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Integer Sets with Distinct Subset-Sums

By W.F. Lunnon

Abstract. In Section 1 we introduce the problem of finding minimal-height sets of n natural
numbers with distinct subset-sums (SSD), and in Section 2 review the well-known Conway-Guy
sequence u, conjectured to yield a minimal SSD set for every n. We go on (Section 3) to prove
that u certainly cannot be improved upon by any "greedy" sequence, to verify numerically
(Section 4) that it does yield SSD sets for n < 80, and (Section 5) by direct search to show
that these are minimal for n < 8. There is a brief interlude (Section 6) on the problem of
decoding the subset from its sum. In Section 7 generalizations of u are constructed which are
asymptotically smaller: Defining the Limit Ratio of a sequence w to be a = hm„_00 wn/l"~l,
the Atkinson-Negro-Santoro sequence v (known to give SSD sets) has a = 0.6334, Conway-
Guy (conjectured to) has a = 0.4703, and our best generalization has a = 0.4419. We also
(Section 8) discuss when such sequences have the same a, and (Section 9) how « may
efficiently be computed to high accuracy.

1. The Distinct Subset-Sum Problem. A well-known problem in combinatorial
number theory [2, pp. 64-65] involves the construction for given n of a set
P = {/>;}> i = 1,•••,«, of natural numbers possessing the property we shall call
Subset-Sum Distinctness, or SSD for short: That is,

(l.i) E/>,= E/»i- 5 = tc{i,...,«},

or, distinct subsets of p have distinct sums. Evidently, choosing p¡ = 2'"1 satisfies
(1.1); the interest lies in how much the maximum element pn can be reduced below
2»-i

In order to explore the SSD property, it is convenient to consider a more general
concept: We say that x has a representation by p, with length k and signature /,
when for some S and T as before

(1.2) x-Ea-Ea.
/es /er

where S n T = 0, \S\ + \T\ = k, \S\ - \T\ = /; that is, x is the difference of two
disjoint subset-sums, of which the first has / terms more than the second, and the
two together have k terms. Alternatively,

n

(1.3) x = £ elPi,
;=i
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298 W. F. LUNNON

where e, e (-1,0, +1}, T.ei = l, X|e,| = k. In terms of this notation, p is SSD when
there is no nonempty representation of zero.

Interesting sets turn out to be associated with certain infinite sequences w = (wn),
n = 0,1,2,..., in the following fashion: Given w and n, set

(1.4) Pi = wn-w„_i,        1 = 1,...,/!.

The significance of this definition is that the «th set p" is obtained from p""1 by
attaching a zero, then incrementing every element by the same quantity wn - wn_v
Evidently, the maximum pn equals wn.

One such sequence is the Atkinson-Negro-Santoro sequence v [12], whose first few
values are

,,«012345      6      7      8       9       10      11       12
"■5>    vn    0     1     2    4    7    13    24    46    88    172    337    667     1321
and which is defined by the recurrence

(1.6) v0 = 0,    vx = l,    vn+x = 2vn - vn_m    for/i>l,

where m = [\n + 1] is the greatest integer not exceeding \n + 1.
Example. If we take n = 6 in (1.4), from (1.5) we get the SSD set

(1.7) p= {11,17,20,22,23,24},
which is the unique, optimal solution to the recreational problem posed in [3, no. 5].

(1.8) Theorem. Relation (1.4) produces a SSD set p from v for all n.

Proof. In fact, p has the further property that only positive numbers x can be
represented by positive signatures. This will plainly be true if it is true for the largest
T and smallest (longer, disjoint) S possible, that is, if

[5«- Il
E p¡-    E   /»/>i.
'-I i-lkn + li]

Rewriting in terms of v, and remarking that equality gives us the smallest possible
sequence, we get

«-1 [í»-i|]
(1-9) v„=    E   v,-     E    v, + l.

/-[I*] i-0

This is easily seen to hold for the sequence (1.6). Now suppose the theorem to be
false, and n to be the first for which it fails. By the foregoing, p must represent zero
with signature 0, that is T.¡eSv¡ = T.ieTv¡ where \S\ = \T\, 0 € S (say), and n £
SUT. But then {vn_x - i>„-1 -,} would not be SSD, contrary to hypothesis.   D

Dividing by 2"_1 and iterating (1.6), it may further be shown that v possesses a
limit ratio,

(1.10) vn/2n~x -* av   where av = 0.63336835 ... ;

the computation of this and similar constants is pursued in Section 9. Finally,
observe that if we have any particular SSD set p of size n0 and its corresponding w,
then for n > nQ Eq. (1.9) of the construction above may be used to extend w
indefinitely, yielding arbitrarily large SSD sets. The resulting limit ratio will indeed
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INTEGER SETS WITH DISTINCT SUBSET-SUMS 299

be smaller than at n0, although the improvement (of order 2~~2"0) is in practice
negligible.

Rather more intriguing is the Conway-Guy sequence u, whose first few values are

«012345678       9       10      11       12
(1.11) w-12233344       4        4        5 5

u„    0     1     2    4    7    13    24    44    84    161     309    594    1164

and which may be defined by

(1.12) w0 = 0,    ux = l,    u„ + 1 = 2un- un_m    foxn^l,

where m = [7 + -Jlñ]. This choice of m ensures that Tm_x < n < Tm for n > 0,
where

(1.13) Tm=\m(m + l)

is the rath triangular number.
In [1] is advanced the following
(1.14) Conjecture. Relation (1.4) produces a SSD set from u for all n. We

christen this the Conway-Guy conjecture, and Sections 3-5 comprise some investiga-
tions into the matter. The limit ratio of u is

un/2"'1 - «u   where au = 0.47025057....

Finally, in [1] and [2, pp. 64-65] is further proposed the
(1.15) Conjecture, u and au are "in essence" best possible; though the author

appears to have something relatively weak in mind, we choose to interpret this as
doubting whether sets with smaller a are possible. In Section 7 we shall consider
generalizations of u which contradict (1.15), whether or not they also satisfy (1.14).

2. The Conway-Guy Sequence. There follows a more succinct presentation of the
material in Theorems 5-8 of [1]. We assume implicitly n > 0, and un and m defined
as in (1.12). Summation is implicitly over 1.

(2.1) Lemma. We have un > 0, un + x - u„ > 0, /„ = un + 2 - un+x - u„ > 0.

Proof. By induction using (1.12): For the last part, note that f0 = 1, and for
n 5* 2,

A/„-2 = "„+1  - 2un + Un-2

= un_2-u„_m   by (1.12)

> 0   by the previous parts, noting m > 2 if n > 2.   D

If a sequence w has no nonempty representation of zero with signature 0, we
christen it SSD0. It turns out that this property is equivalent to the associated sets p
being SSD, at any rate when w is the Conway-Guy sequence: for

(2.2) Theorem. Let the set p be associated with the sequence w = u by (1.4) for
some fixed n. Then p is SSD when u is SSD0.

