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Abstract. The problem of finding structures with minimum stabbing
number has received considerable attention from researchers. Particu-
larly, [10] study the minimum stabbing number of perfect matchings
(mspm), spanning trees (msst) and triangulations (mstr) associated to
set of points in the plane. The complexity of the mstr remains open
whilst the other two are known to be NP-hard. This paper presents
integer programming (ip) formulations for these three problems, that
allowed us to solve them to optimality through ip branch-and-bound
(b&b) or branch-and-cut (b&c) algorithms. Moreover, these models
are the basis for the development of Lagrangian heuristics. Computa-
tional tests were conducted with instances taken from the literature
where the performance of the Lagrangian heuristics were compared
with that of the exact b&b and b&c algorithms. The results reveal
that the Lagrangian heuristics yield solutions with minute, and often
null, duality gaps for instances with several hundreds of points in small
computation times. To our knowledge, this is the first computational
study ever reported in which these three stabbing problems are consid-
ered and where provably optimal solutions are given.
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Figure 1. A triangulation with general (axis parallel) stabbing number 14 (9).

1. Introduction

Given a set of points P in the plane, the geometric graph associated to P is
the graph G(P ) = (V, E) whose vertices are the points in P and whose edges are
the straight line segments with both extremities in P . The stabbing number of a
line � passing through a geometric (sub)graph G(P ) = (V, E) is defined as the
number of edges in E having a non-empty intersection with �. Given a set L of
straight lines, the stabbing number of a (sub)graph G(P ) = (V, E) is the maximum
number of intersections between any line in L and the edges in E. The problem
of finding a structure with minimum stabbing number can be defined for any kind
of structure, e.g. Perfect Matchings, Spanning Trees, Triangulations etc. So, for
example, the problem of finding the Minimum Stabbing Perfect Matching (mspm)
can be described as follows: given a set of points P , and a set of straight lines
L, find a perfect matching in the geometric graph G(P ), among every possible
perfect matchings in G(P ), having a stabbing number with minimum value. Two
versions of the problem are presented in [9,10] and are related to the choice of the
set L. In the first version, here referred as the general stabbing one, L is defined as
the infinite set formed by all straight lines that can be drawn in the plane. In the
axis parallel version, L is the, also infinite, set composed solely by the vertical and
horizontal lines in the plane. Figure 1 illustrates the two versions of the problem
with a triangulation of stabbing numbers 14 and 9, respectively.

Motivation. Stabbing problems have received considerably attention in the Com-
putational Geometry community. In 2001 Mitchell and O’Rourke published a list
with thirty open problems in the field [16], given rise to The Open Problems
Project [6], containing a list of geometric problems whose complexity, at that time,
was unknown. The list, which is constantly updated, is an invaluable source of chal-
lenging problems in Computational Geometry. In [9, 10] general and axis parallel
versions of the Minimum Stabbing Perfect Matching (mspm), Minimum Stabbing
Spanning Tree (msst) – problem #20 of the aforementioned list – and Minimum
Stabbing Triangulation (mstr) were discussed. For the first two problems approx-
imation algorithms were presented and NP-hardness proofs were given for both
versions of the problems. Computational results are presented for the mspm. The
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complexity status of mstr could not be established and no algorithms were de-
veloped or tested to solve it. Heuristics for the spanning tree, perfect matching
and triangulation stabbing problems were investigated in [17]. These heuristics
are mostly based on greedy and divide-and-conquer techniques. Contrarily to the
Lagrangian heuristics proposed here, they are not able to provide the duality
gap associated to the solution they yield. In [17] the limited amount of informa-
tion about computational experiments refers exclusively to the spanning tree case.
Other works related to finding geometric structures with minimum or low stabbing
number include [1, 4, 24, 26].

Our contribution. This paper presents two ip formulations for the mstr based
on the ideas described in [9, 10, 20] and one formulation for the msst which ex-
plores the results given in [9, 10, 15]. Later, these formulations and a variation of
the one described in [9, 10] for the mspm are used to implement exact branch-
and-bound (b&b) and branch-and-cut (b&c) algorithms for the corresponding
problems, which allowed, for the first time in the literature, to obtain solutions
with proven optimality. Besides, Lagrangian relaxation (lr) heuristics based on
the ip models for the three problems are presented and appropriate subgradient
methods are implemented. Computational results obtained by the Lagrangian al-
gorithms are reported with instances taken from the literature and reveal that
optimality or minute duality gaps are achieved in small computation times.

In the triangulation case, it was of paramount importance the realization of
the relation existing between the Minimum Weight Triangulation (mwt) and the
mstr. This led to the development of strong ip models for the latter and also
to the usage of effective algorithms to solve the mwt. As we will see later, such
algorithms play an important role in our Lagrangian heuristic for mstr.

Before continuing, we must observe that an early version of this paper appeared
in the Proceedings of ISCO 2012 [22]. Thus, this work is to be seen as an extended
and more complete version of that previous work.

Organization of the text. The remaining of this document is organized as fol-
lows. Section 2 presents ip models for the problems studied. Section 3 describes
how to derive a lr heuristic for the problems from the ip models, whilst in Sec-
tion 4 we present our computational results. At last, in Section 5 we draw some
conclusions and indicate future research directions to be pursued.

2. Integer programming models

In the current section we present ip models for the three problems under con-
sideration in this paper, where the model for the mspm is extracted from [9, 10]
and the models for the msst and mstr are based on the ideas presented in those
papers. The formulations described here will be used in the implementation of
exact b&b and b&c algorithms. Also, in Section 3, we show how to obtain lrs
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for each problem using the models introduced in this section, and use them to
produce primal and dual bounds for the true optimum.

Stabbing Perfect Matchings. We first present the model for the mspm. We are
given the sets P and L of points and stabbing lines, respectively, and E denotes
the set of edges of the geometric graph G(P ). Variable k denotes the stabbing
number and, therefore, must be minimized. Variable xij is set to 1 when the edge
ij is in the solution and 0 otherwise.:

(MSPM) z = min k (2.1)

subject to ∑
ij∈E

xij = 1, ∀ i ∈ P, (2.2)

∑
ij∈E:i,j∈S

xij ≤ (|S| − 1)/2, ∀ S ⊂ P, |S| odd, (2.3)

∑
ij∈E:ij

⋂
s�=∅

xij ≤ k, ∀ s ∈ L, (2.4)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (2.5)

In this formulation, constraints (2.2) and (2.3) guarantee that the solution is a
perfect matching. The first enforces each vertex to have degree one and the second
– although, satisfied by any integral solution and, therefore, not strictly necessary
for the correctness of the model – strengthens the linear relaxation, as proved by
Edmonds [8]. The third class of inequalities is formed by the stabbing inequalities
and they state that the sum of the variables corresponding to the edges intersecting
a given line s ∈ L must always be smaller or equal to the stabbing number, k.
Notice that, as observed in [9,10], in principle, this formulation in not finite since
there are infinitely many stabbing lines. However, considering the axis parallel
version, when sweeping a stabbing line in a direction d, the stabbing number only
changes at a point of P . For this reason, we only need to look at a linear number of
stabbing lines, thus, making the model finite. Following a similar reasoning, when
considering the general version, we only need to look at a quadratic number of
lines, namely, those defined by each pair of points in P .

