
Integer Reversible Transformation to Make JPEG Lossless*

Ying Chen Pengwei Hao
Center for Information Science, Peking University, Beijing, 100871, China

Department of Computer Science, Queen Mary, University of London, E1 4NS, UK
{chenying, phao}@cis.pku.edu.cn

Abstract
JPEG, as an international image coding standard based on
DCT and Huffman entropy coder, is still popular in image
compression applications although it is lossy. JPEG-LS,
standardized for lossless image compression, however,
employs an encoding technique different from JPEG. This
paper presents an integer reversible implementation to
make JPEG lossless. It uses the framework of JPEG, and
just converts DCT and color transform to be integer
reversible. Integer DCT is implemented by factoring the
float DCT matrix into a series of elementary reversible
matrices and each of them is directly integer reversible.
Our integer DCT integrates lossy and lossless schemes
nicely, and it supports both lossy and lossless compression
by the same method. Our JPEG can be used as a
replacement for the standard JPEG in either encoding or
decoding or both. Experiments show that the performance
of JPEG with our integer reversible DCT is very close to
that of the original standard JPEG for lossy image coding,
and more importantly, with our transform, it can compress
images losslessly.

1. Introduction

Although wavelet-based JPEG-2000 has become the
new generation of image compression standard [1, 6],
many successful image compression applications still
benefit from the previous standard, discrete cosine
transform (DCT) based JPEG. It was proved theoretically
in [3] that, for a commonly used class of source models,
DCT is the optimal K-L transform in the limiting case that
the adjacent element correlation tends to unity. Many
transform coding standards, such as MPEG-1, MPEG-2
and H.263, are also based on DCT.

Originally, the float DCT is lossy and not integer
reversible, although many applications require lossless
compression. After JPEG standardization, ISO also
standardized a technique as “ lossless JPEG”, which is very
different from the DCT-based JPEG and is named JPEG-
LS [2]. Yet some other applications demand both lossy
and lossless compression or even progressive compression
from lossy to lossless.

DCT-based JPEG is lossy because the three necessary
processes in the image compression are all lossy: color
transform, DCT and quantization.
* Supported by FANEDD China, under Grant 200038.

For each block of the image, if we use integer
reversible DCT (RDCT) instead of the original floating-
point DCT used in JPEG and then use lossless
quantization, lossless compression can be achieved in the
block. Multi-component images, such as color images, can
be compressed losslessly with the reversible component
transform (RCT).

In this paper, a system named integer JPEG (iJPEG) is
proposed to implement the integer reversible JPEG. The
system works the same as DCT-based JPEG but uses
RDCT. Advantages of iJPEG and the compatibility
between iJPEG and JPEG are also studied.

2. Integer Reversible DCT

According to paper [5], there are at most three
triangular elementary reversible matrices (TERMs) or at
most N+1 single-row elementary reversible matrices
(SERMs) for an nonsingular NN × matrix factorization,
except for a possible permutation matrix in the TERM or
SERM factorization. The authors presented a factorization
of DCT as an example for reversible integer mapping.

The transform matrix of the eight-point DCT used in
JPEG is:

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

=

0.0975-0.27780.4157-0.49040.4904-0.41570.2778-0.0975

0.19130.4619-0.46190.1913-0.1913-0.46190.4619-0.1913

0.2778-0.49040.0975-0.4157-0.41570.09750.49040.2778

0.3536-0.3536-0.3536-0.35360.35360.3536-0.3536-0.3536

0.4157-0.09750.49040.27780.2778-0.4904-0.0975-0.4157

0.46190.19130.1918-0.4619-0.4619-0.1913-0.19130.4619

0.4904-0.4157-0.2778-0.0975-0.09750.27780.41570.4904

0.35360.35360.35360.35360.35360.35360.35360.3536

A

The matrix satisfies det A=1. Therefore, it can be
factorized into SERMs:

012345678 SSSSSSSSSAPP T
R

T
L =

where 8,2,1, �=+= mseIS T
mmm

, TseIS 080 −= and
me

is the m-th standard basis vector formed as the m-th

column of the identity matrix. The vectors ms to make

SERMs are:

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

01.1914-1.65771.24050.65610.3881-2.0306-1.1020

0.490401.16650.41700.0318-0.0928-0.7180-1.0024

0.3560-0.1594-00.8730-0.5307-0.2931-0.58100.6573-

0.2517-0.88730.707101.0824-0.2073-0.41080.4591

0.1700-1.03780.1422-0.617300.44390.96640.7957

0.20390.5953-0.66710.30661.0000-01.7104-0.0364-

0.38410.3205-0.25680.2235-0.2708-0.270800.0685-

0.4619-0.4486-0.01560.10290.4712-0.05701.1129-0

20.0288-0.38051.2228-0.60580.5375-2.82341.1648-

8

7

6

5

4

3

2

1

0

T

T

T

T

T

T

T

T

T

S

S

S

S

S

S

S

S

S

The corresponding permutation matrices are:

zj1
icsp2

zj1
icsp

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

=

00000010

00000001

10000000

00100000

00000100

00010000

01000000

00001000

LP

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

=

00100000

00000010

00000001

01000000

00001000

00010000

10000000

00000100

RP

Suppose an integer vector is Txxxx),,(821 �= , the

integer implementation of Axy = can be:

xPSSSSSSSSSPy RL 012345678=′
and its inverse is:

ySSSSSSSSSPx R ′=′ −−−−−−−−− 1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

, where x′

is the reconstructed vector of x , T
mmm seIS −=−1

(8,,2,1 �=m),and TseISS 080
1

0 −==− are SERMs

For each SERM,
mS , its reversible integer transform

can be implemented in-place for m-th element only:

[]bxxsxy m
mn

nmnmm +=�
�

�
�
�

�+=′ �
≠

where 8,,2,1,0 �=m .

Its reverse is as simple as it:

[]byxsyx m
mn

nmnmm −′=�
�

�
�
�

�−′= �
≠

where 0,1,,6,7,8 �=m .

Actually, we also have

()()() ()()
()() ()()()RL

T
LL

T
LL

T
LL

T
LL

R
T

RR
T

RR
T

RR
T

RRL

RL

PPPSPPSPPSPPSP

PSPPSPPSPPSPPP

PSSSSSSSSSPA

0178

0178

012345678

�

�

=

=

=

Therefore, we only need simpler computations than that
proposed in [5]. The factorization for RDCT we can use
is:

012345678 kkkkkkkkk SSSSSSSSPSA = or

PSSSSSSSSSA kkkkkkkkk 012345678
=

where
RLPPP = ,

Nkk =0
, and

121 ,,,, kkkk NN �−
 is a

permutation of 1,2,,1, �−NN .

For lossless RDCT and its lossless reverse, we have
xx ′= . We define yyError ′−= as the error of the RDCT

that results from rounding arithmetic operations.

3. Integer JPEG System

Our integer JPEG (iJPEG) works the same as DCT-
based JPEG. The only difference between them is that
RDCT takes the place of the original float DCT in the
encoding phase and the inverse of RDCT replaces the
IDCT in the decoding phase.

Similar as depicted in [7], our iJPEG encoder and
decoder are shown in Figures 1 and 2 respectively.

Figure 1 iJPEG Encoder

Figure 2 iJPEG Decoder
When a source image is encoded by iJPEG, each 88×

block of a component is transformed by RDCT. Then,
some insignificant information may be discarded by the
quantizer. This process may be lossy or lossless. Huffman
entropy coding which follows the quantization process is
lossless. If the quantizer is lossless, the reconstructed
image will be the same as original source image. Our
lossless quantizer uses a quantization matrix whose
elements are all 1's.

iJPEG uses the same file format of compressed images
as that of JPEG files. Therefore, our iJPEG-compressed
images can be decoded by JPEG decoder and JPEG files
can also be decoded by iJPEG decoder.

The integer transform produces an error brought in by
each SERM step, � �� �� �� ��� 0128 xSSSSPy =′ (� �
denotes the rounding arithmetic). Our SERMs are
carefully chosen so that the error is not so large.

For color images, a color transform is used as a pre-
process before intra-component coding.