Proof. Suppose Lsp¡ = Lr/»,-, with \S\ - |7| = / > 0, say. Then by (1.4),

(2-3) u„l - E "„-, + E "„-, = 0.
S T
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300 W. F. LUNNON

Taking the greatest possible number of large terms in the first sum and small in the
second, the left-hand side of this is

n-l [\(n-l-2)\

>u„l-       E      «/ +       E      ", = c?„>   say.
[i(»-/+l)] o

But g, = E'0-1(w/ - «,) > 0 by (2.1), provided / > 1; and for n > I,

Ag„ = l(un+x - u„) -u„ + uc_(n_l+2)]

(2.4)
= (/ - 2)(«n+1 - «J + 2un+x - 3un + W[i(„-,+2)]

= (l- 2)(m„+1 - «„) + u„ - 2un_m + W[i(„-/+2)]

> 0,   provided / > 2 and m > 2 by (2.1).

In fact, if n > / > 2, then we must have ra > 2, so (2.3) is impossible unless / = 0,1.
If / = 1 we can make it 0 simply by attaching i = n to T; so finally / = 0. The
argument is easily reversible.   D

Notice that (2.2) would hold for any w provided only that it satisfied the relatively
weak condition g¡ > 0 for / > 1 established above (2.4) for u.

As it happens, there are rather a lot of representations of zero by u with signatures
other than 0. With Tm as in (1.13), we have

Lemma. IfTm_x^n^Tm then
m—l m—1

(2.5) 1+   E  "„-, = "„+!+   E  uTil.
0 0

Proof. Observe that Eq. (2.5) is immediately equivalent to (1.12), then invoke the
uniqueness of u. [Notice that n = Tm_x is included here, in contrast to (1.12): In this
instance the terms ; = ra - 1 cancel from both sides, reducing to the previous
situation.]   D

For ra > 3 the 1 and the uT cancel from both sides, giving representations of zero
whose size 2ra - 2 increases with n. For fixed size the search for a counterexample
to property SSD0 is indeed effectively bounded by

(2.6) Theorem. If there is a representation of zero with signature 0 and size 2k by
(u0,..., un), then we can take n = Tk + 1.

Proof. Let u„+x be the largest term occurring in such a representation, and
suppose the corresponding m > 3. Then

m— 1 m — l

««+i = E "„-, + i- E «r,.,  °y (2-5)
0 0

m-2 m-1

=     E    "„-,+ «„-m + l-     E    "!•_,
0 3

m-2

> E "„-,+
0

m-1

Ut     _ Ml   ~ E    UT,-i

If ra = 3, the bracketed quantity [...] = m2 > 0; and if ra > 3,

Amt • • • I = "rm_2+i- ut„_2 - "rm_3+i > 0   by (2.1).
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Therefore,
m-2

«n+i > E «„-,-;
0

and since the right-hand side is the maximum possible sum of ra - 1 terms whose
largest is un, it follows that the size 2k of the representation is at least 2ra; that is,
given k, the maximum possible value of n + 1 is Tk + 1. The cases m < 3, i.e.,
n + 1 < 4, are easily disposed of by inspection.   D

3. The Local Optimality of u. As we have remarked, it is not known that u is SSDO
for all n. However, we can show that no number smaller than un may be attached to
the previous members of the sequence. In pursuit of this end, we define a pair of
functions a = anl, b = b„¡, such that the entire open interval (b, a) turns out to be
representable by {u0,...,un_x} with signature /. [For this purpose we include the
empty representation of zero, with k = / = 0.] As before, Tm_x < n < Tm, and
summation is over i. We make use of a directed sum convention, similar to that for
integrals: I«"1» -Zpq~\

Definition. For |/| < ra,
/-i t+i

(3.1) anl= u„_,+i + £ u„_¡;       b„,= -wB+/+1 + £ «»+/+!-<■
i i

Each of these is equivalent to the other, by virtue of directed sums and the symmetry
relation
(3-2) bnl = -a„_,
following from the obvious fact that, when x is representable with signature /, then
-x is also with -/.

Below in (3.3) is a short tabí'e of (bnl, anl), for / > 0 only, in view of (3.2).
n/l 0 1 2 3
0 (-1,1)
1 (-1,1)        (-1,1)

„,v 2        (-2,2) (-1,2) (0,2)
K     ' 3        (-3,3)        (-2,4)        (0,4)

4 (-6,6)        (-4,7)        (0,8)       (4,8)
5 (-11,11)     (-7,13)     (-3,14)     (4,15)
6 (-20,20)     (-16,24)     (-9,26)     (4,27)

(3.4) Lemma. The endpoints of the interval are consistent, that is, anl > bnl.

Proof. Relation (3.2) takes care of / < 0, so we assume 0 ^ / < ra. Then,
/-i

anl=un_l+x+  £ «„_,    by (3.1)
i

/-i
- »n-l+l -«»+    E   "„-,

0
m—l m—l

= "»+1 - «■ + Un-t+i - 1 -   E  «„-, -   E  "r,.,
/ 0

by (2.5) and rearranging.
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302 W. F. LUNNON

In a similar fashion,

/+i

1

1-1

= -«„-w+i + »„ + E "„+/-
0

m' - 1 m' - 1

= «B - 1 -    E   "„+/-; +    E   «r,_x.
/ 0

where w' is chosen so that 7]„,_j < « + / < 7m-. There are now two cases to
consider: Since n^n + l^n + m and Tm_x + m = Tm, either ra' = ra or ra' =
m + 1. In the first case,

m-l

anl-Kl=  ["« + 1 - 2"„+  «„-/+1J +     E    [«■ + /-/ -«»-il
/

m-l

= [«,-/+! - M«-m] +     E    [«« + /-/-«■-*]

> 0   by (2.1), the bracketed terms being nonnegative.

In the second case, the right-hand side contains the extra term [un+l_m - uT ],
which is nonnegative since n + I - m > Tm - m = Tm_x.   D

(3.5) Corollary. Setting n = Tm — 1,  I = m in the above expression (second
case), we have in this instance a nl - bnl = uT _l - u(T    _X) = uT  - uT _x by (1.12).

I i
Lemma. Adjacent intervals "overlap" for the purposes of (3.8) in the sense that

(3.6) <!„,_! + un>anl > b„,_l + u„>bnl     forl>-m,

(3-7) anl > a„J+i -u„>b„,> ¿>„/+1 - u„    forl<m.

Proof. First observe that (3.7) is obtained from (3.6) by substituting / + 1 for /
and subtracting u„. For the first inequality of (3.6),

1-2 1-1

<*n,l-l + U« - °nl = ««-/+2 +    E   "„-, + U„ - U„^,+ x  -    E   «„-/      by (3.1)
1 1

= »n-l+2- 2u«-l+l + Un

n-un_m        if Tm_x<n- I + I,

un-un_m+x     if Tm_i >n-l+l

The third is proved similarly, or we can use (3.2) and directed sums. The second is
attacked along the lines of (3.4): To begin with, we assume that / > 0, and
« + / - 1 < T„. Then

m-l

a„,-bnJ_i -«„ = «„_/+! +["„+/_„, -«„-«]+   E   ["»+/-/-«»-;]

> 0    since 0 < / < ra.
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As in the proof of (3.4), if instead n + I — I > Tm then the right-hand side gains the
extra nonnegative term [un+l_x_m - uTm ]. Finally, if -ra < / < 0 we can use (3.2)
to transform (3.6) into the equivalent (3.7) with / > 0.   D

Lemma. For 0 < / < m, (b, a) satisfies the recursion

aoo = _"oo = 1»

an+l,l= an,l-\  + "»'

(3.8) (V/-1 + ».    >fTi-i = »>
bn+1J=lbnl ifT,_x<n<T„

\b„,,+i-un    ifT,<n.

