
Integer Representations towards Efficient
Counting in the Bit Probe Model

Gerth Stølting Brodal1, Mark Greve1, Vineet Pandey2, and S. Srinivasa Rao3

1 MADALGO?, Department of Computer Science, Aarhus University,
IT Parken, Åbogade 34, DK-8200 Århus N, Denmark.

E-mail: gerth@cs.au.dk, mgreve@cs.au.dk
2 Computer Science & Information Systems, BITS Pilani, 333031, India.

E-mail: vineetp13@gmail.com
3 School of Computer Science and Engineering, Seoul National University,

Republic of Korea. E-mail: ssrao@cse.snu.ac.kr

Abstract. We consider the problem of representing numbers in close
to optimal space and supporting increment, decrement, addition and
subtraction operations efficiently. We study the problem in the bit probe
model and analyse the number of bits read and written to perform the
operations, both in the worst-case and in the average-case. A counter
is space-optimal if it represents any number in the range [0, . . . , 2n − 1]
using exactly n bits. We provide a space-optimal counter which supports
increment and decrement operations by reading at most n − 1 bits and
writing at most 3 bits in the worst-case. To the best of our knowledge,
this is the first such representation which supports these operations by
always reading strictly less than n bits. For redundant counters where we
only need to represent numbers in the range [0, . . . , L] for some integer
L < 2n − 1 using n bits, we define the efficiency of the counter as the
ratio between L + 1 and 2n. We present various representations that
achieve different trade-offs between the read and write complexities and
the efficiency. We also give another representation of integers that uses
n + O(logn) bits to represent integers in the range [0, . . . , 2n − 1] that
supports efficient addition and subtraction operations, improving the
space complexity of an earlier representation by Munro and Rahman
[Algorithmica, 2010].

Keywords: Data structure. Gray code. Bit probe model. Binary counter. Integer
representation.

1 Introduction

We propose data structures for integer representation which can perform incre-
ment, decrement, addition and subtraction with varying trade-offs between the
number of bits read or written and the space needed to represent the number.

? Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

We study the problem in the bit probe model of computation where the com-
plexity measure includes only the bitwise accesses to the data structure and not
the resulting computations.

We define a code of dimension n as any cyclic sequence of 2n distinct binary
vectors. For a code of dimension n, we define the operation increment (decre-
ment) as moving the code to its next (previous) code in the cycle. We define a
function Val that maps bit sequences to integers, which is used in describing our
algorithms. We use BR and BW to denote the number of bits read and written
respectively. The average number of bits read (written) is computed by sum-
ming the number of bits read (written) to perform the operations for each code,
and dividing this by the number of different codes. Throughout the paper, log n
denotes dlog2 ne, log(0) n = n and log(c)(n) = log(c−1)(log n) for c > 0.

Previous work. The Standard Binary Code (SBC) uses n bits to represent
an integer in the range [0, . . . , 2n − 1] where bn−1bn−2 . . . b0 represents the value∑n−1

i=0 bi2
i. An increment or decrement operation using SBC requires n bits to be

read and written in the worst-case but the amortized time per operation is con-
stant. A Gray code is any code in which successive binary vectors in the sequence
differ in exactly one component. The Binary Reflected Gray Code (BRGC) [3]
requires n bits to be read for each increment operation but only 1 bit to write.
Bose et al. [1] have developed a different Gray Code called Recursive Partition
Gray Code (RPGC) which requires on an average O(log n) reads for increment
operations. The previous results are summarized in Table 1. For the Gray codes
BRGC and RPGC, we define Val(X) as the number of times one needs to in-
crement the code 0 . . . 0 to obtain X. The dimension d of a counter refers to the
total number of bits used to represent a number and space-efficiency refers to
the ratio of number of numbers represented out of all possible bit strings gen-
erated (2d) given the dimension d. Space-efficiency equal to one implies that all
possible strings are generated and the counter is space-optimal. There could be
more than one representation for a given number when efficiency is less than one
and such counters are called redundant counters.

