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Abstract. 

The notion of self-decomposability for WO-valued rv's as introduced 

by Steutel and van Harn [8] and its generalization by van Ham, Steutel' 

and Vervaat [4J, are used to study the limiting behaviour of continuous-

time branching processes with immigration. This behaviour provides analo-

gues to the behaviour of sequences of rv's obeying a certain difference 

equation as studied by Vervaat [10] and their continuous-time counterpart 

considered by Wolfe [11]. Fur>f:hermore,discrete-state analogues are given 

for results on stability in the processes studied by Wolfe, and for r~sults 

on self-decomposability in supercritical branching 'processes by Yamazato'[12]. 
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1. Introduction. 

Recently, Vervaat [10J considered the following stochastic difference 

equation: 

(1 .1) X -AX l+B n n n- n (n € :IN) , 

where the (A ,B ) ~ (A,B) are independent and independent of XO' Iteration 
n n 

of the special case 

(I.2) x = pX 1 + B , n n- n 

with p E [0,1) a constant, yields 

( 1.3) (k = 1, 2 , • • • ,n) , 

with B(k) := E~-~ 
n J=O 

J. d k,,:,,1 J'-I 
p B . = E. 1 P B. indepe:ndent of X k' So equation 

n-J J= J n-

(1.2) is solved by 

(I .4) 

Under the condition (cf. [10J) that E log (1 + IBI) < "" there is a limit X"" 

satisfying 

(1,5) X = 
00 

00 k-l d I p Bk = P X"" + B , 
k=l 

or, more generally from (1.3): 

( 1.6) 
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with X and B(k) independent, or 

(I .7) 
d 

X = cX + X 
"00 00 c 

k 
(c = p , k e: IN) , 

with X and X independent, Le. X is "incompletely self-decomposable" 
"" c 00 

(see e.g. Urbanik [9J; X is called (completely) self-decomposable if (1.7) 
"" 

holds for all c e: (0,1». 

Wolfe [11] considers the continuous-time analogue of (1 :2), formally 

described by the stochastic differential equation 

(1.8) dX(t) = -0 X(t)dt + dB(t) , 

with 0 a positive constant and B(t) a Levy process. In analogy to (1.3) 

and (1.4) one has '(all integrals exist in the sense of convergence in pro-

bability, c;nd pathwise ien the sense of formal integration by parts (cf. 

Jurek and Vervaat [6]». 

( 1 .9) (s E (O,tJ) , 

with B(s)(t) = t_sft exp{-o(t - u)}dB(u) ~ oIs exp(-ou)dB(u), and specially 

(l. 10) X(t) 

t 

e-o(t-u) dB(u) ~ e-otx(O) + f 
a 

-eu e dB(u). 

If X(t) has a limit in distribution X (00) , then analogous to (1.6) we have 

(1.11) d -os (s) 
XC"') = e X(",,) + B 

. h X() d B(s) 'd d' h d' . w~t ~ an 1n epen ent, ~.e., contrary to t e 1screte-t~me case, 

X(",,) is (completely) self-decomposable. This is one of the results in the 

following theorem of Wolfe [II]. 



Theorem 1.1. Let X(t) be as in (1.10). Then 

(i) There is a random variable X(~) such that X(t) ~ X(~) if and only 

if E log (l + I B (l) I) < "". 

(ii) The distribution of X(m) is self-decomposable (class L), and hence is 

infinitely divisible and unimodal. 

(iii) If a random variable X has a self-decomposable distribution then X 

is the weak limit a of process X(t) as in (1.10). 