For -ra <; / < 0 we may apply (3.2) to the above.

Proof. The first, second and fifth lines are immediate from Definition (3.1). For
the others, we transform (3.1) via (2.5) as before to get

m-l

b„m = E "r   - l;
0

for the fourth line, ra is the same when n is replaced by n + 1 ; for the third line, ra
increases by 1 and the extra term required on the right-hand side is just uT     = un.
U

(3.9) Theorem. For bnl < x < anl, x is representable with signature I by
{u0,...,u„_x}.

Proof. By induction on n. From definition (1.3), x is representable with signature
/ by the larger set {u0,..., u„} when there is some y representable by {w0,.. .,u„_x}
such that either (i) x = y + un and y has signature / - 1; or (ii) x = y and y has
signature /; or (iii) x = y - un and y has signature / + 1. If the theorem is assumed
for all / and some given n, we can build up a consecutive interval (b, a) of such x
from some combination of these three cases, provided the intervals in question exist,
(3.4), and are sufficiently close to one another, (3.6). For example, provided I < m
(so that n > 7}+1), by (3.4) all three smaller intervals exist, and by (3.6) the interval
(bn,i-i>an,i-i) + un includes the top endpoint of (b„„anl), and by (3.7) (bnl,anl)
includes the top of (bn ¡+x,an /+1) - un; therefore their union (bn /+1 - un, an ,_, +
w„) is representable, and by (3.8) that is exactly (bn+x „ an+x ¡). The various special
cases for / = ra may be verified similarly. Finally, at n = 0 we have (bœ, a^) =
(-1, +1) by (3.3) or (3.8), which is correct since zero is representable by the null set.
D

(3.10) Lemma. Forn > 0, anX = un and bnX < 0.

Proof. Use (3.1), (2.1).   D

(3.11) Theorem. The set {u0,...,un_x,x}failstobeSSDOifx < un.

Proof. By (3.9), (3.10), if 0 < x < u„ then x is representable with signature 1 by
{«0,...,u„_i},say

x=  E ",-   E «/    where |S|-|7| = 1.
íes ye T
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304 W. F. LUNNON

So

0= E «i-(*+ E «,■)
íes V ieT      *

is a representation of zero with signature 0 by the extended set.   D
The natural way to present the results of this section would be to start from the

conditions (3.4), (3.6), (3.8) on (b,a), then derive from the formulae (3.1) as a
consequence, thus avoiding the "rabbit from a hat" atmosphere surrounding our
present treatment; a similar criticism can be leveled at the very definition (1.12) of
un, which structurally ought to follow from the final theorem (3.11). However, the
exigency of mathematical proof appears to preclude this intuitive approach, which is
unfortunate for more than merely pedagogic reasons since it hampers the investiga-
tion of the generalized Conway-Guy sequences discussed in Section 7.

Another direction in which (3.11) may be extended is to consider a spectrum
vector of exceptional values (..., b2, bl = b, a = a1, a2,... ) which are not known
to be representable with given n, I, rather than just the pair (b, a) dealt with
previously. A useful subsidiary quantity in this connection is

7-1
(3.12) /„,=  E [«t-,..,.,,-«^.,.,,-!]    far;-1,...,m-l,

i=i
where ra = [\ + i/ln] as before. In terms of this quantity, the extended result is

(3.13) Theorem. If x is small and {u0„...,un_x,x} is SSDO, then x belongs to the
spectrum set {un + t }, the range of j being as above. [Here "small" means not
exceeding the largest spectrum element un + tn m_x].

For example, for n = 11, m = 5, the four possible small candidates x < 608 for
attachment to (0,1,..., 309} are

594 = Un,   605 = 594 + u6 - u5,   607 = 605 + u3 - u2,   608 = 607 + ux - u0,

all of which do in practice yield SSDO sets. A natural extension to the first
Conway-Guy conjecture is to suggest that all the sets (3.13) are SSDO for any n.

The proof of (3.13) is tedious rather than particularly difficult, most of the hard
work having already been done above; we content ourselves with sketching the ideas.
The vector version of the definition (3.1) of (b, a) is

(3.14) ajnl = anl + tm_,+lJ,       H¡ = b„, + t„+l+1J,

where ; runs from 1 to the ra-value (less unity) appropriate to « — /, n + I + I,
respectively. The recursion turns out to run more smoothly if we extend the domain
of definition (3.1) to include also

K¡ = ~an,-t = a»-w-i + ««-i  for n = Tt-i only;

otherwise, the n- and /-domains of both versions are the same. The symmetry lemma
(3.2) becomes

(3.15) b¿,= -ai_,    for; in range;
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INTEGER SETS WITH DISTINCT SUBSET-SUMS 305

the induction lemma (3.8) becomes, for / > 0,

(¿4,0 = (-i,o),
(3.16) aJn+XJ = aJ„j_x + u„    for n > T„

'b¿;±i + u„    iîn = T,_i-lmdj>l,
a»,/-i + »n    if « = T/_,and ;= 1,

¿>¿ if r,.! < « < r„
M.i+i~un     Ü T,<n.

H+u

The only nontrivial idea in this intimidating concoction lies concealed in the case
n = Tt_x — I. Here a fresh spectrum, consisting only of 6's, is constructed induc-
tively (with respect to n), by shifting one place to the left (with respect to /). As a
result, all new intervals created are actually old (b, a)-style intervals, detached by
shifting at some previous n and subsequently merely translated, without any further
merging taking place. Consistency (3.4) and overlapping (3.6) are now trivial, and we
arrive at the vector version of Theorem (3.9):

Theorem. Given a value x such that b™¡ < x < a™/, for x not to be representable by
[u0,...,u„_x) with signature I, it is necessary that x lies in the spectrum set

(3.17) {b¿¡'}u{ai',},

where

I </ <m' =[{- + /2(«-/+ 1)],       1 </' < ra" = [\ + /2(/i + /+ 1)].

Proof. Where a new interval is created (at n = T/_x), the translation

~\an-\.l-l  — "n-lj-l)

is added to all existing intervals (bJ,s only, if /> 0). By (3.5), this reduces to
-(uT - uT^ _,); and the inductive accumulation of these translations, coupled
with symmetry (3.15), leads to the formulae of (3.14).   D

Finally, (3.13) follows straightforwardly from (3.17) just as does (3.11) from (3.9).