Our results. For space-optimal counters, we introduce the notion of an
(n, r, w)-counter which is a representation of numbers of dimension n where
increment and decrement operations can be performed by reading r bits and
writing w bits in the worst-case. We obtain a (4,3,2)-counter by exhaustive
search and use it to construct an (n, n− 1, 3)-counter which performs an incre-
ment or decrement operation by reading at most n − 1 bits whereas all known
results for space-optimal counters read n bits in the worst-case. The codes BRGC
and RPGC are examples of (n, n, 1)-counters. Fredman has conjectured that for
Gray codes of dimension n, BR = n [1, 2]. If this conjecture is true, this would
imply that if there exists a code with the property that all increments can be
made by reading less than n bits, then it would need to write at least 2 bits in
the worst-case.

Space Space Bits read (BR) Bits written (BW) Inc. &
(d) efficiency Average-case Worst-case Worst-case Dec. Ref.

n 1

2− 21−n

n

n Y Binary
n 1 Y [3]

6 logn 1 Y [1]

O(log(2c−1) n) c N [1]

n + 1 1/2 O(1) logn + 4 4 Y [4]

n + O(t logn) 1−O(n−t) O(log(2c) n) O(t logn) 2c + 1 N [1]

Table 1: Summary of previous results

For non-space-optimal counters, the read complexity has been shown to be
Θ(log n) for a space-efficiency of 1/2 [1, 4]. The best known result so far [1]
describes a counter with a space-efficiency of 1−O(n−t) to increment a value by
reading O(t log n) bits and writing 3 bits for t > 0. Our results shown in Table 2
show that we can reduce the number of bits written to 2 using a representation
with space-efficiency 1 − O(2−t) by reading log n + t + 2 bits where t ∈ Z+.
By choosing t = t′ log n, we can achieve a space-efficiency of 1 − O(n−t

′
) by

reading O(t′ log n) bits and writing 2 bits. The question that remains open is if
redundant counters efficiently allow a representation with 1 write but less than
n reads.

For redundant counters with efficiency 1/2, the best known results were
log n + 4 bit reads and 4 bit writes [4]. We reduce the number of bits read
and written to log n + 3 and 3. Using the one bit read-write trade-off, we can
further reduce the number of bits written to 2 by reading log n+ 4 bits.

Space Space Average-case Worst-case Inc. &
(d) efficiency BR BW BR BW Dec. Ref.

4
1

3 1.25 3 2
Y

Th. 1
n 6 log(n− 4) + O(2−n) 1 + O(2−n) n− 1 3 Th. 2

n + 1 1/2
O(log logn)

1 + O(n−1)

logn + 2 3
N

Th. 3
logn + 3 2 Th. 4

O(logn)
logn + 3 3

Y Th. 6
logn + 4 2

n 1− 1
2t−1

O(log logn)
1 + O(n−1)

logn + t + 1 3
N Th. 5

logn + t + 2 2

O(logn)
logn + t + 2 3

Y Cor. 1
logn + t + 3 2

Table 2: Summary of our results

2 Space-optimal counters with increment and decrement

In this section, we describe space-optimal counters which are constructed using
a (4,3,2)-counter where X denotes the number to be incremented.

(4,3,2)-counter. Fig. 1 shows our (4,3,2)-counter obtained through brute force
search which represents numbers from 0 . . . 15. Assuming the number is of the

b0

b1

b3

100 011

b3

110 010

b2

b1

010 000

b3

111 101

Increment tree

b0

b1

b2

110 100

b3

011 001

b2

b3

000 111

b3

010 110

Decrement tree

0000(0)
1−→ 0001(1)

2−→ 0100(2)
1−→ 0101(3)

1−→ 1101(4)
1−→ 1001(5)

2−→
1100(6)

1−→ 1110(7)
1−→ 0110(8)

1−→ 0111(9)
1−→ 1111(10)

1−→ 1011(11)
2−→

1000(12)
1−→ 1010(13)

1−→ 0010(14)
1−→ 0011(15)

2−→ 0000(0)

Fig. 1: Sequence generated by the (4,3,2)-counter and increment and decrement trees

form b3b2b1b0, the corresponding increment and decrement trees for the (4,3,2)-
counter are shown in Fig. 1. For any internal node corresponding to bit bt, the
left edge corresponds to bt = 0 and the right edge corresponds to bt = 1. The
leaf nodes contain information about the new values for the bits read and the
modified bits are shown underlined in the tree and the text.

