
SIAM REVIEW c© 1999 Society for Industrial and Applied Mathematics
Vol. 41, No. 3, pp. 594–604

Integer Programming and
Conway’s Game of Life∗
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Abstract. This article presents integer programming formulations for finding interesting patterns in
Conway’s game of Life, with accompanying exercises and solutions.
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1. Introduction. In the late 1960s, John Horton Conway invented a one-player
game called Life. To begin the game, the player places checkers on some of the squares
of an infinite checkerboard. The player then follows a small set of simple rules to
create a new pattern of checkers from the current pattern. By applying the rules
again and again, the player produces a sequence of patterns. Often, these sequences
are both aesthetically pleasing and mathematically interesting. In 1970 and 1971,
Martin Gardner popularized Life by making it the subject of two columns in Scientific
American [3, 4]; see also [5]. Since then, a great number of individuals—some of them
professional mathematicians, and some of them amateurs—have contributed to an
understanding of the game [1, 2, 6, 7].

In this module, we explore the role that integer programming can play in the
search for interesting Life patterns. (See [8] for an introduction to integer program-
ming.) In sections 2 and 3, we describe the rules of Conway’s game, introduce some
terminology, give some examples, and present two integer programming formulations
of the maximum density still-life problem. Section 4 consists of exercises in modeling
with binary variables. Section 5 contains solutions.

This module has been used by the author in a course that provides junior and
senior mathematics majors with an introduction to linear optimization. The material
from sections 2 and 3 is presented in a single-period lecture. At the end of the lecture,
one or more problems from section 4 are assigned. Student response has been very
favorable. In fact, several students have gone on to pursue long-term independent
projects on integer programming and Life.

2. The Rules of the Game. The game of Life is a single-player board game. The
playing pieces are checkers, all the same color. The board is a checkerboard that
extends to infinity in each direction. We refer to the squares of the board as cells,
and we consider a cell to have eight neighbors: the eight cells that share one or two
corners with it. See Figure 1.
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Fig. 1

2.1. The Initialization Phase. To begin the game, the player constructs an initial
pattern, placing checkers in some of the cells of the board. Which cells receive a
checker and which ones don’t is entirely up to the player. We refer to a cell with a
checker in it as alive or living and a cell without one as dead.

The initialization phase is the only part of the game in which the player makes
any decisions.

2.2. The Main Phase. The player executes this phase over and over again. Each
time, the player follows the three simple rules listed below and produces a new pattern
from the current one.

• If a cell currently has exactly two living neighbors, then its state—living or
dead—must be the same in the new pattern as it is in the current pattern.
• If a cell currently has exactly three living neighbors, then it has to be alive

in the new pattern.
• If a cell currently has fewer than two, or more than three, living neighbors,

then it has to be dead in the new pattern.
We refer to these rules as the status-quo rule, the birth rule, and the death rule.
Note that the death rule is really two rules: a death-by-isolation rule and a death-by-
overcrowding rule.

We refer to the initial pattern as the t = 0 pattern, the pattern that results from
the first execution of the main phase as the t = 1 pattern, and so on. We say that a
cell is alive (dead) at t = i if it is alive (dead) in the t = i pattern.

2.3. Examples. In Figures 2, 3, and 4 (and in all subsequent figures that display
Life patterns), cells that contain solid circles are healthy (currently alive, and staying
alive), while cells that contain ringed circles are unhealthy (currently alive, but about
to die). Empty cells are of course dead. Cells that contain tiny dots are dead but are
about to become alive.

The Life object displayed in Figure 2 is a still life, a pattern that never changes.
At every time t, every living cell has two or three living neighbors, and every dead
cell has fewer than three or precisely six living neighbors. So every living cell stays
alive, and every dead cell remains dead.

The object displayed in Figure 3 is a period-2 oscillator. The even-time patterns
(the patterns at t = 0, t = 2, t = 4, and so on) are all identical, as are the odd-time
patterns. The object displayed in Figure 4 is a period-4 spaceship that “moves” one
row up and one column to the right every four time units.

3. Finding Dense Still Lifes. Recall that a still life is a Life pattern that never
changes. Each cell is either immortal or eternally dead. Suppose that we wish to
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find a maximum density still life that can be constructed inside a specified region. In
this section, we present two integer programs for solving this problem. We define the
density of a still life over a region to be the number of immortal cells in the still life
divided by the total number of cells in the region.

3.1. Variables. In order to construct a still life inside a region R, we must decide,
for each cell e in R, whether e will be immortal or eternally dead. We therefore let,
for each cell e in R,

xe =
{

1 if e is immortal,
0 if e is eternally dead.

3.2. Constraints. For each cell in R, we need to impose constraints that enforce
the death-by-isolation, death-by-overcrowding, and birth rules.