4. Numerical Verification of SSD Property. The algorithms described below make
heavy use of backtracking, a process during which a vector e is made to take every
value in turn from some predetermined set, while we search for a value with some
particular property [4, Chapter 30]. In the present situation particularly, it is fruitful
to regard the components of the vector as the individual digits of a number, written
in some exotic number base: The value x of the number is then given by the scalar
product x = e • p, where p is some fixed vector defining the values of the digit
positions, and the property sought is that x should take some given subset of values.
As x counts systematically through each possible value, the most-significant (high-
index) digits of e will vary most slowly, while the least-significant (low-index) vary
most rapidly. Impasse-avoidance involves choosing the most-significant digit values
so as to avoid partial vectors which can never lead to any desired jc.
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306 W. F. LUNNON

An obvious algorithm for the verification of the SSD property, given a set p (now
regarded as a vector with n components in ascending order of magnitude), runs as
follows:

(4.1) Algorithm. Maintain a binary flag vector f(x), setting f(x) = 1 initially for
all x. Let e backtrack over all binary vectors, and for each value x = e • p in
turn set f(x) = 0; unless it is already zero, in which case we have detected a
collision and p cannot be SSD. Otherwise, on termination, p is SSD.

Since it essentially backtracks over all binary «-digit numbers, the time and space
costs of this algorithm are plainly both of order 0(2"); we need discuss it no further.

An improvement is afforded by the classical divide-and-conquer paradigm:

(4.2) Algorithm. Partition p into pr = (/>,,..., p^n]), p2 = (p{in]+x,..., pn), and
generate lists [x] and [y] of (natural) numbers represented by p1 and p2,
respectively, in the sense of (1.2). The two lists (which incidentally will contain
many repetitions) are sorted separately, and then compared; when they contain
no common value (a collision whose difference would represent zero), p is SSD.
[It is necessary to ignore a collision between empty representations of zero\

Generation of representations by an «-vector is essentially equivalent to back-
tracking through all ternary «-digit numbers e, so the space cost is s = 0(^3"), and
the time (for sorting, [4, Chapters 8 and 9]) s log s = 0(n]/3").

For the sets p discussed in Section 3, we could instead utilize (2.2) and test
u = (u0,...,«„) for SSDO-hood. At first sight, this is scarcely an improvement:
Since we are now only interested in collisions between the values of representations
with equal signature / when using the divide-and-conquer approach, the backtracker
must generate, separately for each /, only those « + 1-digit ternary numbers whose
digit-sum is exactly /. (The construction of an efficient algorithm to achieve this last
is an unexpectedly diverting exercise!) It is true that the sets of values generated are
now somewhat smaller than before, though in practice most of the time and space
requirement is concentrated around / = «/4.

More importantly though, u has a convenient property not shared by p: Its
elements are of widely differing sizes, indeed by (1.11) very roughly u¡ = 0(2'). This
suggests the new

(4.3) Algorithm. Generate the set [y] represented by the larger half u2 of u, while
immediately discarding any value y outside the interval (xmin, xmax) of values
representable by the smaller half u1. We may expect to be left with a very short
list {y'}, which is now sorted alone; then as each value x represented by u1 is
generated, a collision with x is immediately sought among the {y'}.

This modification reduces the space requirement substantially: Experimentally, it
now appears to be roughly 0(ßy"), where ß = 10 and y = 1.07.

A further refinement is to utilize impasse-avoidance in the backtracker. Let
w = (wx,...,wm) denote the set of base elements (e.g., u2) and (r) the set of
target-values (e.g., ( y')) to be represented with signature /. Define

m [\(m-j)]

cij= E wk-     E     ">k>        dlj=-cj_i,
A: = [l(m-y + 3)J *~1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTEGER SETS WITH DISTINCT SUBSET-SUMS 307

to be the largest and smallest values which are representable with signature ; by the
/ least-significant base elements (wx,..., w¡); and let

m

h = E wk<>k
k-i

be the (partial) value represented by the current most-significant end of the (ternary)
backtrack vector e.

(4.4) Algorithm. Suppose the backtracker has just incremented e¡. If none of the t
lies within the current interval (zi + d¡_i,_,, z, + c,-_u ■) of reachable values,
then it would be futile to proceed further down e; so ei is at once incremented
again, as if all the intermediate vectors had been generated and discarded.
Should i actually reach 1, z = zx can be output.

Notice that the output set ( z} is probably almost sorted as it stands. We might hope
that the time requirement is now also reduced to around 0(y"), but in practice
something more like 0(y2") is observed.

By a happy accident, combined with the judicious placing of -oo and +00
sentinels at the beginning and end of {t}, the effect of a whole interval of target
values can be obtained simply by presenting its endpoints in reverse (descending)
order as elements of the sorted target list (r). Finally, applying this impasse-detec-
tion to the earlier algorithm, we have

(4.5) Algorithm. For the first stage of (4.3) use (4.4) with

w = («fim+i» ••-,«„),

{t) = {-<x>,xmax,Xmin, +00),

{z) = {y) on output;

and for the second stage with

w = (i/0,...,M[in]),

{t} = {-00} U{j} U{ + oo} sorted,

{z) = {x} Ç {y} on output.

As before, when {x} is empty, u is SSDO; notice that this in turn implies the
analogous result for all smaller n.

Using these methods we have verified computationally the following

(4.6) Theorem, u is SSDO, and hence p of Section 3 is SSD, for all « < 79.

This extends the calculation for « < 40 reported, but not described, in [2]. The
programming language used was ALGOL68, the computer the SWURCC ICL 2980
with quadruple-precision (128-bit) REAL arithmetic, and the time approx. 6000 sees.

By (2.6) it is unnecessary to examine representations of size 2 A: in which the
largest subscript occurring exceeds Tk + 1. This observation is of no practical value
in deciding SSDO-hood for given «, for which relatively few representations are that
short; however, we can modify (4.5) to restrict the signature / of representations
generated to / < w and choose « = Tm + 1, where m is now given. This economizes
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on time and storage (now roughly 0(1.65m)?), and we have further established
(using w = 13, « = 92) the following

(4.7) Theorem. There are no representations of zero by u with signature zero and
size 2k for k < 13 and any « whatsoever.

[The original divide-and-conquer algorithm (4.2) has by (4.5) developed a marked
asymmetry in its treatment of the two halves of u, suggesting that some division ratio
other than half-and-half might be more efficient; but this seems not to be the case.
The c and d functions utilized in (4.4) could be computed in-line, by constantly
updating current values; it is however simpler to precompute them into a triangular
2« X « matrix. This initialization dominates the time for « < 50.]

5. Numerical Search for Optimal Solutions. A simple-minded exhaustive-search
algorithm to find the best p for given « (i.e., those with smallest pn) might be:

(5.1) Algorithm. Backtrack over all increasing natural vectors p for which pn < un
as defined by (1.12), subjecting each to a verification algorithm such as (4.1), or
perhaps (4.2) if n is large enough. Few will in practice pass, and these can be
output for inspection.

This crude approach may immediately be improved using impasse-detection, since
there is no point in choosing a value for pi which is representable (see (1.2)) by
previously chosen, more significant elements:

(5.2) Algorithm. At each level i of the backtrack, compute a flag vector f ' such that
f'x = 0 when x is representable by (pl+1,...,/»„). Permissible values x for p¡
correspond to flags fx = I with x < pj+v Flag vectors are generated recursively
using logical shift and conjuction operations, as follows:

f'^f'+1&(f' + 1î/>,)&(f' + 1i/>,).