As an example, for the fifth leaf node from the left in the increment tree, old
b0b2b1 = 100 and new b0b2b1 = 010. To increment 9, for example, we take its
representation 0111 and go through the path b0b2b3 = 110 in the increment tree
to reach the seventh leaf node; so the new values are b0b2b3 = 111 and the new
number is 1111 which represents 10 (ten). To decrement 9, we go through the
path b0b2b3 = 110 in the decrement tree to reach the seventh leaf node; so the
new values are b0b2b3 = 010 and the number is 0110 which represents 8.

Theorem 1. There exists a representation of integers of dimension 4 with ef-
ficiency 1 that supports increment and decrement operations with BR = 3 and
BW = 2 in the worst-case. On average, an increment/decrement requires BR = 3
and BW = 1.25.

2.1 Constructing (n, n − 1, 3)-counter using (4,3,2)-counter

We can now construct an n-bit space-optimal counter for n ≥ 4 by dividing the
code for a number X into two sections X(4,3,2) and XG of length 4 and n − 4
respectively where X(4,3,2) uses the above-mentioned (4,3,2)-counter represen-
tation and XG uses the Gray code [3], that is a (n − 4, n − 4, 1)-counter. To
increment X, we first increment XG and then check if it represents 0 (which is
possible since we read all bits of XG). If XG is 0, then we increment X(4,3,2). In
the worst-case, this requires n− 4 reads and 1 write to increment XG and then

r
1 2 3

w
1 ⊥ ⊥ +
2 ⊥ ⊥ +
3 ⊥ ⊥ +

r
1 2 3 4

w

1 ⊥ ⊥ ⊥ +1

2 ⊥ ⊥ +2 +
3 ⊥ ⊥ + +
4 ⊥ ⊥ + +

r
1 2 3 4 5

w

1 ⊥ ⊥ ⊥ ? +1

2 ⊥ ⊥ ⊥ ? +
3 ⊥ ⊥ ⊥ +2 +
4 ⊥ ⊥ ⊥ + +
5 ⊥ ⊥ ⊥ + +

Fig. 2: Exhaustive search results for (n, r, w)-counter for n = 3, 4 and 5 respectively

3 reads and 2 writes to increment X(4,3,2), providing us with n− 1 reads and 3
writes overall.

XG is represented using RPGC where incrementing or decrementing a code
of dimension n requires 6 log n average number of reads (although [1, Theorem
2] considers only generating the next code, i.e., increment operation, one can
verify that the same analysis holds for the decrement operations as well). The
worst-case and hence the average number of writes to increment or decrement
a number using RPGC is 1. Since the average number of reads and writes for
X(4,3,2) are 3 and 1.25 respectively, and we increment/decrement X(4,3,2) only
in one out of every 2n−4 codes, the average number of reads and writes are
6 log(n− 4) + 3/2n−4 and 1 + 1.25/2n−4 respectively.

Theorem 2. There exists a representation of integers of dimension n ≥ 4 with
efficiency 1 that supports increment and decrement operations with BR = n− 1
and BW = 3 in the worst-case. On average, an increment/decrement requires
BR = 6 log(n− 4) +O(2−n) and BW = 1 +O(2−n).

To the best of our knowledge, this is the first space-optimal counter with BR

strictly less than n.