Stabbing Spanning Trees. There are a number of known ip formulations for the
Minimum Spanning Tree Problem (mst), including some that define the convex
hull of the points corresponding to integer solutions. So, in order to decide which
one should be used to build a formulation for the msst, we first implemented
three of the strongest formulations described in [15] for the mst. After a few
computational tests, we observed that the directed cut formulation had the best
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practical performance compared to the other alternatives. Hence, we decide to use
this model as the basis for our msst formulation described below.

Consider a digraph D = (P, A), where A is the set of arcs connecting each pair
of vertices in P , i.e., for each edge ij ∈ E there is a pair of arcs (i, j) and (j, i).
We arbitrarily set a vertex r as the root of the tree. The notation δ+(C) refers to
the cutset directed out of vertex set C and δ−(C) to the cutset directed into the
vertex set C. The variable yij = 1 if the tree contains arc (i, j) when rooted at
r and xij = 1 if one of the arcs (i, j) or (j, i) is in the tree with r as root. The
relationship between y and x variables is established by constraint (2.9).

(MSST ) z = min k (2.6)

subject to
∑

(i,j)∈δ+(C)

yij ≥ 1, ∀ C ⊂ V with r ∈ C (2.7)

∑
ij∈A

yij = |P | − 1, (2.8)

yij + yji = xij , ∀ij ∈ E (2.9)

∑
ij∈E:ij

⋂
s�=∅

xij ≤ k, ∀ s ∈ L. (2.10)

yij ∈ B ∀(i, j) ∈ A (2.11)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (2.12)

As before, part of the formulation is composed by a set of con-
straints ((2.7)−(2.9)) ensuring that the resulting solution is a geometric subgraph
of the required type, in this case a spanning tree. The remaining constraints
are stabbing inequalities (2.10), which have the same meaning as before. Con-
straint (2.8) guarantees that the solution has |P |−1 arcs, as required in a directed
spanning tree. Finally, constraints (2.7) enforces that the solution is a directed
connected graph.

Stabbing Triangulations. Next, the ideas used in the models above and the
ip models for the mwt that can be found in [20] form the point of departure to
build the Edge and Triangle Stabbing models for the mstr. The first of these two
models is simpler and, for this reason, easier to use in a Lagrangian Relaxation
algorithm. The second, although more complicated, provides better bounds and,
therefore, was used in a exact b&b algorithm.

In the Edge Stabbing model (MSTE), PH is the set of vertices on the convex
hull of P ; a crossing set (Cr) is defined as a maximal set of edges which are
pairwise intersecting (endpoints excluded); the set of all crossing sets in G(P ) is
denoted by SCr; for an edge pq ∈ E, Cr(pq) denotes the set of edges intersecting
pq (again with endpoints excluded) plus pq itself; the rest of the notation stands
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for the same as before. For every ij ∈ E, xij = 1 if and only if the edge ij is in
the triangulation. The variable k, once again, denotes the stabbing number. Then,
the Edge Stabbing Model reads:

(MSTE) z = min k (2.13)

subject to
∑
ij∈E

xij = 3|P | − |PH | − 3, (2.14)

∑
ij∈Cr

xij ≤ 1, ∀ Cr ∈ SCr, (2.15)

∑
ij∈Cr(pq)

xij ≥ 1, ∀ pq ∈ E, (2.16)

∑
ij∈E:ij

⋂
s�=∅

xij ≤ k, ∀ s ∈ L, (2.17)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (2.18)

In this model, (2.14) guarantees that the solution has the right number of edges
required for a triangulation of P . Constraint (2.15) states that only one edge in
a crossing set can be in the solution, thus, ensuring planarity. Constraint (2.16)
states that, either pq or at least one of the edges in Cr(pq) must be in the solution,
therefore, enforcing maximality (recall that a triangulation is a maximal planar
subgraph of G(P )). It is noteworthy that constraint (2.16) is not strictly necessary
for the formulation. However, as observed in [20], it greatly enhances the compu-
tational performance of the ip algorithms. Constraint (2.17) states that, for each
stabbing line s in L, the number of edges from triangulation that intersect s is
bounded from above by the stabbing number.

Another way to represent a triangulation using ip is to assign variables to the set
of triangles with vertices in P . This idea was discussed in [5,20], where it was shown
that the dual bounds generated by the relaxation of the resulting ip dominate those
produced by the previous formulation on edge variables. In the description of the
Triangle Stabbing Model below, Δ(P ) is the set of empty triangles over P , i.e.,
triangles that do not contain any point P in their interior; L+(ij) and L−(ij) are
the two half-planes defined by the line containing ij; EH is the set of edges on the
convex hull of P . For every triangle ijl ∈ Δ(P ), xijl = 1 if and only if the triangle
ijl is in the triangulation. The variable k has the same meaning as in the previous
models.

(MSTT) z = min k (2.19)

subject to
∑

ijl∈Δ(P ) :

ijl⊂L+(ij)

xijl =
∑

ijl∈Δ(P ) :

ijl⊂L−(ij)

xijl, ∀ij ∈ E \ EH , (2.20)

∑
ijl∈Δ(P )

xijl = 1, ∀ ij ∈ EH , (2.21)

∑
ijl∈Δ(P ):ijl

⋂
s�=∅

cs
ijlxijl ≤ k, ∀ s ∈ L. (2.22)

k ∈ Z, xijl ∈ B ∀ ijl ∈ Δ(P ). (2.23)
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In the model above, constraint (2.20) states that the number of triangles con-
taining an edge ij (which is not in EH) must be the same in both half-planes
defined by the line containing ij. As the edges in EH are present in every planar
triangulation, constraint (2.21) ensures that a triangle containing one such edge is
in the triangulation. Constraint (2.22) states that the sum of the coefficients cs

ijl

of the triangles ijl intersecting a line s of L can not be larger than the stabbing
number. A triangle ijl intersecting a line s has coefficient cs

ijl = βs
ij + βs

il + βs
jl,

where βs
ij = 1 if ij intersects s and is on the convex hull, βs

ij = 0.5 if ij intersects
s but is not on the convex hull and βs

ij = 0 if ij does not intersect s.
Later we will see that both models presented in this section for the mstr are

used in our implementations: (MSTT) in the b&b (exact) algorithm and (MSTE)
in the Lagrangian heuristic.