Should the bottom level / = 1  be reached,   a good SSD set   p has been
constructed and is output.

The program speed is enhanced if these are programmed to take advantage of the
computer's built-in bit-parallel logical operators, e.g., the 36-bit word BITS type of
ALGOL 68 on the Honeywell.

An equally important but less obvious improvement involves the lengths of these
flag vectors, that is, the « such that f'x is defined for all |jc| < «. A naive
implementation would use

h=    E   Pj.
j-t+i

which has the severe disadvantage that for small i—where most of the computation
takes place—the length is at its largest. Instead, we set

«=¿,<+1

7 = 1
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where sj denotes the ;th largest value available for p¡, calculated from f ' as above;
should there be less than i such values available, we have reached an impasse and
must back up (increase /'). With this definition, h decreases with i, while still
maintaining flag vectors long enough to indicate available values of all subsequent
Pj, j < i-

The final touch concerns rapid detection of l's in the flag vector when searching
for available x. Serial element-by-element search would be inefficient: For « = 8 the
average number of x (5.3) is about 1^ per 36-bit word. We utilize divide-and-con-
quer once more. Each nonzero word of the flag vector in turn is split in half, and the
highest nonzero half is again split in half, and so on until a small enough subword
length is reached to make practicable a direct table look-up for the position of the
highest 1. This is deleted and the whole word scanned again for the next 1. The
present implementation splits twice to lookup on 9 bits out of 36.

The overall effect on speed of these modifications increases with «, and is about
5:1 for « = 8. The computation eventually took about 20 hours on the UCC
Honeywell level-16, producing the following tuning statistics:

size of set « = 8
average no. of x available = 1.49

(5.3) average available value x = 18.7
average flag half-length « = 31.1
average backtrack level i = 5.93

The result is that the Conway-Guy set (1.4), (1.12) is optimal for « «i 8. It is not,
however, always unique. For « = 3, 5, 8 (and n = Tm_x + 2 in general?) the triad
{2v,3v,4v} occurs amongst the elements of this set, where v = !(«„ - un_x). The
3v may be replaced by v while preserving SSD-hood: e.g., for « = 3 we have
{2,3,4} and {1,2,4}. Apart from these, the only other optimal set found is for
« = 8:

(5.4) p= {39,59,70,77,78,79,81,84},

a curiosity to which we shall return in Section 7. For « = 9 the computation would
take 18 months; clearly, some other approach is called for.

[One striking curiosity observed is that, starting from pn = un, the backtracker
finds the Conway-Guy set at once. This is explained by Theorem (3.11), which
implies that the impasse-avoidance mechanism (4.2) generates it by choosing the first
available x at each level /.]

6. The Decoding Problem. In the situation where we originally encountered this
subject [3, no. 5], the various subsets S of an «-set were to be uniquely encoded by
the sum x = Y,imSp¡, for which it is requisite that p be SSD. This raises the converse
problem: Given an integer x and a weight vector p, how efficiently can it be
determined whether x is a sum of distinct weights of p, and (if so) of which weights
— that is, what is the binary selection vector e in (1.3)? [The problem is known
elsewhere [11] as Knapsack Decoding, one variation of which — oddly
enough—makes use of an MDCF algorithm such as we apply in Section 9 for an
entirely different purpose.] Here the obvious approach is to modify (4.1) or (4.2) to
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test for the required x, maintaining along with each value a (packed) record of its
corresponding e, in time 0(2") or 0(JJ").

However, where p is based on the Conway-Guy sequence u (or a generalization),
we can again improve on this performance by transforming the problem to one
involving u rather than p. Taking the size (which we do not at this stage know) to be
/, for each / from 1 to « in turn we have to find a binary e such that

n-l n-1

y = lun- x = E *,"<>    with  E ei = /. «,■ G {0,1} •
i=0 i-O

The e are generated by impasse-avoiding backtrack as in (4.4), except that—since e
is binary rather than ternary—the c and d functions are now given by

i j
c¡j=     E     "*>      d,j= E «*•

k-i-j+1 k=l

The w of (4.4) is replaced by « + 1, w by u, and the target set {t} contains the
single (finite) value y.

When choosing ei (in the notation of (4.4)), there are three possibilities:

(6.1) y £ [z,+1 + d,_Xj, zi+x + Ci_u],    when e, = 1;

(6.2) y <£ [zi+x + m, + d¡_u_i, zl+l + u, + ci_Xj_x),   when <?,. = 0;

(6.3) y e [z,+1 + «, + dt_ltJ_x, z,+1 + c,_w],

when either e¡ = 1, ei_1 = ■ • • = e¡_k = 0 or

e¡ = 0, e,_i = ••• =ei_k = I,

where Tk_x < i — 1 < Tk. This follows essentially from (2.5) with « + 1 and ra
replaced by / and k, and the smaller terms ignored; what we are saying here is that a
1 in position /' is equivalent to l's in the subsequent \/2i positions, and either both
are possible, (6.3), or the situation is unambiguous, (6.1), (6.2).

It follows that the time taken is at worst

(number of choices possible for /) X 2<maximum number of ambiguous position^

and since Tm is just the sum of the first ra positive integers, this is just 0(n2m) =
0(n2*2n). It seems improbable that this can be improved to time polynomial in «.

7. Generalized Conway-Guy Sequences. The fundamental idea behind the con-
struction of u (1.12) is exposed by Theorem (3.11): Given the first « elements w0,
wl,...,wn_1of a. sequence w, set wn equal to the smallest natural number which has
no representation with signature 1 by the previous elements. Initialized with w0 = 0,
this procedure generates a SSDO sequence w which is apparently (as we saw in
Section 4) identical with u. The occurrence of an optimal SSD set (5.4) unrelated to u
alerts us to the possibility that other initializations might also generate interesting w,
in particular some which may improve on (have elements eventually smaller than) u:
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Some of these sequences are shown in Table 1. The first is u itself, established in
Section 5 to be best possible for small «. w° almost achieves glory for « = 8, where
it produces (5.4), but then bounces back above u and deteriorates, w1 actually
improves on u for all « > 12—in particular, tv12 = 1159 < 1164 = u12—and w2 is
better still for « > 13.

[Notice that although the sequences w are SSDO, the corresponding sets p may
exceptionally fail to be SSD. This unruly behavior occurs in w° for « = 4, where
p = (1,2,4,7) with the collision 7 = 4 + 2 + 1; but it invariably dies out for large
«, once some condition strong enough to establish (2.2) asserts itself, such as (2.1).]