Exhaustive search results We used exhaustive search to find (n, r, w)-
counters for small values of n. The results are shown in Fig. 2 for n = 3, 4
and 5 respectively. For a combination of n, r and w, a ‘⊥’ shows that no counter
exists and a ‘+’ refers to its existence. A superscript of 1 shows that this is a
Gray code while 2 refers to Theorem 2. A ‘?’ shows that the existence of counters
remains unknown for the corresponding (n, r, w) value. An enclosed value shows
that no counters were found by our brute-force search.

3 Redundant counters with increment

To reduce the number of bits read exponentially, counters with space-efficiency
less than one have been considered [1, 4]. In this section, we discuss redundant
counters which show better results and trade-offs for bits read and written and
use these in Section 5 to obtain representations that support addition and sub-
traction efficiently.

3.1 Counters with one bit redundancy

To represent numbers from 0 . . . 2n − 1, we select n + 1 bits. A number X rep-
resented by xnxn−1 . . . x1x0 consists of a carry bit S = x0, a lower block XL

Previous New
` S xp S xp

= `max 0 x 1 x
< `max 0 x 0 x
< `max 1 0 0 1
< `max 1 1 1 0

Table 3: Transition Table for the increment step where ` = Val(XL) and p = logn+`.
Underlines show the changed bits and x represents ‘don’t care’ condition

of the log n bits xlogn . . . x1 and the upper block XH of the last n − log n bits.
p = log n+ ` is a location in XH where ` refers to the value represented by XL.
This is used to perform a delayed addition of the carry as explained below. We
use Gray codes for representing the numbers in XL so that increment writes
only one bit. The block XH is represented using SBC. The value of X is given
by (`+(Val(XH) + 2` · S)·2|XL|) mod 2n.

We determine the number of bits read and written in the worst-case by
finding the maximum values of BR and BW respectively. The increment step is
summarised in Transition Table 3.
Increment: XL and S are read at every step, therefore BR is at least log n+ 1.
S = 1 implies that the carry needs to be propagated and we will read one bit
from XH , whereas S = 0 implies no carry propagation and we do not need to
access XH . If ` > n − log n, we reset S to 0. The different cases for increment
are described below:

Case 1. S = 0 and XL contains its largest value (100 . . . 0 in Gray code): This im-
plies that a new incremental increment of XH should be initiated. Increment
XL and set the carry bit S to 1. (BR = log n+ 1, BW = 2)

Case 2. S = 0 and XL is any other value: Increment XL. (BR = log n + 1,
BW = 1)

Case 3. S = 1 and xp = 1: Propagation of carry. Change xp to 0. Increment
XL.(BR = log n+ 2, BW = 2)

Case 4. S = 1 and xp = 0: Final bit flip in XH . Change xp to 1, S to 0 and
increment XL. (BR = log n+ 2, BW = 3).

The average number of reads to increment XL is O(log log n). The bit S is
read at every step and it is set to 1 on the average 2 out of every n steps. When
S = 1, we also need to read O(log n) bits to find Val(XL). Thus the average
number of bits read is O(log log n). The average number of writes can be shown
to be 1 +O(n−1). Hence we have the following theorem.

Theorem 3. There exists a representation of integers of dimension n+ 1 with
efficiency 1/2 that supports increment operations with BR = log n+2 and BW =
3. On average, an increment requires BR = O(log log n) and BW = 1 +O(n−1).

3.2 One bit read-write trade-off

We show how to modify the representations of the previous section (Theorem 3)
to reduce BW from 3 to 2 by increasing BR by 1.

The worst-case of BW for increment is given by Case 4 where BW = 3 since
S and one bit each in XH and XL are modified. As it turns out, we can improve

Previous New

` S xp xp−1 S xp

= `max 0 x − 1 x
= 0 1 1 − 1 0
= 0 1 0 − 1 1
> 0 1 x 1 0 x
> 0 1 0 0 1 1
> 0 1 1 0 1 0

Table 4: Transition Table for the increment step for read-write trade-off where ` =
Val(XL), `max = 2|XL| − 1 and p = logn + ` + 1. Underlines show the changed bits
and x represents ‘don’t care’ condition