3. Lagrangian relaxation

Using the ip formulations from the previous section, we now derive Lagrangian
relaxation (lr) models for the three stabbing problems. We solve the dual of this
relaxation via the subgradient method (sgm), which allows us to obtain a lower
bound for the optimal value of the problems. Besides, at each iteration of the sgm,
we compute the primal Lagrangian problem whose solution is a minimum perfect
matching, spanning tree and triangulation, respectively for the mspm, msst and
mstr, and, thus, can be used to obtain upper bounds for these problems. For the
basic theory of Lagrangian relaxation the reader is referred to [27].

The presentation of our lr is based on a model for a generic stabbing problem
(STAB), presented below. This model is composed by the generic constraints (3.2)
that define the form of the subgraph of G(P ) to be found (in our case either a
perfect matching, a spanning tree or a triangulation) and the constraints (3.3)
which define that the stabbing number of the subgraph is greater than or equal to
the stabbing number of any line.

(STAB) z = min k (3.1)

subject to

Ax ≤ B, (3.2)∑
ij∈E:ij

⋂
s�=∅

xij ≤ k, ∀ s ∈ L, (3.3)

k ∈ Z, xij ∈ B ∀ ij ∈ E. (3.4)

To obtain the lr (STAB(u)) of problem (STAB) we simply dualize the con-
straints (3.3), penalizing them in the objective function. This operation results in
the following model for the Lagrangian primal problem:
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(STAB(u)) z(u) = min k −
∑
s∈L

us

⎛
⎝k −

∑
ij∈E:ij

⋂
s�=∅

xij

⎞
⎠ (3.5)

subject to

Ax ≤ B, (3.6)

k ∈ Z+, xij ∈ B ∀ ij ∈ E. (3.7)

Notice that the constraints (3.2) that remain in the model are those that define
the subgraphs of interest. Also, since the constraints being dualized are in the
“≤” form, us is non-negative for all s ∈ L. As a consequence, the Lagrangian
primal problem is equivalent to the problem of finding one such subgraph having
minimum weight (the weight of the subgraph being defined as the sum of its edge
weights). In the Lagrangian case, the weight of edge ij is given by

cij =
∑

s∈L:s
⋂

ij �=∅
us. (3.8)

From the Lagrangian theory, we know that whenever the primal problem can
be solved in polynomial time, as is the case for the mspm and msst, we are able to
obtain a dual bound for the original problem in short computation times. However,
when the primal problem is NP-hard, one may wonder if the relaxation is useful
after all. This is precisely the situation with the mstr since the mwt was proven
to be NP-hard in [19]. However, as we shall see later in Section 4, there are highly
effective algorithms to compute large subsets of optimal mwt solutions. As a result,
one can expect to solve instances of the mwt with several hundreds of points very
quickly. Our approach relies on this observation and the results reported in this
paper confirmed our expectations.

Now, as (STAB(u)) is a relaxation of (STAB), we know that z(u) ≤ z and,
since we want to find the best possible bound, we must find the value of u that
maximizes z(u), i.e., we must solve the Lagrangian dual problem given by

(DL) vDL = max{z(u) : u ≥ 0}. (3.9)

Problem (DL) can be solved using the sgm as described in [2,27]. To this end, the
multipliers us are initialized with null values and are updated at iteration t by the
formula:

ut
s = max(0, ut−1

s − μGt−1
s ). (3.10)

with μ given by

μ =
π(dist × ub − lb)∑

s∈L(Gt−1
s )2

, (3.11)

and Gt−1
s , the sth component of the subgradient of z(u) in ut−1, given by

Gt−1
s = k −

∑
ij∈E:ij

⋂
s�=∅

x(ut−1)ij . (3.12)
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In the formulas above, ub and lb are, respectively, an upper and a lower bound
for the optimal value, dist is a perturbation factor (arbitrarily set to 1.05 in our
experiments) and π is the step size (in our experiments initialized at 2 and halved
every 30 iterations without improvement in the lower bound). The solution of
the Lagrangian primal problem is denoted by x(u) and the superscripts indicate
the iteration at which each variable is been considered (e.g., ut is the Lagrangian
multipliers vector at iteration t).

Now, notice that, after dualizing constraints (3.3), the objective function of
(STAB(u)) can be rewritten as:

z(u) = min k

(
1 −

∑
s∈L

us

)
+
∑
ij∈E

xij

∑
s∈L:s

⋂
ij �=∅

us. (3.13)

Therefore, if
∑

s∈L us > 1, the first term of that equation would have a negative
value and, hence, the larger the value of k, the smaller the value of z(u). As a
result, when optimizing the (primal) Lagrangian problem, if the cost of variable
k is negative, the lower bound z(u) is unlimited and hence useless. Analogously,
if the cost of k is non negative, the obvious solution is to set k to zero. However,
by doing so, we may waste the opportunity to produce a better dual bound for z.
To overcome these situations, we proceed in the following way. In the solution
of (STAB(u)), k is set, respectively, to the best upper (ub) or lower (lb) bound
available for z depending on whether its cost is negative or not. In fact, in our
implementation, when the cost is non negative, k is set to �lb�/2 rather than to
lb to avoid an early convergence of the sgm. This tends to increase the number of
iterations of the method, augmenting the chances of the Lagrangian heuristic to
obtain a better feasible solution.

Notice that the dual bound obtained by setting k to �lb�/2 or ub, depending
on whether (1−∑s∈L us) is negative or non-negative, is valid. This is so because
the model for the primal Lagrangian problem remains correct if the constraint
requiring that k belongs to Z+ is replaced by one that forces k to be in an interval
between proper lower and upper bounds. It turns out that �lb�/2 and ub are,
respectively, valid lower and upper bounds for k, ensuring the correctness of the
computation of the dual bounds for z(u).

The termination criteria implemented in our sgm are achieved when one of the
following situations occur: the difference between the upper and lower bounds is
smaller than 1 (one), the value of π is smaller than 0.005, or yet, a predefined time
limit is reached.