A commonly-used color transformation is from RGB to
YCrCb. YCrCb is adopted by JPEG and JPEG 2000 [6].
The forward transform and its inverse formulae are:

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

−−
−−=

�
�
�

�

�

�
�
�

�

�

B

G

R

Cb

Cr

Y

500.0331.0169.0

081.0419.0500.0

114.0587.0299.0

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

−−
−

=
�
�
�

�

�

�
�
�

�

�

Cb

Cr

Y

B

G

R

000.0772.1000.1

714.0344.0000.1

402.1000.0000.1

It's the only color space to de-correlate the original
tristimulus color components in JPEG. However, as a
matter of fact, the determinant of above forward transform
matrix is 0.2363, less than 1. Therefore, YCrCb not only
de-correlates the original color components but also
discards some information to get lower entropy. The
discarded information cannot be recovered, so the
transform is lossy.

A lossless color image compression method has to
employ some RCT or use no color transform at all (RGB).
Some RCTs can be used in our iJPEG for lossless color
image compression, but the compatibility between iJPEG
and JPEG will be weakened once other color transform is
used.

An approximated reversible color transform, accepted
by JPEG2000, named ORCT in this paper, is given in [4]:

()� �

�
	

�

�

−=
−=

++=

GBCb

GRCr

BGRY 4/2
 and inverse:

()� �

�
	

�

�

+=
+=

+−=

GCbB

GCrR

CbCrYG 4

4. Experiments

We use PSNR as a metric for lossy image quality
evaluation and bit rate for lossless compression
assessment. For lossy compression evaluation at the same
bit rate, if the PSNR of an iJPEG-compressed image is not
lower than the PSNR of the JPEG-compressed image,
iJPEG is at least not worse than JPEG.

In order to evaluate the image quality of the both
method comparing to the original image, we apply iJPEG
and standard JPEG to some 8-bit standard test images,
such as, Lena, peppers, mandrill, and Barbara. Then we
measure the image quality of the reconstructed images.

To measure the compatibility between iJPEG and
JPEG, we use a number of JPEG-compressed images
found from the internet, games and acquired with
scanners, and we decompress them with both iJPEG and
JPEG. For each JPEG image, the iJPEG-reconstructed and
the JPEG-reconstructed versions are compared to obtain a
PSNR.

As a lossless image compression system, iJPEG is also
compared with other lossless systems, JPEG-LS and
JPEG-2000. The assessment metric is the lossless bit rate
(bits per pixel, bpp). For lossless compression, we also
compare the bit rate to the best lossy performance of
standard JPEG and to show the error (PSNR) between
JPEG and iJPEG.

4.1. Image Quality Comparing to the Original
Images

In order to compare the decompressed image with the
original image, four different compression system
combinations can be employed in the encoding phase and
the decoding phase: (1) Both encoding and decoding are
with JPEG; (2) Encoding with JPEG and decoding with
iJPEG; (3) Encoding with iJPEG and decoding with
JPEG; (4) Both encoding and decoding are with IJPEG.

Therefore, for a specific source image and a given
quantizer or quality specification, we can have 4
reconstructed images. Then, PSNRs are measured between
each reconstructed image and the original.

Experiments with Lena (Figure 3) show that the
reconstructed images have nearly the same image quality.
Since PSNRs of lossy experiments are all less than 50, in
Figure 3, the largest PSNR of the fouth curve is actually
infinity, which indicates lossless reconstruction.

Curves of PSNR versus compression ratio in our
experiments with other test images are all similar. IJPEG
and JPEG give very close compression performance, and
more importantly, iJPEG enables lossless compression.

Figure 3 Compression quality comparing to
the original image (Lena)

4.2. Comparison and Compatibility between
iJPEG and JPEG

JPEG images are now still very popular and
everywhere, so we also investigated the compatibility and
difference between iPEG and the standard JPEG.

For a given quantizer, reconstructed images are
compared and PSNRs are obtained to measure the error
between the reconstructed images with iJPEG and JPEG.

Experiments show that PSNRs between the
reconstructed images are all larger than 30dB. Thus, the
error between them is very small.

As in Figure 4 with Lena, the difference measured by
PSNR between iJPEG and JPEG should be acceptable.
And the experiments with other test images are very
similar, so the error with RDCT is very small.

Figure 4 Comparison of reconstructed images
with different codecs (Lena)

In our experiments, about 135 JPEG images are
decoded by both iJPEG and JPEG. PSNRs obtained
between those reconstructed image pairs are all large.
Among all our experiments, the minimum PSNR is
35.54dB, the maximum is 44.63dB, and the mean PSNR is
37.99dB.

These imply that iJPEG and JPEG perform closely and
the error of our iJPEG is as acceptable as that of JPEG.