In nearly all these instances, as well as in many others we have observed, a most
striking property is evident:

(7.1) Conjecture. After an initial settling-down region, of length nx possibly
exceeding the length «0 of the initializing segment, there is established a recurrence of
the form

"Wl " 2wn - wn-m     for n > nl>

where ra = [ j + \j2(n - r) ] and the shift constant r depends only on w.
The corresponding values of r and nx are shown below each sequence w in Table

1, together with the appropriate limit ratio a defined as in (1.10). Using the methods
of Section 4, it is a straightforward matter to establish that all the w tabulated are in
fact SSDO out to « = 67, when extended by the recurrence (7.1). Sequences
comprising an initial, arbitrary SSDO region followed by a recurrent tail of the form
detailed in (7.1), we christen Generalized Conway-Guy Sequences, or GCGS's. Our
results suggest the following extension of (1.14):

(7.2) Conjecture. Every GCGS is SSDO.
[As r increases, so do the time and space requirements of the backtracker (4.4),

presumably because the resultant bunching of elements of w spoils the performance
of the impasse-avoidance mechanism and produces more representations in a given
interval. Strikingly, for both u and w° the stack lengths are the same for each
signature /, suggesting that the actual representations generated by (4.4) are eventu-
ally dependent only on n and r, but not otherwise on w.]

At this point a concrete result may be extracted from the data. In Section 1 we
remarked that, given any finite SSD «-set p for which p„/2"~l = a, say, an infinite
sequence of longer sets—known to be SSD and with a no worse—may be con-
structed by iterating (1.9). Now w2 is known to give an SSD set at « = 67, with
already a = 0.449236 < 0.470251; our strong interpretation of Conjecture (1.15) is
thereby refuted. In fact, w3 and w4 are ultimately better still, the latter having the
currently smallest known a of 0.441926. The question of bounding a below, or even
of showing that it must be nonzero, remains completely open.

Good sequences all seem to have positive shifts, and indeed the evidence is that
the best attainable a improves with r; however, the final sequence in Table 1 is a
curious object with a large negative shift. These are rare and have no interest from
the point of view of improving a; but they are significant in a computational search,
since the large associated «rvalue makes it difficult to decide the r-value. We
suppose that the 3\ percent of cases for which our search program failed to find any
shift are all of this nature.
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Table 1

« u w° w1 w2 w3 w4 w"6
00000000
1 1 3 2 4 8 16 5
2 2 5 3 5 10 20 9
3 4 6 4 6 11 21 10
4 7 7 8 8 12 22 11
5 13 14 14 16 16 24 18
6 24 25 25 27 32 32 31
7 44 45 47 49 54 64 57
8 84 84 86 92 97 107 104
9 161 162 164 168 183 193 192
10 309 310 314 320 334 364 366
11 594 595 603 613 636 664 701
12 1164 1165 1159 1177 1218 1264 1353
13 2284 2285 2271 2262 2339 2421 2649
14 4484 4486 4456 4432 4495 4649 5194
15 8807 8810 8748 8696 8807 8934 10196
16 17305 17310 17182 17072 17280 17504 20026
17 34301 34310 33761 33531 33924 34344 39686
18 68008 68025 66919 65885 66630 67424 79006
19 13.4582 w 134885 132679 130593 130921 132427 157316
20 267420 267485 263087 258924 259503 260205 313279
r 0 0 1 2 3 4 -6
«,        1 10 7 8 9 10 19
a .470251     .470363    .458713    .447591     .444706    .441926    .569334

The search program which found the above specimens is itself quite involved.
Very briefly, the outer loop backtracks simply over all radix-è, («0 - l)-digit
numbers, each of which is interpreted as specifying the initial segment of an SSDO
sequence: If the «th digit has value k, then wn is the kth value larger than wn_x
which preserves SSDO-hood. [The 0th, «0th and all subsequent digits are taken to be
1.] Then for each n > 0, the value of wn+x is sought using (4.4) among the three
intervals (x, - e, xi + e), i = -1, 0, +1, where x¡ = 2wn - w„_m_,, and e is a
parameter increased (up to a limit of 128) until a value is found, signified by a gap in
the values represented by the previous elements with signature +1. When « reaches
a predetermined setting, which will be increased (up to a limit of 50) until r is
found, an attempt is made to identify r and nx by searching for a long, consistent
sequence of relations of the form (7.1). Finally, if and when this is successful, a is
calculated (see Section 9). Verification of SSDO-hood out to larger « (say 67) is
invoked manually only in interesting cases.

8. Equivalent Sequences. From the (extensive) output of the search program
mentioned in Section 7, it is evident that large numbers of GCGS's have exactly the
same limit ratio. Such sequences we christen equivalent.

(8.1) Lemma. If c0 and cx are natural numbers of opposite parity, and the sequence
w is a GCGS, then so is w' = (2w + cx) U c0, this being the new sequence defined by
v'0 = c0, v'n + i = 2wn + cx for « > 0, and sorted into ascending order of magnitude.
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Proof. If some value x has a representation by w' with signature zero which does
not involve c0, we can at once deduce a representation of \x by w with signature
zero; therefore x # 0. If it does involve c0, x is easily seen to be odd, so again
x # 0.   D

(8.2) Corollary. If cq,..., c0 are natural numbers such that (cl + x - c,)/2' is an
odd integer for all 0 < ; < q, and w is a GCGS with shift r and ratio a, then

m' - (p* + c,)\j(c,_lt...,c0)

is a GCGS with shift r + q and ratio a.

Proof. Induction on (8.1), definitions in (7.1) and (1.10).   D
Plainly, (8.2) allows us to construct indefinitely many equivalent GCGS's from

any given one (such as u), with arbitrarily large shifts; the converse question—whether
arbitrary equivalent GCGS's must necessarily be related in this way to some
common sequence—remains open. [This last would be the unique primitive member
w of its equivalence class such that

HCF(Aw„_m,...,Aw„) = l

for « = nx and m as in (7.1), which implies a similar condition for the infinite tail of
w.]

To explore the converse further, we first specify a basis for tail sequences: These
are all sequences which eventually satisfy a recurrence of the form (7.1), without
necessarily being SSDO or even having integer elements.

(8.3) Definition. Given 0 < i < k, let u*' be the tail sequence w where

wn¡-k =   ■■■   = Wn,-k + i-l = 0, >%-* + , =   ■■•   = WBl = 1,

and wn is given by recurrence (7.1) for r = 0 and n > nx = Tk. Also let

aki =   lim «*'/2"_1,
«-►oo

the existence of which is established in Section 9.
By choosing k suitably large and considering all the sequences involved over the

region initialized in (8.3), one easily sees

(8.4) Lemma. Given any finite set of tail sequences with shift r = 0, there is a k such
that each tail is representable uniquely as a linear combination of the ukl, i = 0,..., k,
for n > nx. Furthermore, if the sequences are integer, then so are the coefficients of the
ukl; and if nondecreasing and nonnegative, then the coefficients are nonnegative.

There follows a short table of the first few of these basis tail sequences. Notice

11    12   a
5     5

.47025057

.56088993/4

.66005617/4
25 49 .63034115/32
29 57 .73839425/32
31 61 .79332993/32

that u11 = u, and u*° = 1 is the constant sequence.