BW further by delaying the resetting of S by one step if we read another bit.
Instead of reading just one bit xp from XH when S = 1, we can read the pair
(xp, xp−1). If the previously modified bit xp−1 = 1, then the propagation of
carry is complete, else we flip the current bit xp. The only exception to this case
is when XL = 0 . . . 0 which implies that p = log n+ 1 which is the first position
in XH . In this case, only one bit xlogn+1 is read and flipped. We modify the
increment step as:

Case 3. S = 1 and xp−1 = 0: propagation of carry to continue. xp−1 = 0 implies
that the previous bit was 1 before getting modified. Therefore, flip xp irrespective
of its value and increment XL. (BR = log n+ 3, BW = 2).
Case 4. S = 1 and xp−1 = 1: The previous bit was 0 before modification, hence
carry has been propagated and xp is not read. Reset S to 0 and increment XL.
(BR = log n+ 2, BW = 2).

(i)

0000 1 1 1

00 10 1 0 1

0 10 0 0 1

0 10 01 0

0 1 1 01

log n bitsn− log n bits

(ii)

0 1 1 111

1 0 0 0 0 0

0 0

0 0 0 0

0

0 0

0 0 0 0

1

1

1

1 1

1

1 1

1

0

0

n bits

00 0 01 1

00 1 1 1

00 1 0 1

00 0 0 1

00 01

0 1 1 01

1

log n bitsn− log n bits

(iii)

00 01 1

S S

1

1

0

0 0

00

0 1

1

1

0

1

1

0

0 0x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

xx

x x

x x

x x

x x

x x

xx

Fig. 3: Increment for a 8-bit number using (i) Standard binary counter (ii) One-bit
redundant counter with BW = 3 (iii) with BW = 2. logn bits are represented using
BRGC and x represents ‘don’t care’ condition

Theorem 4. There exists a representation of integers of dimension n+ 1 with
efficiency 1/2 that supports increment operations with BR = log n+3 and BW =
2. On average, an increment requires BR = O(log log n) and BW = 1 +O(n−1).

3.3 Forbidden state counter with increment

To increase the space-efficiency of the above proposed representation, we modify
the data structure proposed in [1] where a particular value of t bits in a dimension
n code is used as a forbidden state. A number X = xn . . . x1 consists of XH

(xn . . . xlogn+t+1), XF (xlogn+t . . . xlogn+1) and XL (xlogn . . . x1) of n− log n−t,
t and log n bits respectively. Similar to the one-bit redundant counter discussed
in Section 3.1, XH and XL represent the upper and lower blocks in the number
while XF acts as an alternative to the carry bit S. We use ` to refer to the value
represented by XL and Fmax refers to the value 2t − 1.

All the states for which Val(XF) ≤ Fmax− 1 are considered as normal states
for XF and the state where Val(XF) = Fmax is used to propagate the carry over
XH (conceptually XF = Fmax corresponds to S = 1). This representation will
allow us to represent 1− 1/2t of the 2n numbers. The block XH is represented
using SBC while XF and XL are each individually represented using RPGC.
Using XK to represent Val(XK), we obtain Val(X) = XL + (XF +XH · Fmax) ·
2|XL| if XF < Fmax and Val(X) = XL + (XH + 2`) · 2|XL| · Fmax if XF = Fmax.

Increment. The increment scheme is similar to the one-bit redundant counter
of Section 3.1. We first read XL and XF . If XF 6= Fmax, we increment XL. If XL

now becomes 0, we also increment XF . For the case XF = Fmax, XL is used to
point to a position p in XH . If the bit xp at position p is equal to 1, it is set to
0 and XL is incremented to point to the next position in XH . This corresponds
to the increment scheme in the one-bit redundant counter when S is set to 1.
If XL now equals n − log n − t, then we incremement XF (to set XF = 0 and
terminate the propagation of carry). On the other hand, if the value of bit xp is
0, then we set xp to 1 and XF is incremented to the next value (which represents
state XF = 0. This corresponds to the carry bit S being set to 0 in Section 3.1.