Lagrangian Heuristic. Each iteration of the sgm solves a minimum weight prob-
lem (a mwpm, a mst, or a mwt, whichever is the case). The solution of this prob-
lem is a subgraph of G(P ) satisfying the property of interest (i.e., it is a perfect
matching, a spanning tree, or a triangulation) and, therefore, is also feasible for the
original stabbing problem. Thus, an upper (primal) bound for the optimal value
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i

j

k

l

i

jk l

Figure 2. In both cases ij is locally minimum with respect to
the quadrilateral ijkl.

of the stabbing problem can be immediately obtained by computing the stabbing
number of this subgraph.

Solving the Lagrangian Primal. For the mstr, (STAB(u)) corresponds to a
mwt. As cited before, the mwt is known to be NP-hard but there are algorithms
to find subsets of optimal solutions. One of these algorithms is the one to find a
Locally Minimum Triangulation Skeleton (lmt-skeleton) [3, 7]. This algorithm is
based on the local minimality property of line segments (edges).

Given a planar triangulation T , let ij be an edge of T that is not in the convex
hull. Then, ij must be the side of two empty triangles ijk and ijl in T . These
two triangles together form a quadrilateral ijkl having ij and kl as its diagonals.
We say that ij is locally minimum with respect to ijkl if this quadrilateral is
not convex or, else, if the weight of ij is smaller than the weight of kl. Figure 2
illustrates this definition. If for any pair of points {k, l} in P −{i, j} the edge ij is
locally minimum with respect to the quadrilateral ijkl, then ij is said to be locally
minimum. When all the edges in a planar triangulation are locally minimum, we
say that the triangulation itself is locally minimum. Clearly, any minimum weight
triangulation is locally minimum. However, not all locally minimum triangulations
have minimum weight. The lmt-skeleton is the subset of edges that are present in
every locally minimum triangulation and, thus, is also a subset of any minimum
weight triangulation.

In [7] the authors proposed a polynomial algorithm to find a lmt-skeleton and
in [3] the algorithm was improved. The computational experiments performed with
these algorithms showed that, together with a dynamic programming algorithm
to find a mwt for convex polygons, it was capable to find the mwt of instances
with thousands of points in quite small running times. The source code for this
last algorithm written by Mulzer is available online at [18].

Therefore, we can make use of the lmt-skeleton algorithm to solve the
Lagrangian Primal Problem through the following steps. First we determine three
subsets Tm, Tp and Tf of edges which, respectively, are mandatory (the locally
minimum ones), forbidden (those intersected by an edge in Tm) and uncertain
(the remaining edges) in a optimal solution, using a lmt-skeleton algorithm [3,7].
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Then, we are left with a constrained mwt problem where all edges of Tm are
forced to be in the solution, the ones in Tf are eliminated from the solution and
those in Tp are the ones for which we have to make a decision. Typically, after
fixing the appropriate variables to one or zero, the size of the mwt models reduces
dramatically. This renders the usage of an ip solver to compute the model via a
standard b&b algorithm a viable option, even for instances containing hundreds
of points. Later we will see that this procedure is capable to solve the Lagrangian
primal problems for mstr in an extremely effective fashion in practice.

To conclude this section, we recall that the Lagrangian primal problems for the
mspm and msst are, respectively, the mwpm and the mst. To solve the first one we
use the Blossom V algorithm described in [14], whose source code is publicly avail-
able. The mst problem is solved by a simple implementation of Prim’s algorithm,
which can be found in several textbooks on Algorithms.

4. Computational results

We now describe the experiments we carried out to test the performance of
the algorithms discussed in the previous sections. As mentioned earlier, we im-
plemented exact b&c algorithms for the mspm and msst. An implementation of
an exact b&b algorithm for the mstr was also done. All these exact algorithms
were based on the ip models discussed in Section 2. We also implemented lr algo-
rithms for all the models using the ideas discussed in Section 3. All the experiments
described in this section consider the axis parallel version of the problem.

Computational Environment. To perform the experiments, we used a com-
puter with an Intel Core 2 Quad 1.60GHz, 4096 KB cache, 4GB of RAM memory
and a Ubuntu 10.04.4 OS. The programming language used was C/C++ with gcc
4.4.3 compiler and every program was compiled with -O5 optimization flag. We
also used the XPRESS-Optimizer 64-bit v22.01.09 ip solver. The default cuts,
heuristics and preprocessing were turned off. Also, the optimizer was set to use a
single processor core.

4.1. mspm Experiments

In order to evaluate the performance of our algorithms for the mspm, we ex-
ecuted experiments with both, the exact b&c algorithm and the lr algorithm
and then we tried to compare the results, although this kind of comparison is
sometimes tricky, since the algorithms are different in nature.

For the exact b&c algorithm the model was initially loaded using only the degree
inequalities (2.2) and stabbing inequalities (2.4). The heuristic proposed in [12] was
implemented to separate violated inequalities (2.3). Only when the heuristic fails
to find a cutting plane, we resort to the Padberg-Rao exact algorithm described
in [21]. We also use a family of conditional cuts [11] that are not guaranteed to
be valid for the problem, but can be used as a cutting plane as follows. Suppose
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an upper bound Ub of the problem is available. One can note that during the
search for the optimal solution of the mspm, we are looking for solutions of value
better (lesser) than Ub. In this sense, any inequality can be used as a cutting plane,
provided that is satisfied by every feasible solution of value less than Ub. In this
vein, we considered the following family of conditional cuts:

∑
ij∈E[V +

s ]

xij ≥
⌈ |V +

s | − Ub + 1
2

⌉
, ∀s ∈ L, (4.1)

∑
ij∈E[V −

s ]

xij ≥
⌈ |V −

s | − Ub + 1
2

⌉
, ∀s ∈ L, (4.2)

where V +
s and V −

s are sets composed by vertices of V in the interior of one of
the two half-planes defined by the line s. Besides, the sets E[V +

s ] and E[V −
s ] are

formed by all the edges with both endpoints in V +
s and V −

s , respectively. It can
be seen in inequalities (4.1) that a solution of value Ub has at most Ub edges
crossing s (each one connected with a vertex in V +

s ). Hence, there are (|V +
s |−Ub)

disconnected vertices in V +
s that need �(|V +

s |−Ub)/2� edges in E[V +
s ] to complete

a matching. Then, it follows that (4.1) can be used as a conditional cut because
no solution of value Ub (or greater) is feasible in (4.1). Similar arguments lead to
an analogous conclusion for inequalities (4.2).

The cutting plane strategy adds the inequalities with the highest percentage of
violation, as long as this value is at least 1% (to control the tailing off effect). No
more than 50 inequalities are added per iteration. As for the branching strategy,
we select 5 variables whose values in the current linear relaxation are closest to
0.5 and use strong branching to select which variable to branch on.