« 012345     6     78     9     10
ra 1223334444
u11 0   1    2   4   7   13   24   44
u21 0   1    1   2   4     7     13   25   48

(8.5)   u22 0   0   1    2   4     8     15   29   56
u31 0   1    1     1     2     4     7     13
u32 0   0   1     1     2     4     8     15
u33 0   0   0     1     2     4     8     16
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As a special case of (8.4), the earlier basis sequences themselves can be expressed as
linear combinations for given k, for instance, u = u11 = u20 + u21 + 2u22. This leads
immediately to linear relations among the basis limit ratios: e.g., for k = 3,

a11 = 3a31 + 6a32 + 11a33,

a21 = a31 + 2a32 + 3a33,

a22 = a31 + 2a32 + 4a33

may also be read off directly from (8.5).
Although the u*' are an integer basis, and one whose properties are readily

apparent, it is a little awkward having to deal with a double sequence of basis
elements. We shall investigate them further with a view of showing that, if we require
only a rational basis, then the u*1 are sufficient.

(8.6) Lemma. Ifn> Tk  x then uk„' > uk'_x.

That is, u*' is monotonie, just as for (2.1). Applying the recurrence to the initial
conditions of (8.3), we have

(8.7) Lemma. For 1 < i < k,

2"-T" forTk^n < Tk + i + 1,

2»-n _ i»-Tk-i-2 + i    /or rt + / + 2 < « < Tk+X.

Manipulating this last, for large enough « we have

(8.8) Lemma. For i ^ 2 only,
A-i-l

u*.'_uft,/-i = u*+u+i+    £    2-'u*+u+2+y,
7 = 0

and similarly for the corresponding akl.

In particular, using (8.6) on the right-hand side shows that for i > 2, ukl > «*''_1.
Regarding (8.8) as linear equations for the o*+1,/, they can always be solved to

give ak+1,i (and ak*1A + 2ak+1-2) in terms of the akj for each / ^ 3. Putting this
result together with (8.4), we have

(8.9) Theorem. The set of sequences comprising u00 with all ukl for k > 1 is a basis
for the GCGS's over the rationals, and similarly the set of akl for k 3s 1 is a rational
basis for the limit ratios of GCGS's.

[It is in practice more convenient to normalize the u*' by shifting downwards
through Tk — 1, so that their ratios approach unity for large k rather than zero. For
u*1 this procedure results in the sequence commencing

0,1,2,4,7,13,25,..., 2"'-' - 2"'-4 + 1,...,
where nx = k + 2, r — -(Tk - 1), and the ratio is 2~rakl. Treated in this way, it
appears numerically that the u*' give sequences which are SSDO. On the other hand,
although the u*1 give a rational basis, they do not give an integer basis in the sense
of (8.4): In fact, the appropriate (k + 1) X (k + 1) determinant—essentially |uj'|
with a row of l's attached—seems to have the value -2*-1.]

,*' —
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Returning now to the converse of (8.2), suppose we have a pair of GCGS's with
equal limit ratios a. Applying (8.2) to the one with smaller shift, we can increase its
shift to the same value r as the other; then shifting the origin of « to « = r, we are
left with two tails w1, w2 of shift zero and ratio a. Now consider the term-by-term
difference w = w1 - w2, which is evidently also an integer tail sequence, with ratio
zero; if we could be sure that it is also nondecreasing, then by (8.4) and (8.6) it
would have to be the constant sequence. Alternatively, if we could prove that the akl
are linearly independent over the rationals for given k, then the fact that w is integer
would do the trick. As things stand, there are oscillatory zero-ratio tails, such as
multiples of a21u22 - a22u21, one of which could conceivably equal the difference w.
We conjecture that this situation is impossible. The question of the linear indepen-
dence of the akl over the rationals is taken up again in Section 9.

Another question raised by (8.2) concerns the precise value of the multiplier.
Specifically, if we have a GCGS w, a set c with |c| = q, and an 5 which does not
divide any value x representable by c, then c is SSD modulo s and w' = sw U c will
be GCGS. It seems plausible that we could choose s < 2q; after all, for large enough
q there are many SSD sets c at our disposal, representing x much more dispersed
and riddled with gaps for potential í than that used above—which is effectively
c = (1,2,...,2q'1). Now we would have constructed a w' with ratio (s/2q)a
actually smaller than a, and might continue thus to reduce it indefinitely. (Of course,
s > 2q is of no interest: a will be worse, and w' will lack the locally minimal
property mentioned in earlier sections.)

Unhappily, we discover

(8.10) Lemma. With the above notation, s > 2q.

qr~Proof. Otherwise, let ß = \s < 2, and construct a new sequence w" from c alone
via the rule

v'n' = s'cj   where « = iq + ;.

Then

v'n'/ß"< max(c/j8>),
j

and so

i;;y(2n/«)->0    since/3 < 2.

However, if we assume that w" is such that (2.2) can be proved for it, and associate
a set p with it as in (1.4), by (7.2) p should be SSD. Since the 2" subset-sums are
distinct, their maximum is at least 2" - 1, the maximum wn of p is at least
(2" - l)/n, and the above limit must be at least 1.   D

9. Computation of Limit Ratios. In order to carry out a search for linear relations
between certain sets of limit ratios of GCGS's, or to examine whether a particular
ratio (such as au) is algebraic of some given degree, it is first necessary to compute
these quantities to very high accuracy. The simple-minded approach of just calculat-
ing un/2" ~l for some suitably large « is, as we shall see, convergent with order only {- ;
at the cost of some effort, this dismal performance can be improved.
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Suppose then that w is a GCGS with shift r and ratio a, and write an = wn/2"  1.
Let ra and / be defined by

n — r = rm^x + /,   where 1 < / < m.

The fundamental recursion (7.1) may be rewritten in the form

an+1 = a„-an_J2m+\

from which it may immediately be inferred that a = lim an exists, since an is
decreasing and positive. Iterating this recursion, for large ; we find

an+j = a« -(«„—+ ••• +%„_1+r)/2m+1-(ärm_1 + ,+ "• +aTm + r)/2">*2 - ....

Letting ; -> oo, this is easily rearranged to give
r-l

(9.1) an = a+   E  2-'"1E a,
i-0

1-2
1 E flr.

i-0

Finally, the right-hand side of (9.1) may be iteratively substituted for the a's
occurring within it, giving an expansion which will turn out to be of the general form

(9.2) ««/<* =   E  Uk(l,m),
k = 0

where for fixed / the Uk are of the form (polynomial in m)/(2k)m. This expansion is
asymptotic rather than convergent, converging only while k < m and afterwards
diverging. Its first few terms are

aja = 1 +
1

w

m

I

1,\2      82l)   + 3m 5,      374/+Î8 25i/ + •

where 6,, = 1 if z = /', 0 otherwise.
To find a recurrence for the Uk, the expansion (9.2) must be substituted into (9.1).