This scheme gives a representation with BR = log n + t + 1 and BW = 3.
Similar to Section 3.2, we can also obtain a representation with BR = log n+t+2
and BW = 2 by reading xp−1. The average number of reads and writes to
increment the log n bits in XL are O(log log n) and 1 respectively. The average
number of reads and writes to increment XF are O(log t) and 1 respectively.
Since XF is incremented once in every n steps, this adds only o(1) to the average
number of reads and writes. Similarly, incrementing XH also takes o(1) reads
and writes on average. In addition, at every step we need to check if Val(XF) is
equal to either Fmax or Fmax − 1 which requires an average of O(1) reads, and
finally the cost of reading XL to find p on average costs at most O(1

2t
1
n log n).

Thus we have the following theorem.

Theorem 5. Given two integers n and t such that t ≤ n − log n, there exists
a representation of an integer of dimension n with efficiency 1 − O(2−t) that
supports increment operations with BR = log n + t + 1 and BW = 3 or BR =
log n+ t+ 2 and BW = 2. On average, an increment requires BR = O(log log n)
and BW = 1 +O(n−1).

4 Counters with increment and decrement

To support decrement operations interleaved with increment operations, we mod-
ify the representation of a numberX described in Section 3.1 as follows: a number
X = xn . . . x1x0 consists of an upper block XH (xn . . . xlogn+2), a lower block
XL (xlogn+1 . . . x1) and the bit S = x0 which is used as either a carry bit or
a borrow bit. We further split the lower block XL into two parts: an indicator
bit I which consists of the bit xlogn+1 and a pointer block XP consisting of the
remaining log n bits. When the indicator bit I is set to 0, S is interpreted as a
carry bit, and when the indicator bit is 1, then S interpreted as a borrow bit.

The log n bits in XP are used to point to a location in XH to perform a
delayed carry or borrow. We use BRGC for representing XL so that an increment
or decrement writes only one bit. The block XH is represented using SBC. Since
XL is represented using BRGC, when Val(XL) < 2|XP |, the indicator bit I is
equal to 0 and I is equal to 1 otherwise. When I = 1, incrementing block XL

corresponds to decrementing the block XP (unless XP = 0) due to the reflexive
property of BRGC [3]. We use these observations in our algorithms for increment
and decrement.

The main ideas behind the representation and the increment/decrement al-
gorithms are as follows: when the carry bit S is not set, we perform the incre-
ment/decrement in the normal way by incrementing/decrementing XL. When
S = 0, Val(XL) = 2logn+1 − 1 and we perform an increment, we set the bit S
and reset the block XL to 0 . . . 0. Since I is now set to 0, S will be interpreted
as a carry bit untill it is reset again. Similarly, when S = 0, Val(XL) = 0 and we
perform a decrement, we set the bit S and decrement XL to 2logn+1 − 1. Since
I is now set to 1, S will be interpreted as a borrow bit.

To increment X when the carry bit is set, we perform one step of carry
propagation in XH , and then increment XL. If the propagation finishes in the
current step, then we also reset the bit S to 0. To decrement X when the carry
bit is set, we first decrement XL and “undo” one step of carry propagation (i.e.,
set the bit xp in XH to 1). Note that the when performing increments, the carry
propagation will finish before we need to change the indicator bit from 0 to 1 (as
the length of XH is less than 2logn). The increment and decrement algorithms
when the borrow bit are set are similar.

The increment and decrement algorithms are described in the Transition
Table 5. Since we read XL, S and at most one bit in XH , the read complexity
BR = log n+ 3. Since we change at most one bit in each of XL, XH and S, the
write complexity BW = 3.

The above scheme requires O(log n) average number of reads as XL is repre-
sented using BRGC and incrementing it requires O(log n) reads. To get better
average-case bounds, we can represent XP using RPGC. This increases the num-
ber of worst-case writes by 1 as now I and XP are incremented independently.
Thus we get a structure with BR = O(log log n) and BW = 1 + O(n−1) on the
average but in the worst-case BW = 4.