In this paper we consider integer-valued analogues of X(t) in connection 

with recent results on decomposability and stability for distributions on 

NO as given in [4] and [8]. The discrete-time analogue, i.e. the NO-valued 

analogue of ~ in (1.2) is less interesting as it lacks the complete self­
n 

decomposability (compare (1.7» • 
. 
In Section 2 we give a brief review of results on discrete self-decompo-

sable distributions; these are then used to prove analogues of Theorem 1.1 

in Section 3. Section 4 contains an application of Theorem 1.1 on a special 

case of the stochastic difference equation (1.1). In Section 5 we give the 

analogues of a result by Wolfe [II] on stable distributions, and in Section 

6 some extensions and analogues of limit theorems by Yamazato [11] for 

supercritical branching processes. 

2. Self-decomposability and stability on NO and branching processes. 

We need some of the ideas and results from [8] and [4] for the analogues 

on NO of (l.10) and Theorem 1.1. Here and elsewhere Py will denote the 

probability generating function (p g. f} of the :NO -valued random variable 

(rv) Y, and (F t) t~O will denote a composition semigroup of p g fls with the 
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property F +t(Z) = F (F (z» (s,t ~ 0), or sst 

(2. I) Fs+t = F s 0 F t 

and furthermore 

(2.2) lim F (z) 
UO t 

== z 1 • 

Semigroups of pg f's of this kind are, of course, 'familiar in (sub-)critical 

branching processes (see e.g. [IJ and [5J). 

To stress the analogy to continuous-state versions of our results, and 

to shorten notations, we introduce an integer-valued analogue to scalar mul-

tiplication (see [4J and [8J for details). 