The primal heuristic used in b&c is based on the linear relaxation of the prob-
lem. From a relaxed solution x, the method attempts to find a matching M ⊆ E
maximizing

∑
ij∈M xij . The method begins with an empty set M and builds a

matching, one edge at a time. At each iteration, one edge (i, j) ∈ E\M is greedily
chosen according to the value of xij (prioritizing the highest ones) and inserted
into M . The procedure is repeated until a perfect matching is reached. In a second
phase, the matching M may be improved by a local search procedure. The neigh-
borhood of the current solution M is defined as the set of all feasible matchings
obtained by exchanging pairs of edges (i, j) and (l, m) by edges (i, l) and (j, m).
The procedure iteratively replaces the current solution by the one with minimum
cost within its neighborhood, halting when no better solution is found in that way.
This primal heuristic is applied at every node of the search tree.

For the lr algorithm, a Lagrangian relaxation of the model described for the
mspm in Section 2 is obtained (see Sect. 3). The standard subgradient method
is then executed to compute the Lagrangian dual problem. As said before, the
Lagrangian primal problem is solved by an implementation of the Blossom V
algorithm whose code is available for download in the web. It is worth noting that
this program only deals with instances having integer weights. However, in the
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usual Lagrangian scheme, the edge weights are often not integer. To circumvent
this difficulty, we multiplied all the edge weights in the Lagrangian primal problem
by 106 before calling the routine. This is not expected to create major numerical
problems and, in the end, is not more harmful to computation than the tolerance
of 10−6 that we set for the ip solver.

As we will see in the results part of this subsection, the Lagrangian algorithm
produces good bounds with small computation times. This suggests that it can
be used together with the exact b&c algorithm to obtain better results. We used
the primal bound from the lr algorithm to warm start the b&c algorithm. Our
tests showed that, for the three problems studied, the use of primal bounds from
lr algorithm to warm start the exact algorithms yielded better overall results.
For this reason, we decided to use these results and compare them with the pure
Lagrangian results.

Instances. For the mspm, we experimented with the same instances tested in [9]
(except for five tsplib instances [23] that are obviously infeasible since they have
an odd number of vertices). These include 5 instances from tsplib, 16 from the
clustered C1 and C2 classes of Solomon’s Vehicle Routing Problem benchmark [25],
25 regular grid instances (5 × 5 to 20 × 20 grids with 20% of its points randomly
removed) and 11 instances with up to 100 random points in the plane.

For the three problems under investigation, a time limit of 1, 800 seconds was
set for the execution of any algorithm. Notice, however, that in the Tables 4 to 7,
occasionally the time is bigger than this limit. This happens for two reasons, first,
the times presented for warm started exact algorithm (wsea) are the sum of the
time spent by the Lagrangian and the b&c or b&b algorithms, therefore could
go up to 3600. Second, the time limit is verified at certain points in the program
codes and, it could be that the time elapsed between two check-points is not
negligible. This situation arises, for example, when the model of a big instance is
being uploaded by the ip solver. In our experiments an additional timeout script
running on the operating system level was used that forces the process to halt after
2000 sec. In case the process ends naturally, a bound is always produced. On the
other hand, if the process is killed by the timeout script, no output is produced.
The latter situation is signalized in the tables by the symbol ‡. Also, duality gaps
were computed through the formula 100 × (ub − lb)/ub, where ub and lb denote,
respectively, the upper and lower bounds yielded by the algorithm.

Results. As we previously stated, all the wsea outperformed the cold started
exact algorithms and, for this reason, we compare the wsea against the lr algo-
rithms. Obviously, it does not make sense to just compare the times of these two
kinds of algorithms because, first, as said before, the time of the wsea is the sum
of the lr algorithm and the b&c or b&b algorithm, thus, is always greater than
the lr alone. Second, the algorithms are different in nature. So, the purpose of our
comparison is to determine whether the wsea can improve the bounds obtained
by the lr algorithm, how much and how fast.
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Table 1. Results for mspm tsp and clustered instances.

Instance LB UB Time GAP%
lr b&c lr b&c lr b&c lr b&c

a280 11 11 11 11 0.83 13.34 0.00 0.00
berlin52 3 4 4 4 0.86 1.23 25.00 0.00
lin318 9 9 9 9 29.17 52.43 0.00 0.00
pcb442 17 17 17 17 27.71 78.79 0.00 0.00
ulysses22 2 2 2 2 0.00 0.03 0.00 0.00
c101 7 7 7 7 0.05 0.41 0.00 0.00
c102 7 7 7 7 0.05 0.43 0.00 0.00
c103 7 7 7 7 0.05 0.41 0.00 0.00
c104 7 7 7 7 0.05 0.43 0.00 0.00
c105 7 7 7 7 0.06 0.43 0.00 0.00
c106 7 7 7 7 0.05 0.42 0.00 0.00
c107 7 7 7 7 0.05 0.43 0.00 0.00
c108 7 7 7 7 0.06 0.42 0.00 0.00
c201 6 6 6 6 0.08 0.55 0.00 0.00
c202 6 6 6 6 0.09 0.54 0.00 0.00
c203 6 6 6 6 0.09 0.55 0.00 0.00
c204 6 6 6 6 0.08 0.55 0.00 0.00
c205 6 6 6 6 0.09 0.55 0.00 0.00
c206 6 6 6 6 0.08 0.53 0.00 0.00
c207 6 6 6 6 0.08 0.53 0.00 0.00
c208 4 4 4 4 1.15 1.89 0.00 0.00

Our analysis of the results will be done in three parts: the first for the tsp and
clustered instances, the second for the random instances and the third for the grid
instances.

The results for the first set of instances are summarized in Table 1. We observe
that the b&c algorithm proved optimality in all the cases within the fixed time
limit. The Lagrangian sgm always converged, proving optimality in all but one
case (berlin52), where there is an absolute gap of one unit (25.0%). For this set of
instances the wsea provided an average improvement of 1.19% in the relative gap
with an average increasing of 4.48 sec in time when compared to the lr algorithm.

Results for the random instances can be seen in Table 2. Once again the lr

algorithm always converged. However, whilst the exact algorithm proves optimality
for all instances, the Lagrangian failed to prove optimality in four cases, where gaps
of one unit remain. The average improvement in the relative gap obtained from
the wsea was 8.64% and the average time increasing was 1.74 sec.

The results for the grid instances are displayed in Table 3. This benchmark was
the one for which the lr heuristic had the worst performance. The Lagrangian
heuristic was unable to prove optimality in 11 out of 25 cases, leaving gaps of
one unit in 10 cases and two units in 1 case. The exact algorithm, on the other
hand, was able to prove optimality for all of the grid instances. The improvement
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Table 2. Results for mspm random instances.