Increment

Previous New Comments

S ` I xp xp−1 S I xp xp−1

0 = `max 0 x x 0 1 x x Increment XL (sets I)
0 = `max 1 x x 1 0 x x Increment XL (resets XL), Set S
0 < `max x x x 0 x x x Only increment XP

1 < `max 0 - x 0 0 - x (Position p beyond n) Reset S
1 < `max 0 0 x 0 0 1 x (Last step of carry propagation) Reset S
1 < `max 0 1 x 1 0 0 x (Carry propagation)

1 < `max 1 x 1 1 1 x 0 Undo previous borrow
1 < `max 1 x 0 − − − − Does not occur

Decrement

0 = 0 0 x x 1 1 x x Decrement XL, Set S
0 = 0 1 x x 0 0 x x Decrement XL (Resets I)
0 > 0 x x x 0 x x x Only decrement XP

1 > 0 1 - x 0 1 - x (Position p beyond n) Reset S
1 > 0 1 0 x 1 1 1 x (Borrow Propagation)
1 > 0 1 1 x 0 1 0 x (Last step of borrow propagation) Reset S

1 > 0 0 x 0 1 0 x 1 Undo previous carry
1 > 0 0 x 1 − − − − Does not occur

Table 5: Transition Table for the increment-decrement counter. For increment, new
p = p + 1 and for decrement, new p = p− 1. x represents ‘don’t care’ condition and -
shows that the value does not exist. ` = Val(XP), p = logn+`+1 and `max = 2|XP |−1.
Underlines show the modified values

Theorem 6. There exists a representation of integers of dimension n+ 1 with
efficiency 1/2 that supports increment and decrement operations with BR =
log n + 3 and BW = 3. On average, an increment/decrement requires BR =
O(log log n) and BW = 1 +O(n−1).

We can extend the result of Theorem 5 to support decrement operations
using an indicator bit as described in Section 4.

Corollary 1. Given two integers n and t such that t ≤ n − log n, there exists
a representation of an integer of dimension n with efficiency 1 − O(2−t) that
supports increment and decrement operations with BR = log n+ t+2 and BW =
3. On average, an increment/decrement requires BR = O(log log n) and BW =
1 +O(n−1).

5 Addition and Subtraction

In this section, we give a representation for integers which supports addition
and subtraction operations efficiently. A number N is said to have a span n if
it can take values in the range [0, . . . , 2n − 1]. Munro and Rahman [4] gave a
representation that uses n+O(log2 n) bits to represent a number N of span n,
and supports adding/subtracting a M of span m to/from N in O(m + log n)
time. We improve the space to n+O(log n) bits while maintaining the operation

time. We describe the data structure and scheme for addition and introduce
suitable modifications to support subtaction as well.

We divide the representation of the number into k = O(log n) blocks:
B1, B2, . . . , Bk with b1, b2, . . . , bk bits respectively, where b1 = 2 and for 2 ≤
i ≤ k, bi = 2i−1 (if n is not a power of 2, then the last block has size
bk = n − 2blognc instead of 2k−1). Note that the block sizes satisfy the prop-

erty that
∑i

j=1 bj = 2i = bi+1, for 1 ≤ i ≤ k − 2. Each block Bi is maintained
using the increment counter of Section 3.1 using bi + 1 bits and a constant
number of flag bits as described below. Hence, a number is represented using k
blocks of sizes b1, b2, . . . , bk bits along with O(k) additional bits. The value of

the representation is Val(B1) +
∑k

i=2 Val(Bi) · 2bi . Thus the overall space used
is n+O(k) = n+O(log n) bits.