Definition 1.1. Let (F t ) 0 be a fixed semigrot'lP of pg f's as in (2.1), (2.2)., 
~~~~~~<~ t> . 

• 
and let X be an EO-valued random va~iab Ie. Then for 0 < P ::; 1 the ]NO -valued 

mUltiple p @ X is defined (in distribution) by its p g f as follows 

(2.3) 

One easily verifies that, quite analogous to scalar multiplication, the op-

eration @ has the following properties: 

d 
PI @ (P2 @ X) == PI P2 @ X 

d P @ (X + Y) == P @ X + P @ Y (X and Y independent) 
(2.4) d d 

X +X"p@X +p@X 
n n 

d 
p @ X + 0 as p + 0 . 

For other properties we refer to (4J, where it is shown that (2.3) provides 

all possible multiplications that satisfy (2.4) plus a linearity condition 

for the p.g.t's. 



..... - 6 -

We now define self-decomposability and stability with respect to @. 

As the operation @ depends on the specific semigroup F = (Ft)~O under 

consideration we use the terms F-self-decomposable and F-stable. 

Definition 2.2. An WO-valued rv X is called F-self-decomposable if 

(2.5) d 
X=p@X+X 

p 
(X and X independe~t; all p € (0,1»; 

p 

X is called F-stable with exponent u € (O,IJ if more specially 

(2.6) d u)l/u X=p@X+(l-p @X' (X and X' ~ X independent; p € (0,1». 

Remark. Equivalently, (2.5) and (2.6) can be written in terms of (F
t
) as 

follows (t = -logp,P = P) 
X 

(2.5') 

(2.6') 

P = (P 0 F )P 
t t 

P - (P 0 F )(P 0 F ) 
t s 

(P tap g 1=; t > 0) 

( ° e-us + e-ut = 1) s, t > ; 

We shall need a number of results from [4J. 

Theorem 2.3. An WO-valued rv X is F-self-decomposable if and only if its 

p g f P satisfies 

(2.7) P(z) = exp [ -).. I 
z 

1 
1 - Q(x) 

U(x) dx ]. 

where A :> 0 and Q is any p g f with Q(O) = 0; X is F-s table with exponent u 

if and only if 

(2.8) P(z) = exp[ -)..{A(z) }u] • 
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Here U and A satisfy: U(z) = lim (Ft(Z) - z)/t and 
UO 

(2.9) 

(2.10) l/U(z) = -A'(z)/A(z) • 

The next theorem is a slight modification of Theorem 8.4 in [4]; we 

-0 take Fi O ) = e with an arbitrary 0 >.0 rather than 0 = 1. 

Theorem 2.4. Let (F
t

) be a semigroup of pgf's as in (2.1) with FiO) 

and let 

(2.11 ) Vex) := I - Fl (0) ogx 
(x 2 I) • 

= e 

For any nonnegative rv Y with Laplace transform l/Jy(-r) = E exp(-'l y). define 

F the map 11" = 11" (ftom the Laplace transforms into the p g e s) by 

(2.1 2) 

-0 

with A as in (2.8). Further let (X) :IN be a sequence of EO-valued rv's. 
n n€ 

~ 

Then there exist c + ~ and a rv X such that 
n 

-1 d ~ 
c ® X + X n n 

(n + (0) 

if and only if there exist a + 00 

n 
-1 d 

and a rv X such that a X + X n n 

In this case 

(2.13) a V«c )1/0) + e (n + 00) 
n n 

for some 6 > 0, and 

(2.14) p (z) = (11" l/J
x

) (z) • 
X 

(n + 00). 
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Finally, we need 

Theorem 2.5. If Wx is a self-decomposable Laplace transform, then ~Wx is 

an F-self-decomposable p g f. 

We shall use the notation (cf. Example 6.6 in [4J): 

(2.15) n = {P P = ~ Wx wi th . Wx s elf-decomposab Ie} • 

3. A limit theorem for branching processes with immigration. 

Of the four (discrete/continuous time/space) poss ib Ie variants of (1.2) 

the discrete-time, discrete-space variant: 

(3.1 ) x = P ® X I + B ,. n n- n 

with EO-valued B ha~ properties similar to (1.2), and is not very interesting 

from our point of view. We shall concentrate on the EO-valued analogues of 

(1.8) and (1.10), and we write (taking X(O) = a without essential restriction) 

(3.2) 

t 

X(t) ~ J 
o 

t 

e-o(t-u) ® dB(u) ~ f 
o 

where B(u) now is a compound Poisson process: 

(3.3) 

-eu e ® dB(u) , 

with ~ iid and EO-valued and independent of the Poisson process generated 

by (Tk). Now X(t) can be written explicitly as 

(3.4) 
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where an expression of the form A ® X with A a rv is interpreted as (see 

also (2.3» 

1 

PA®x(z) = J PaIi)X(z) dGA(a) , 
a 

where GA is the distribution function of A. 

We shall need the following generalized analogue of a theorem of 

Lukacs [7J. 

Lemma 3.1. Let B(u) be a compound Poisson process as in (3.3) with intensity 

A, and let h be a continuous function on [a,bJ c [0,00) with a < h(u) ~ I. 

Let X be defined by (cf. (3.2) and (3.4» 

b 

X J h(u) ® dB(u) = 
a 

Then the p g f of X equals 

(3.5) 

b 

PX(z) = exp { J logPB(I) (F_logh(u) (Z»dU} 
a 

b 

= exp { -A J (I - PC(F-logh(u) (z»du }. 
a 