4.3. Performance of Lossless Compression
Bit rates (bits per pixel, bpp) of some experiments are

listed in Table 1, compared with JPEG, JPEG-LS [2] and
JPEG 2000 lossless [1].

Table 2 gives the bit rates of color image experiments
with different color transforms. ORCT and RGB only
(without any color transform) are used in our iJPEG.

For lossless compression, although the bit rates with
iJPEG are a little higher than that with JPEG-LS and
JPEG-2000 lossless, most importantly, iJPEG provides
both lossy and lossless compression possibilities and
integrates them very well.

5. Conclusions

The integer reversible DCT (RDCT) is a very good
approximation for reversible integer transform of DCT.
The compression quality with RDCT is very close to that
with DCT used in JPEG. The error between RDCT and
DCT is small and our new compression system has good
compatibility with JPEG.

Our RDCT enables lossless compression and thus
integrates lossy and lossless compression in standard
JPEG perfectly. Therefore, it is possible for our RDCT
compression system to support lossy-to-lossless
progressive coding. Compared with JPEG-LS or JPEG
2000 lossless, the performance of lossless compression is
also good.

To compress color images losslessly, some reversible
color transform is required. ORCT is employed in our
compression system. Although ORCT is not always the
best choice, such color transforms are still quite useful and
may perform better for low bit rate compression.

6. References

[1] M. D. Adams, "The JPEG-2000 Still Image
Compression Standard", ISO/IEC JTC 1/SC 29/WG 1 N
2412, Sept. 2001.
[2] R. Ansari and N. Memon. "The JPEG Lossless
Compression Standards", Handbook of Image and Video
Processing. A. Bovik, Editor, Academic Press, 2000.
[3] R. J. Clarke, "Relation between the Karhunen-Loeve
and cosine transforms", IEE Proceedings, Part F:
Communications, Radar and Signal Processing, Vol.128,
No.5, pp.359-360, 1981
[4] M. J. Gormish, E. L. Schwartz, et al, "Lossless and
nearly lossless compression of high-quality images",
Proceedings of the SPIE / IS&T Conference on Very High
Resolution and Imaging II, vol. 3025, San Jose, CA, pp.
62-70, February 1997.
[5] P. Hao, and Q. Y. Shi, "Matrix Factorizations for
Reversible Integer Mapping" IEEE Trans. on Signal
Processing, Vol. 49, No. 10, pp. 2314-2324, 2001.
[6] C. Christopoulos, A. Skodras, T. Ebrahimi, “The
JPEG2000 still image coding system: an overview”, IEEE
Transactions on Consumer Electronics, Vol. 46, No. 4,
2000, pp. 1103 -1127
[7] G. K. Wallace, "The JPEG Still Picture Compression
Standard", Communications of the ACM, V34, N4, 30-44,
1991

Table 1. Lossless compression of gray-level images

Source Gray-Level Images
iJPEG
lossless

JPEG
best

JPEG-LS
lossless

JPEG2000
lossless

Name Size bpp bpp bpp PSNR bpp bpp
Lena 512*512 8 4.70 4.68 46.17 4.24 4.32

Barbara 512*512 8 5.11 5.08 44.51 4.73 4.67
Peppers 512*512 8 4.94 4.92 45.89 4.49 4.63
Mandrill 512*512 8 6.41 6.41 42.70 6.04 6.12
Goldhill 256*256 8 5.77 5.77 44.64 5.32 5.55

Fishingboat 256*256 8 5.24 5.22 45.05 4.80 4.89
Cameraman 256*256 8 5.13 5.08 43.73 4.31 4.57

Table 2 Lossless compression of color images

Source Color Images
IJPEG &
ORCT
lossless

iJPEG &
RGB

lossless

JPEG
best

JPEG-
LS

JPEG
2000

lossless
Name Size bpp bpp bpp bpp PSNR bpp bpp
Lena 512*512 24 14.30 14.78 12.34 40.11 13.60 13.60

Mandrill 512*512 24 18.67 19.71 16.73 38.62 18.51 18.09
Peppers 512*512 24 15.54 15.52 13.40 39.97 14.26 14.81

F16 512*512 24 12.93 14.02 10.88 39.99 11.84 11.55
Sail 512*768 24 12.96 17.45 10.91 39.69 15.61 10.66