For still lifes, the death-by-isolation rule states that cells with fewer than two
immortal neighbors must be eternally dead, and the death-by-overcrowding rule states
that cells with more than three immortal neighbors must be eternally dead. It is very
easy to construct constraints that enforce these rules. If we define N(e) to be the set
of cells in R that are neighbors of e, then the inequalities

DI(e) 2xe −
∑

f∈N(e)

xf ≤ 0

and

DO(e) 3xe +
∑

f∈N(e)

xf ≤ 6

guarantee that the death-by-isolation and death-by-overcrowding rules hold at cell
e. Incidentally, the reason why the coefficient of xe is 3 and the right-hand side is
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6 in the death-by-overcrowding constraint (instead of 5 and 8, respectively) is that
if a cell e had more than six living neighbors at time t, then at least one of those
neighbors must have had more than three living neighbors at time t and therefore,
by the death-by-overcrowding rule, would be dead at time t+ 1. In other words, in a
still life, eternally dead cells can have no more than six immortal neighbors.

For still lifes, the birth rule states that cells with exactly three immortal neighbors
must be immortal too. The birth rule is harder to model than the death-by-isolation
and death-by-overcrowding rules. One approach involves using three constraints and
two auxiliary 0-1 variables to enforce the birth rule at a cell e:

B1(e)
∑

f∈N(e)

xf ≤ 2 + 4ae,

B2(e)
∑

f∈N(e)

xf ≥ 4− 4be,

and

B3(e) ae + be≤ 1 + xe.

Note that B1(e) forces the auxiliary variable ae to equal 1 when e has three or more
immortal neighbors, B2(e) forces the auxiliary variable be to equal 1 when e has three
or fewer immortal neighbors, and B3(e) forces xe to equal 1 when both ae and be
equal 1.

A second approach uses 56 constraints per cell but no auxiliary variables. Each
of these constraints prohibits exactly one of the

(8
3

)
= 56 different ways in which the

birth rule can be violated. Note that in order for the birth rule to be violated at cell
e, e must be eternally dead and have exactly three immortal neighbors, as in Figure 5.

To prohibit these violations of the birth rule, we impose constraints of the form

B′(e, S) −xe +
∑
f∈S

xf −
∑

f∈N(e)−S
xf ≤ 2,

where S is a 3-element subset of N(e). Note that B′(e, S) demands that if all three
of the cells in S (in Figure 5, the cells in the top row) are immortal, then so is e or at
least one of the cells in N(e)− S.

The only other constraints we need are for ensuring that the still life we construct
in R stays inside R. If e is a cell outside of R and has exactly three neighbors, f , g,
and h, that belong to R, then we must impose the “boundary” constraint

xf + xg + xh ≤ 2.

3.3. The Full Formulations. Our discussion of the variables and constraints
makes it clear that to find a maximum density still life that can be constructed in a
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Table 1

Formulation IP1 Formulation IP2
n Gap Nodes Iterations Seconds Nodes Iterations Seconds
4 1.88 215 847 0.4 38 280 0.3
5 0.50 125 969 0.4 1 107 0.2
6 3.61 168,212 1,344,178 734.6 1,758 19,037 48.2
7 1.67 1,950 35,545 18.4 172 3,662 13.5
8 2.44 ran out of memory 3,996 99,653 500.3
9 4.58 ran out of memory 232,450 4,000,071 33,1630.6

specified region R, we can solve one of the following two integer programs:

IP1 maximize
∑
e∈R

xe

subject to DI(e), DO(e) ∀e ∈ R,
B1(e), B2(e), B3(e) ∀e ∈ R,
boundary constraints for R,
xe, ae, be ∈ {0, 1} ∀e ∈ R,

or

IP2 maximize
∑
e∈R

xe

subject to DI(e), DO(e) ∀e ∈ R,
B′(e, S) ∀e ∈ R : ∀S ⊆ N(e) : |S| = 3,
boundary constraints for R,
xe ∈ {0, 1} ∀e ∈ R.

Note that IP1 has considerably fewer constraints than IP2 but three times the number
of variables.

3.4. Comparing the Formulations. We compared IP1 and IP2 on n×n regions.
To solve the integer programs, we used version 4.0.9 of CPLEX’s Mixed Integer Opti-
mizer. Each time, we set CPLEX’s lowercutoff parameter equal to dn2/2e. (By doing
so, we were instructing CPLEX to ignore all still lifes with density less than 1/2.) We
kept all other parameters at their default values.

Our results (summarized in Table 1) suggest that IP2 is a more easily solved
formulation than IP1. The 9 × 9 square was the largest square region R for which
IP2 was tractable; the 7 × 7 square was the largest for IP1. Moreover, IP2 required
fewer branch-and-bound nodes, fewer iterations of the simplex method, and less CPU
time on all regions tested. The superiority of IP2 might be surprising to readers who
have had little or no exposure to integer programming. After all, the two formulations
have the same “relaxation gap” (the difference between the optimal value of the linear
programming relaxation and the optimal value of the integer program), and IP1 has
considerably fewer constraints than IP2. But IP2 has two-thirds fewer variables than
IP1. The fact that IP2 has considerably fewer variables than IP1 is perhaps the main
reason for its better numerical performance.

