, [a] > 1 and Lemma

3 imply that [an] is composite if n is odd and > 3.  fa(x) is then at most 1 + e,

where e is the number of primes among [a2], [a4],..., [a™ ] (where n' is either n

or n — 1).  By Corollary to Lemma 5 with 7 = a2, the latter number is at most

B(x/2) < B(x); the bound holds.

When N(a) =4-1, Corollary to Lemma 5 already gives the bound.    D

REMARK. Let a = (1 4- \/5)/2. If n is odd and composite, say n = nin2 with

n%, n2 odd and > 3, then [a™1] > 1 and Lemma 3 shows that [an] is divisible by

[a"1]. Hence among the odd powers only [ap] (with p an odd prime) can be primes.
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