Instance LB UB Time GAP%
lr b&c lr b&c lr b&c lr b&c

rand10a 2 2 2 2 0.00 0.00 0.00 0.00
rand10b 2 2 2 2 0.00 0.00 0.00 0.00
rand10c 2 2 2 2 0.00 0.00 0.00 0.00
rand10d 2 2 2 2 0.00 0.01 0.00 0.00
rand10e 2 2 2 2 0.00 0.01 0.00 0.00
rand50a 3 3 3 3 0.15 0.67 0.00 0.00
rand50b 3 3 3 3 0.64 1.18 0.00 0.00
rand50c 3 4 4 4 0.62 1.20 25.00 0.00
rand50d 3 4 4 4 0.64 1.15 25.00 0.00
rand50e 3 4 4 4 0.77 1.32 25.00 0.00
rand100a 4 5 5 5 6.40 22.85 20.00 0.00

in the relative gap achieved using the exact algorithm was 4.85% and the average
increasing of time was 8.95 sec.

Therefore it is possible to say that the lr algorithm have a very nice performance
for these sets of instances. Also, the price in time necessary to prove optimality
using the warm started b&c algorithm seems rather small. We recall that b&c is an
exact algorithm while lr is an heuristic. So, when comparing their performances,
one has to bear in mind that they are rather different in nature.

In order to compare our results against those presented in [9] we implemented
the model presented in that paper and executed a b&c algorithm in the same
computational environment used to test ours. This experiment showed that the
algorithm using the model from [9] was unable to prove optimality in six, cases
among all the instances tested for the mspm, within a time limit of 1800 sec.
Considering all the test cases for the mspm, the average time of our wsea was
5.91 sec while the implementation of the algorithm from [9] had an average time
of 213.10 sec.

4.2. msst Experiments

To analyze the performance of our algorithms for the msst, again we imple-
mented an exact b&c algorithm. Once more, we found that warm starting the
b&c algorithm with the primal bound obtained from the Lagrangian sgm gives us
better results than simply executing the b&c. Therefore, all comparisons in this
subsection are made between the wsea and the lr algorithm.

For the exact algorithm we used the model described in Section 2. Initially the
model was loaded without constraints (2.7). In the branch-and-cut method, at each
node of the search tree, the linear relaxation of msst is solved. If in the optimal
solution all variables are integral, the node is pruned by optimality. Otherwise,
the solution is fractional and violated valid inequalities are sought by solving a
separation problem. The polynomial-time algorithm presented in [13], based on
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Table 3. Results for mspm grid instances.

Instance LB UB Time GAP%
lr b&c lr b&c lr b&c lr b&c

grid5a 4 4 4 4 0.00 0.01 0.00 0.00
grid5b 4 4 4 4 0.00 0.01 0.00 0.00
grid5c 4 4 4 4 0.01 0.02 0.00 0.00
grid5d 4 4 4 4 0.00 0.01 0.00 0.00
grid5e 4 4 4 4 0.00 0.02 0.00 0.00
grid8a 6 6 6 6 0.10 0.15 0.00 0.00
grid8b 6 6 6 6 0.06 0.12 0.00 0.00
grid8c 5 5 6 5 0.19 0.28 16.67 0.00
grid8d 6 6 6 6 0.00 0.06 0.00 0.00
grid8e 6 6 7 6 0.30 0.35 14.29 0.00
grid10a 7 7 7 7 0.22 0.43 0.00 0.00
grid10b 6 6 7 6 0.64 0.83 14.29 0.00
grid10c 7 7 8 7 0.69 2.04 12.50 0.00
grid10d 7 7 7 7 0.19 0.41 0.00 0.00
grid10e 7 7 8 7 0.59 1.73 12.50 0.00
grid15a 10 10 10 10 1.59 3.61 0.00 0.00
grid15b 10 10 11 10 5.45 50.42 9.09 0.00
grid15c 10 10 10 10 1.32 3.28 0.00 0.00
grid15d 10 10 10 10 2.94 4.96 0.00 0.00
grid15e 10 10 10 10 1.77 4.04 0.00 0.00
grid20a 13 13 15 13 25.65 111.31 13.33 0.00
grid20b 13 13 14 13 26.28 40.70 7.14 0.00
grid20c 13 13 14 13 28.16 47.46 7.14 0.00
grid20d 13 13 14 13 24.06 39.43 7.14 0.00
grid20e 13 13 14 13 31.02 63.31 7.14 0.00

the minimum edge cut problem in graphs, is used to separate the Steiner cut
inequalities (2.7).

As for the lr algorithm, the implementation was done as described in Section 3,
with the primal Lagrangian problem been solved by a simple implementation of
Prim’s algorithm for the mst.

Instances. As a test suite we used 25 instances from tsplib [23] and the 25
regular grid instances used in [9] for the Minimum Stabbing Perfect Matching
Problem. The choice of these instances is based on the fact that the tsplib is a
well known test library for geometric problems and, besides, some tsplib and all
grid instances were also used in [9] for the mspm. The choice of the instance sizes
was made seeking tests that were hard enough to provide meaningful computation
times, allowing a more precise comparison of the algorithms.

Results. We divide our analysis into two parts, one for the tsp instances and
another for the grid instances.
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Table 4. Results for msst tsp instances.

Instance LB UB Time GAP%
lr b&c lr b&c lr b&c lr b&c

berlin52 6 6 6 6 0.15 3.77 0.00 0.00
ch130 7 7 8 8 12.21 1813.38 12.50 12.50
ch150 8 8 9 8 19.35 161.09 11.11 0.00
eil76 8 8 8 8 1.08 1.48 0.00 0.00
gil262 11 11 12 12 83.45 1907.68 8.33 8.33
gr202 9 9 10 9 58.70 1456.22 10.00 0.00
kroA100 7 7 8 7 4.85 1177.36 12.50 0.00
kroA150 8 8 9 9 14.69 1819.08 11.11 11.11
kroA200 9 9 9 9 29.95 1154.45 0.00 0.00
kroB100 7 7 7 7 3.98 5.20 0.00 0.00
kroB150 8 8 9 9 19.81 1823.96 11.11 11.11
kroB200 9 9 10 10 45.91 1858.87 10.00 10.00
kroC100 7 7 7 7 4.21 46.09 0.00 0.00
kroD100 7 7 7 7 3.27 4.40 0.00 0.00
kroE100 7 7 7 7 2.67 3.91 0.00 0.00
lin318 16 16 18 18 36.84 1860.34 11.11 11.11
pcb442 34 33 34 34 56.02 1915.33 0.00 2.94
pr124 24 24 24 24 22.47 26.06 0.00 0.00
pr136 17 17 18 17 2.75 87.52 5.56 0.00
pr144 21 21 21 21 0.50 1292.64 0.00 0.00
pr152 11 11 12 11 6.88 536.45 8.33 0.00
pr226 72 72 72 72 4.43 16.54 0.00 0.00
pr264 23 23 29 29 13.93 1821.02 20.69 20.69
rd100 7 7 8 7 4.98 247.18 12.50 0.00
rd400 11 ‡ 13 13 661.39 ‡ 15.38 ‡