But even with IP2, we were unable to solve anything larger than the 9×9 problem.
We did find some valid inequalities that, when added to IP2, enabled us to solve
the 10 × 10 problem. But even with these valid inequalities, we were unable to
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solve anything larger than the 10 × 10 problem. Some possible avenues for future
research include searching for strong valid inequalities for IP2, constructing specialized
algorithms for solving IP2, and developing and analyzing heuristics.

3.5. Comments and Figures. We conclude this section by presenting some fig-
ures. Figure 6 demonstrates that the constraints of IP2 can be displayed in a simple
tabular form. (Imagine that we lay one of these tables of numbers on top of R in
such a way that the nine cells of the table overlap nine cells of R. By doing this, we
are selecting nine cells of R and, consequently, nine variables of IP2. The selected
variables are the ones that appear in the constraint. Their coefficients are given by
the numbers in the table.) Note that the rightmost constraint in Figure 6 prohibits
the configuration displayed in Figure 5.

Figure 7 displays some maximum density still lifes that can be constructed in
square regions. As mentioned earlier, we found the 10 × 10 pattern by appending
some simple valid inequalities to IP2. Figure 8 displays some high-density still lifes
that have 90-degree rotational symmetry. They were obtained by solving a simple
modification of IP2.
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4. Exercises. Exercise 1. There are many variants of Life. In 3-4 Life, a cell is
alive in the new pattern if and only if it has three or four living neighbors in the current
pattern. Modify IP1 so that it could be used to find maximum density still lifes in
3-4 Life. (Figure 9 displays a maximum density 3-4 still life that can be constructed
in an 8× 8 region.)

Exercise 2. Modify IP2 so that it could be used to find maximum density still
lifes in 3-4 Life.

Exercise 3. Modify IP1 so that it could be used to find maximum average density
period-2 oscillators in Life. (Figure 10 displays a period-2 oscillator that can be
constructed in an 8× 8 region.)

Exercise 4. Modify IP2 so that it could be used to find maximum average density
period-2 oscillators in Life.

Exercise 5. Devise an integer program that could be used to find period-2 space-
ships that move to the left. Generalize this formulation so that it applies to period-m
spaceships that move to the left.

Exercise 6. Suppose that you encounter a person playing Life. This person shows
you his or her t = 1 pattern and asks you to determine the t = 0 pattern. See Figure
11. Of course, this is impossible. After all, there exist Garden-of-Eden patterns
that have no immediate predecessors. And any pattern that isn’t a Garden-of-Eden
pattern has an infinite number of immediate predecessors. So suppose that you wish
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to find, amongst all patterns that could have been the t = 0 pattern, a pattern with
the fewest number of living cells. Formulate this problem as an integer program.

5. Solutions. Solution to Exercise 1. To enforce the rules of 3-4 Life at cell e,
include the constraints

3xe −
∑

f∈N(e)

xf ≤ 0,

4xe +
∑

f∈N(e)

xf ≤ 8,

∑
f∈N(e)

xf ≤ 2 + 6ae,

∑
f∈N(e)

xf ≥ 5− 5be,

and
ae + be ≤ 1 + xe.

The first two constraints enforce the death rules. The third forces ae to equal 1 when
e has three or more immortal neighbors, and the fourth forces be to equal 1 when e
has four or fewer immortal neighbors. The fifth constraint forces xe to equal 1 when
both ae and be equal 1.
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Solution to Exercise 2. To enforce the birth rule of 3-4 Life without using auxiliary
variables, include the constraints

−2xe +
∑
f∈S

xf − 2
∑

f∈N(e)−S
xf ≤ 2 ∀S ⊆ N(e) : |S| = 4.

Solution to Exercise 3. For each cell e in R and for each time t ∈ {0, 1}, let

xe,t =
{

1 if e is alive at time t,
0 if e is dead at time t.

To enforce the death rules at cell e during the transition from the t = 0 pattern to
the t = 1 pattern, include the constraints

2xe,1 −
∑

f∈N(e)

xf,0 ≤ 0

and
5xe,1 +

∑
f∈N(e)

xf,0 ≤ 8.

(Similar constraints are needed for the transition from the t = 1 pattern to the t = 0
pattern.) To enforce the birth rule at cell e during the transition from the t = 0 pattern
to the t = 1 pattern, introduce auxiliary 0-1 variables ae,0 and be,0 and include the
constraints ∑

f∈N(e)

xf,0 ≤ 2 + 6ae,0,

∑
f∈N(e)

xf,0 ≥ 4− 4be,0,

and
ae,0 + be,0 ≤ 1 + xe,1.