This is complicated by the fact that, in the innermost summation over i in (9.1), the
first term has an ra-value of t — 2, whereas all the rest have t - 1. It is therefore
convenient to define Uk also for / = 0, resulting in the following " unified" recur-
rence:

n
Uk(m- l,m- 1)

if k = 0,
if / = 0,

¿-i
(9.3) Uk(l,m) = {   E 2-MEU'-'-l)

\  t = m / = 0
1-2

_2-m-i ^ Uk_x(i, m-l)     ifk,l>0.
/ = 0

This form is not very convenient computationally, since—on account of the compli-
cation mentioned above— Uk is not polynomial in / for / < k. We therefore split it
apart notationally into Uk(l,m) for / > k, and Ukl(m) for / < k, where now the
functional parentheses indicate polynomial dependence (apart from an easily accom-
modated factor of 2~km). Introducing the intermediate polynomials Vk(m), S'k(l, ra),
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(9.4)

S'k'i(m) for convenience, we write down the "polynomial" recurrence for Uk(l, m),
£47(m):

/l ifk = 0,

K*(W)=     t[S'k'k(t) + S>k(t + l,t)\     ilk>0;
\ t = m

(0 if / > k - 0,

{2—-i   £    l^/.m-l)    if/>/fc>0;
í = A: — 1

Í0 ifJfc>/ = 0,

S¿'/(»0 = < 2—1 £ i4':M(ra - 1)    if k > I > 0;
I /-o

D*C, «) = {n(«) - S«(«) - S'k(l, m)   if / > k > 0;

f/»(m),/C/*(w-1'","l)    if^/ = 0>
* K(m)-S£(m)       if*>/>0.

In this form the recurrence is suitable for programming on a symbolic algebra
package, such as MACSYMA [7] or REDUCE [8]. Setting / = 1 in (9.2) and
noticing that for k > 0, U¿{(m) = Vk(m) = Wk(m)2-km, say, we find

OO

aJa =   E  Wk(m)2-km   where« = Tm_x + 1,
/t=o

and MACSYMA's formal summation and hmit facilities may (if MACSYMA is in a
good mood) deliver the following values for Wk(m) in a few minutes:

Wx = m + l,
,      5 14

W2 = w2 + -ra + —,

u,      4    3      8    2     44 32W3 = ^ra" + yra¿ + —ra + y,

A> ̂     w       8    4 .   16    3 ,   136    2      2768 18368(9.5) ^4 = jm   + Tm3 + —ra2 + —ra + -g-,

128    Sl128    4 ,   1664    3      15488    ,      151808 32768w*=irm + ^~m + ^Tm +~iWm +-2mTm+lmr>
2048    6      2048    «      10240    4      333824    ,      90112    ,^ = ~4Tm   + ^TW   + ~lTm   + ~4ÖTm   + -T2Tm

1073152     _ 2209218568505   m       2679075   '

The general form of these polynomials is not immediately obvious, although the
coefficients have tantalizingly small prime factorizations. However, the leading term
is accessible as a special case of the observation that

(9.6) Uk{l,m) = (ra - \l)k2T"-^km/k\ + (terms in ra, / jointly of degree < k),
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proved easily by substituting the right-hand side into the recurrence (9.3). For any
fixed /, therefore, including / = 1, the error involved in terminating the expansions
(9.2) or (9.5) at the (k - l)th term is essentially

(9.7) mk2k(k-l)/2-km/kl

For example, with k = 10, w = 26, « = 352, and w = u the original Conway-Guy
sequence, we find that the actual error in (9.5) and the estimate of (9.7) are 10"61
times 0.20 and 0.27, respectively.

The special case of (9.7) with k = 1 shows that the error in taking an itself as an
approximation to a is about ra/2m, or roughly 2"^: That is, the obvious method
converges with order \. Setting k = m in (9.7), we see that the error becomes
(roughly) 2~*m mm/m\, or (even more roughly) 2~", so that the convergence of this
method is first-order. It does require us to compute the polynomials (9.6) initially;
on the other hand, this is done once-and-for-all and may then be used to compute
the limit ratio for many different sequences.

A less complex method involves ignoring the details of the Uks using instead only
knowledge of their general form, and employing a modified Richardson extrapola-
tion procedure (as used in Romberg integration; see [6, Chapters 14 and 17]) for
accelerating the convergence of a„ to a. Define

"Om = a(T„+l+r)-

(9.8)
^+i.m = A*+2(2'¿*,m+,)/(2*+1-l)*+2,

where A* denotes A:th order differencing with respect to / (rather than ra). The
algorithm proceeds by increasing ra until a pair of approximations is encountered
whose difference is less than the required accuracy. It is only necessary to store an
advancing "diagonal" of Tk + X values, comprising the current bkm and k inter-
mediate differences for each.

We briefly summarize the error analysis. Suppose that the calculation has pro-
ceeded as far as b0m for ra = m0, and we wish to find the k = kx for which the error
in bk_i m is minimized. Referring to (9.2), all Uk for k < kx will have been
eliminated by the algorithm, and the leading term of the residual error will be of the
form (9.7) as transformed by the algorithm. Referring to (9.8), the effect of each
stage k is crudely to divide the residual error by (2k - l)k, or roughly 2k ; so by
stage k it will have been reduced by a factor of 2Zk~, or roughly 2>k . Ignoring all
but the factor 2~km of (9.7), we need to minimize

j-\k} — km

subject to the constraint arising from the way ra is reduced by k + 1 in going from
stage k - 1 to k: That is, ra + T.k = ra0, or roughly

w + \k2 = ra0.

Solving this simple calculus problem gives the minimum at kx = ^m0, ra,
= \m0. The error at this point is roughly 2~(U/U)m"/, or c"v" for suitable constant
c; so this method is of order |. For 60 significant figures and w = u as before, we
need ra = 45, « = 1036, k = 8.
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Table 2
k akl x 2T«~l

(v) 0.633368347305411640436713144616576659293359908783416689204401
(u) 0.470250569622349731271176348783758019761969039167059197165356
2 0.560889931839105275636384948015840006734260398171595554263428
3 0.630341152953289800442032143698140347343856000669900313548808
4 0.677669268053777242613587345333872800584971863152808709070330
5 0.707664435666270871027823533000164520492533323753898941029982
6 0.725790229709249261978251175393256303351188007190298345209967
7 0.736392117117017642888896676688968317465731121473706835171727
8 0.742451223289530587380718963519922408252517958351565949689771

For aT, au = a11, and a21,..., a81 as defined in Section 8 and suitably normalized,
we find the 60-place values shown in Table 2, using Richardson extrapolation and
MACSYMA's bigfloat arithmetic.

With these, we conducted a Multi-Dimensional Continued Fraction (MDCF)
search for an integer relation satisfied by the first d of the akl, k = 1,..., d, and in
addition for some integer polynomial of degree d—l satisfied by au (1.12), and by
av (1.6). There follow in (9.9) the lower bounds obtained for the height of such an
object, that is, the maximum absolute value of its coefficients. For example, the
entries under d = 2 imply that no equation of the form act11 + ba21 = 0 holds with
height less than 30 digits, nor similarly a + bau = 0 nor a + bav = 0. The method
used to compute these relation height bounds we have christened the Parallelotope
algorithm; we hope to describe it elsewhere [10]. The general topic of MDCF
algorithms is discussed in [9], and a detailed description of the recent "L3"
algorithm is presented in [5, Section 1], For the moment, we content ourselves with
remarking that, for given accuracy 5 (= jlO"60 here), the maximum theoretically
obtainable bound is of order S~l/d.

6       7       8
5.9 x 108  6.8 x 106 8.9 x 101
4.5X10"  2.8 X 105  1.4 XlO6
9.6x10"  1.7 XlO6 2.0 x10s
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