The results for the tsp part are displayed in Table 4. One can see that the lr

algorithm converged in all the cases within the time limit, proving optimality in
11 of the 25 of them. The wsea was unable to yield any output within the time
limit for just one of the test instances. Among the 24 remaining instances, the
b&c algorithm proved optimality in 16 cases. It is interesting to notice that the
sgm was able to prove optimality in one case where the b&c was unable to do
so (despite the warm start), while the opposite occurred 6 times. For this set of
instances, when compared with the lr algorithm, the improvement in the relative
gap provided by the wsea was 2.38% and the necessary extra time to achieve this
improvement was 857.79 sec.

Analyzing the results for the second group of instances given in Table 5, we
observe that the performance of the lr algorithm is not as good as for the tsp

instances, since optimality was achieved in fewer cases. The b&c failed to declare
optimality in only 3 out of the 25 grid instances while the sgm failed in 14 other
cases. In the grid instances, the execution of the wsea improved the relative gap
by 4.59% at the cost of 391.88 more seconds, both in average.
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Table 5. Results for msst grid instances.

Instance LB UB Time GAP%
lr b&c lr b&c lr b&c lr b&c

grid5a 7 7 7 7 0.01 0.10 0.00 0.00
grid5b 7 7 7 7 0.01 0.10 0.00 0.00
grid5c 7 7 7 7 0.01 0.09 0.00 0.00
grid5d 7 7 7 7 0.01 0.09 0.00 0.00
grid5e 7 7 7 7 0.01 0.09 0.00 0.00
grid8a 10 10 10 10 0.04 1.57 0.00 0.00
grid8b 10 10 10 10 0.03 0.19 0.00 0.00
grid8c 10 10 10 10 0.07 0.22 0.00 0.00
grid8d 11 11 13 11 0.15 1.10 15.38 0.00
grid8e 11 11 11 11 0.08 0.24 0.00 0.00
grid10a 13 13 14 13 0.44 4.31 7.14 0.00
grid10b 12 12 12 12 0.17 0.44 0.00 0.00
grid10c 13 13 14 13 0.45 3.78 7.14 0.00
grid10d 13 13 13 13 0.18 0.48 0.00 0.00
grid10e 13 13 14 13 0.47 9.17 7.14 0.00
grid15a 18 18 20 18 2.97 117.97 10.00 0.00
grid15b 20 20 23 20 3.17 368.78 13.04 0.00
grid15c 18 18 19 18 2.87 84.31 5.26 0.00
grid15d 19 19 21 19 2.35 125.61 9.52 0.00
grid15e 18 18 20 18 2.44 828.30 10.00 0.00
grid20a 24 24 27 27 15.48 1828.94 11.11 11.11
grid20b 24 24 27 27 11.16 1824.14 11.11 11.11
grid20c 25 25 28 25 11.06 1415.05 10.71 0.00
grid20d 25 25 29 29 9.98 1827.44 13.79 13.79
grid20e 25 25 31 25 11.95 1430.14 19.35 0.00

The analysis of the improvement relative to the Lagrangian sgm algorithm and
of the additional time spent to obtain such gain when using wsea points to a
remarkable performance of the lr algorithm.

4.3. mstr Experiments

The first stage of our testing comprised a comparison of the two alternative b&b

algorithms that arise from the Edge and Triangle stabbing models discussed in
Section 2. For the mwt, it was observed in [20] that the b&b algorithm performs
better when it uses an ip model with variables defined on triangles than with
variables associated to edges. Hence, a similar behavior was expected from the
corresponding models when applied to the solution of the mstr. Indeed, this was
what happened and, thus, all the b&b results reported below were obtained using
the Triangle Stabbing Model. More precisely, the results refer to a warm started
exact algorithm (wsea) using the mentioned formulation.

Regarding the lr algorithm, we implemented the subgradient method using
both the Edge Stabbing Model and the Triangle Stabbing Model. Recall that,
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irrespective to which of the two models we consider, when the stabbing constraints
are relaxed we are left with an ip formulation for the mwt problem (we use the
term “relaxed” to refer to these models). However, in the subgradient procedure
several such problems have to be solved at each iteration. This is done in two steps.
The first step consists in the calculation of the lmt-skeleton while the second step
actually solves the mwt problem in case the first step fails to do so.

Observe that the edge weights are the only differences between the instances
of the mwt problems solved in two iterations of the subgradient method. The
computation of the lmt-skeleton only depends on the edge costs. Therefore, for
the first step, it is convenient from a computational point of view to have the
problem defined in terms of the Edge Stabbing Model, as it allows for a quick
recalculation of these costs. On the other hand, in the second step, when it comes
to actually solve the mwt instance, we rely on the results reported in [20] where
it was observed that the b&b algorithm for the mwt performs much better with
the relaxed Triangle Stabbing Model than with the relaxed Edge Stabbing Model.
Now, given two iterations of the subgradient method, the triangle costs are the
only differences between the associated mwt instances. These costs can be easily
computed after the lmt-skeleton has been found in the first step. Some additional
details are given below.

As said in Section 3, to solve the Lagrangian primal problem, we used the
lmt-skeleton code written by Beirouti and Snoeyink and downloadable at [18].
A few modifications were introduced in this program to make possible the usage
of arbitrary edge weights instead of Euclidean ones. This included, for instance,
the removal of the diamond test, a simple and effective way to determine whether
an edge could be part of a triangulation of minimum (Euclidean) length. Such
changes do not have significantly damaged the algorithm’s performance, relative
to Euclidean weights, confirming it as a viable option for general mwts.

After running the lmt-skeleton, quite often we still do not have a triangulation.
Hence, a b&b algorithm is used to solve the constrained mwt that remains, i.e.,
a mwt with sets of mandatory and forbidden edges. Since we use the (relaxed)
Triangle Stabbing Model as the input for the b&b algorithm, these sets of edges
have to be processed to identify the corresponding sets of triangles. Thus, if an
empty triangle contains a forbidden edge, the associated variable is set to zero
while, if all the edges forming its sides are mandatory, this variable is set to one.