We now describe the modifications to the increment counter described in
Theorem 3. Let X be the counter to be incremented. We introduce two additional
bits max and VH . The bit max indicates whether X represents its maximum
value. Assuming p = Val(XL) represents a position in XH , VH (verifier for block
XH) = 1 if all positions in XH from 0 . . . p are 1. By this definition, when p points
to any location beyond XH and VH = 1 then XH represents its maximum value.
In Section 3.1 we used p to point to a location in XH only when S = 1 but
now we use p as a pointer in all steps. When S = 1, we perform the delayed
increment in XH and when S = 0, we read the bit xp and use it to set/reset VH .
VH is set to 0 if xp = 0. If VH = 0, then we set it to 1 if S = 1 and xp = 0. This
case happens when XL = 0 . . . 0 for a delayed increment. The bit max is set to
1 when VH = 1 and XL represents its maximum value. When X represents its
maximum value, max = 1, VH = 1 and S = 0. Incrementing the maximum value
of X sets S = 1, max = 0 and resets XL to its minimum value. The bit VH = 1
is maintained till S is reset to 0, i.e. throughout the delayed increment process.

We represent every block Bi using the above modified counter. To add M to
N , for some m ≤ n, we first find the largest i such that

∑i−1
j=1 bj < m ≤∑i

j=1 bj
(i.e., bi < m ≤ bi+1). We add M to the number represented by the first i blocks
of N in O(m) time. If any of the first i blocks has a carry bit set, then we first
perform the necessary work and reset the carry bit in the block, and if necessary
propagate the carry to the next block. If there is a carry from Bi to Bi+1, we
propagate this by modifying the bit maxj of the successive blocks until we find
the first block Bj such that maxj is set to 0, and increment Bj , altogether in
O(log n) time. The total running time is O(m + log n) since incrementing the
block and propagation of the carry take O(log n) time each.

The read and write complexities of the addition algorithm can be shown to
be O(m+ log n) and O(m) respectively. Since incrementing a counter of span n
has a Ω(log n) lower bound for the read complexity, these bounds are optimal.

To support subtraction, we use the increment/decrement counter of Theo-
rem 6 to represent each block, along with additional bits to check for the max-
imum and minimum values of a number. The details shall be provided in the
extended version. M can be subtracted from N in O(m+ log n) time similarly,

since the representation of a block supports both increment and decrement op-
erations in O(log b) time, where b is the length of the block.

Theorem 7. An integer of span n can be represented by a data structure which
uses n+O(log n) bits such that adding or subtracting an integer of span m can
be perfomed by reading O(m+ log n) bits and writing O(m) bits.

6 Conclusion

We have shown that a number of dimension n can be incremented and decre-
mented by reading strictly less than n bits in the worst-case. For an integer in
the range [0, . . . , 2n−1] represented using exactly n bits, our (n, n−1, 3)-counter
reads n − 1 bits and writes 3 bits to perform increment/decrement operations.
One open problem is to improve the upper bound of n− 1 reads for such space-
optimal counters. Fredman [2] has shown that performing an increment using
BRGC requires n bits to be read in the worst-case but the same is not known
for all Gray Codes.

For the case of redundant counters, we have improved the earlier results
by implementing increment operations using counters with space-efficiency ar-
bitrarily close to one which write only 2 bits with low read complexity. We
have obtained representations which support increment and decrement opera-
tions with fewer number of bits read and written in the worst-case and show
trade-offs between the number of bits read and written in the worst-case and
also between the number of bits read in the average-case and the worst-case.
Finally we have also improved the space complexity of integer representations
that support addition and subtraction in optimal time.

References

1. Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin, and Michiel
H. M. Smid. Improved methods for generating quasi-gray codes. In Haim Kaplan,
editor, SWAT, volume 6139 of Lecture Notes in Computer Science, pages 224–235.
Springer, 2010.

2. Michael L. Fredman. Observations on the complexity of generating quasi-gray codes.
SIAM Journal on Computing, 7(2):134–146, 1978.

3. F. Gray. Pulse code communications. U.S. Patent (2632058), 1953.
4. M. Ziaur Rahman and J. Ian Munro. Integer representation and counting in the bit

probe model. Algorithmica, 56(1):105–127, 2010.