Finally, to enforce the status-quo rule at cell e during the t = 0–to–t = 1 transition,
introduce auxiliary 0-1 variables ce,0 and de,0 and include the constraints∑

f∈N(e)

xf,0 ≤ 1 + 7ce,0,

∑
f∈N(e)

xf,0 ≥ 3− 3de,0,

ce,0 + de,0 + xe,0 ≤ 2 + xe,1,

and
ce,0 + de,0 + xe,1 ≤ 2 + xe,0.

Note that ce,0 equals 1 when e has two or more living neighbors at t = 0, that de,0
equals 1 when e has two or fewer living neighbors at t = 0, and that xe,0 = xe,1 when
both ce,0 and de,0 equal 1.

Solution to Exercise 4. Here, to enforce the birth rule at cell e for the t = 0–to–
t = 1 transition, include the constraints

−xe,1 +
∑
f∈S

xf,0 −
∑

f∈N(e)−S
xf,0 ≤ 2 ∀S ⊆ N(e) : |S| = 3.
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To enforce the status-quo rule at cell e during this transition, include the constraints

3xe,1 − xe,0 −
∑

f∈N(e)

xf,0 ≤ 0

and
−xe,1 + xe,0 +

∑
f∈S

xf,0 −
∑

f∈N(e)−S
xf,0 ≤ 2 ∀S ⊆ N(e) : |S| = 2.

Note that the first of these status-quo constraints prohibits all configurations in which
cell e is dead at t = 0, has two (or fewer) living neighbors at t = 0, and is alive at
t = 1. The remaining constraints prohibit all configurations in which cell e is alive at
t = 0, has exactly two living neighbors at t = 0, and is dead at t = 1.

Note that the modifications of IP1 and IP2 presented above do not rule out still
lifes. In fact, in every case we tested, the optimal solution was a still life, not a
period-2 oscillator. One solution to this problem is to pick a cell e1 and force it to
“blink” by fixing xe1,0 = 1 and xe1,1 = 0. By forcing different cells to blink, we can
obtain different oscillators.

Solution to Exercise 5. Suppose we want to find a period-2 spaceship that moves
to the left. Let r(e) denote the cell to the right of cell e. Consider the IP2-based
formulation for finding period-2 oscillators. Leave the constraints for the t = 0–to–
t = 1 transition unchanged. In each constraint for the t = 1–to–t = 0 transition,
replace the variable xe,0 with xr(e),0.

Solution to Exercise 6. Let A stand for the set of cells that are alive at t = 1, and
let D stand for the set of cells that are dead at t = 1. Let xe equal 1 if e is alive at
t = 0 and 0 otherwise. Then we can find a smallest immediate predecessor by solving
the following integer program:

min
∑
e

xe

s.t.
∑

f∈N(e)

xf ≤ 3 ∀e ∈ A,

xe +
∑

f∈N(e)

xf ≥ 3 ∀e ∈ A,
∑
f∈S

xf −
∑

f∈N(e)−S
xf ≤ 2 ∀e ∈ D : ∀S ⊆ N(e) : |S| = 3,

2xe + 2
∑
f∈S

xf −
∑

f∈N(e)−S
xf ≤ 4 ∀e ∈ D : ∀S ⊆ N(e) : |S| = 2,

xe ∈ {0, 1} ∀e ∈ A ∪D.
The first two sets of inequalities, taken together, guarantee that all of the cells that
are supposed to be alive at t = 1 are in fact alive then. To see why, let e be a cell
that is alive at t = 1. Note that the inequality∑

f∈N(e)

xf ≤ 3

ensures that e has at most three living neighbors at t = 0, while the inequality

xe +
∑

f∈N(e)

xf ≥ 3
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ensures that if e is alive at t = 0, then e has at least two living neighbors at t = 0,
and that if e is dead at t = 0, then e has at least three living neighbors. By taking
the two inequalities together, we come to two conclusions: (1) if e is alive at t = 0,
then e has either two or three living neighbors at t = 0, and (2) if e is dead at t = 0,
then e has exactly three living neighbors at t = 0.

The third and fourth sets of inequalities play a similar role, but for the cells that
are supposed to be dead at t = 1. To see why, let e be a cell that is dead at t = 1. Note
that if e1, e2, and e3 are the only living neighbors of e at t = 0, then the inequality∑

f∈S
xf −

∑
f∈N(e)−S

xf ≤ 2,

with S = {e1, e2, e3}, is violated. Also note that if e is alive at t = 0 and e1 and e2
are the only living neighbors of e at t = 0, then the inequality

2xe + 2
∑
f∈S

xf −
∑

f∈N(e)−S
xf ≤ 4,

with S = {e1, e2}, is violated.
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