Instances. The test suite used to analyze the performance of the mstr algorithms
was the same as in the msst case. The reasons that support this choice are the
same as before. Also, the time limit parameters inside the programs and in the
timeout script remain unchanged, i.e., 1800 and 2000, respectively. Once again,
the symbol ‡ in the tables with results signalizes that the process was killed by
the timeout script and, thus, did not produced any output.

Results. As in the msst case, we divide our analysis into two parts, one for the
tsp instances and the other for the grid instances. Concerning the tsp instances,
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Table 6. Results for mstr tsp instances.

Instance LB UB Time GAP%
lr b&b lr b&b lr b&b lr b&b

berlin52 24 24 24 24 7.70 9.11 0.00 0.00
ch130 32 ‡ 33 33 165.09 ‡ 3.03 ‡
ch150 34 ‡ 35 35 268.69 ‡ 2.86 ‡
eil76 32 32 33 32 112.64 178.18 3.03 0.00
gil262 49 ‡ 50 50 1779.50 ‡ 2.00 ‡
gr202 42 ‡ 42 42 615.63 ‡ 0.00 ‡
kroA100 29 29 30 30 107.21 1967.38 3.33 3.33
kroA150 35 ‡ 36 36 330.66 ‡ 2.78 ‡
kroA200 40 ‡ 41 41 736.80 ‡ 2.44 ‡
kroB100 29 29 30 30 119.87 1976.12 3.33 3.33
kroB150 34 ‡ 35 35 408.44 ‡ 2.86 ‡
kroB200 39 ‡ 40 40 705.75 ‡ 2.50 ‡
kroC100 29 29 29 29 96.18 161.44 0.00 0.00
kroD100 29 29 29 29 30.45 86.90 0.00 0.00
kroE100 29 29 30 30 98.93 1962.76 3.33 3.33
lin318 69 ‡ 71 71 1803.40 ‡ 2.82 ‡
pcb442 157 ‡ 180 180 1827.53 ‡ 12.78 ‡
pr124 48 49 49 49 405.61 463.30 2.04 0.00
pr136 66 66 67 66 589.67 658.60 1.49 0.00
pr144 74 74 74 74 675.39 848.44 0.00 0.00
pr152 45 45 45 45 420.93 1015.55 0.00 0.00
pr226 141 150 150 150 1884.99 2855.06 6.00 0.00
pr264 90 ‡ 92 92 1811.44 ‡ 2.17 ‡
rd100 29 29 29 29 17.45 82.05 0.00 0.00
rd400 52 ‡ 55 55 1803.73 ‡ 5.45 ‡

the b&b algorithm had its process killed in 12 out of the 25 instances and, when
this was not the case, it proved optimality in all but three instances, where there
is a 3.33% gap (the gap exists because of the 1800 sec time limit). On the other
hand, the Lagrangian sgm converged in all cases within the imposed time limit,
with an average gap of 2.57%. The performance of the heuristic is remarkable.
Optimality was proven for 7 instances, one of which could not be reached by the
exact algorithm within the time limit (the inverse situation occurred four times).
In 13 instances the difference between the upper and lower bounds was of just
one unit. Using the wsea we were able to improve the bounds provided by the
lr algorithm in average by 0.97% while the time spent for this was 592.14 sec in
average. These results are summarized in Table 6.

The results for the grid instances can be seen in Table 7. For those instances,
the Lagrangian subgradient method was able to solve to optimality every instance.
The b&b algorithm was unable to solve 4 out of 25 grid instances. In fact, only one
of the 20 × 20 grid instances was solved within the time limit (the processes were
killed by the timeout script) and every other grid instance was solved to optimality.
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Table 7. Results for mstr grid instances.

Instance LB UB Time GAP%
lr b&b lr b&b lr b&b lr b&b

grid5a 22 22 22 22 0.17 0.17 0.00 0.00
grid5b 21 21 21 21 0.27 0.36 0.00 0.00
grid5c 21 21 21 21 0.17 0.17 0.00 0.00
grid5d 21 21 21 21 23.14 23.21 0.00 0.00
grid5e 20 20 20 20 0.18 0.18 0.00 0.00
grid8a 34 34 34 34 2.20 2.36 0.00 0.00
grid8b 34 34 34 34 3.48 3.71 0.00 0.00
grid8c 34 34 34 34 1.61 1.81 0.00 0.00
grid8d 35 35 35 35 1.07 1.26 0.00 0.00
grid8e 35 35 35 35 1.11 1.35 0.00 0.00
grid10a 44 44 44 44 8.01 9.03 0.00 0.00
grid10b 42 42 42 42 3.31 3.93 0.00 0.00
grid10c 47 47 47 47 9.52 10.48 0.00 0.00
grid10d 46 46 46 46 2.61 3.43 0.00 0.00
grid10e 46 46 46 46 7.05 8.10 0.00 0.00
grid15a 66 66 66 66 75.13 127.64 0.00 0.00
grid15b 68 68 68 68 13.65 70.36 0.00 0.00
grid15c 64 64 64 64 20.70 67.39 0.00 0.00
grid15d 66 66 66 66 39.24 86.21 0.00 0.00
grid15e 67 67 67 67 79.53 141.38 0.00 0.00
grid20a 89 89 89 89 500.78 2491.35 0.00 0.00
grid20b 86 ‡ 86 86 73.09 ‡ 0.00 ‡
grid20c 90 ‡ 90 90 1781.70 ‡ 0.00 ‡
grid20d 87 ‡ 87 87 204.77 ‡ 0.00 ‡
grid20e 90 ‡ 90 90 1213.83 ‡ 0.00 ‡

Regarding this set of instances, it is simply not worth executing a wsea, since the
lr is able to solve them relatively easy.

5. Conclusions and future directions

To our knowledge, this paper proposes the first exact approach to tackle the
mstr. Concerning the mspm, our b&c algorithm is able to solve exactly all instance
and runs in smaller computational times when compared to the results reported
in [9]. As for the msst, we developed an exact b&c algorithm based on a stronger
formulation than the one introduced in [9, 10]. This algorithm obtained optimal
solutions for several instances as well as high quality primal and dual bounds for
many others in short computation times.

Moreover, we also devised Lagrangian heuristics for the three problems and
conducted several computational experiments with them. These tests showed that
they rapidly yield solutions with small costs, often proven optimal ones. It should
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be noticed that, we are not aware of another work in the literature which reports
on computational results for the mstr.

Future directions in this research are currently being considered. This includes
improving the performance of our heuristics by adding new features to it, such
as, a procedure for variable fixing in the traditional Lagrangian fashion and a fast
local search to reduce primal bounds.
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