Proof. Equality of the last two expressions is obvious. To prove that Px(z) 

is equal to the latter of these, we proceed as indicated on p. 118 in [5J. 

Conditioning on the number of Tk with a < Tk ~ b we obtain using (2.3) 

• 
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where the Uk are well known to be distributed as the order statistics of 

n independent uniform random variables on (a,b). It follows that 

b 

E k~l Pc(F-logh(Uk)(Z» = {b~a f PC(F-logh(u) (z»du }n 
a 

from which (3.5) is immediate. 

We now apply (3.5) to X(t) as defined by (3.2) and (3.4), i.e. with 

(a,b] = (O,t] and h(u) = exp(-ou). We obtain 

(3.6) 

t 

PX(t) (z) = exp [-A J {t - PC(Fou(z»}du ] , 

o 

o 

and comparing (3.6) with (16.3) in [5] one liecognizes PX(t) , as the pg f of 

t~e number of individuals present at time t in (sub-)critical continuous-time 

branching· process with batch immigration, and batch size p g fPC' 

We now formulate the analogue of Theorem I. I • 

Theorem 3.2. Let X(t) be a (sub-)critical branching process with immigration 

as given by (3.2) and (3.4). Then 

(i) There is a rv X(oo) such that X(t) i X(oo) if and only if 

(3.7) 

1 

J (I - Pc(x»/U(x)dx < 00 

o 

with U defined by (2.9). 

(ii) The distribution of X(oo) is F-self-decomposable and hence infinitely 

divisible. 
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(iii) If a rv X has an F-self-decomposahle distribution, then X is the weak 

limit of a branching process with immigration as given by (3.4). 

Proof. From (3.6) and (2.9) we deduce, using (2.2), 

exp [ -A/O 

z 
I 

.-+ exp [Aio f (l - P C(x» /U (x) dx ] 

z 

(t -+ co) , 

and (i) and (ii) follow from Theorem 2.3. The converse (iii) is obtained 

by taking the pgf of Ck in (3.4) equal to Q in (2.7). 

Remark 1. The closest analogue to Theorem 1.1 is obtained by taking 

F (') I _ e-at -at 
tZ == +e z, 

the special case discussed in [8J. Equation (3.1) can now be written as 

X == I I + ••• + IX + B , 
n n-I n 

-0 where the l. are independent with P(I. = 1) == 1 - PCl. = 0) = e • This 
J J J 

representation provides a discrete state-space analogue to (1.8). 

For this special F. the F-self-decomposable distributions are uni-

modaZ; this can be proved in close analogy to Wolfe's proof for d~stribu-

tions on [0,00) (see [8J for details). The function U(x) now simplifies to 

0(1 - x), and X(t) is a pure death process with immigration, which can be 

o 

interpreted as the number of customers in an M/M/co queue with batch arrivals 

of size C. It follows that the stationary distribution of this number is 

unimodal. 
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Remark 2. If X(t) is subcritical, then the condition (3.7) is equivalent 

to E log (1 + C) < co. 

Remark 3. Theorem 1.1 together with the concepts of self-decomposability 

and stability for non-lattice rv's could be generalized in a similar way; 

this would require detailed results on continuous-time branching processes 

with continuous state space. 

4. Embedded discrete-time processes. 

In this section we use Theorem 1.1 to give a probabilistic proof of 

a theorem by Vervaat [)OJ, which he proved analytically. We then give the 

corresponding result for EO-valu,ed variables. 

Throughout this section U, U are'uniformly distributed on (0,1) and 
n 

C, C are nonnegative with E log (1 + C) < co; all these rv's are independent. 
n 

Theorem 4.1 [10J. Let 0 > 0 and let the rv X satisfy 

(4. I) X ~ UO (X + C) , 

where in the right-hand side U, X and C are independent, and U and Care 

as above. Then X is self-decomposable. 

~. By Theorem].6 of [IOJ equation (4.1) has a unique solution. Now con-

sider the special case of (1.10) where B(u) is a compound Poisson process 

(T ,C ) as in (3.3). Then X(t) ~ X(co) as t + co, and X(co) satisfies (compare 
n n 

(3.4» 

d 
so X = X(co~ and therefore X is self-decomposable by Theorem 1.1. o 
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Completely analogo~sly we have 

Theorem 4.2. Let 6 > 0 and let the NO-valued rv X satisfy 

(4.2) X ~ UO @ (X + C) , 

with U, X and C in the right-hand side independent and U and C as above 

with C NO-valued. Further @ is defined as in (2.3) and (3.4). Then X is 

seld-decomposable (cf. (2.5». 

Proof. As for (4.1) it can be shown that (4.2) has a unique solution X 

with X ~ X(oo) and X(oo) satisfying (cf. (3.4» 

It'now follows from Theorem 3.2 that X is F-self-decomposable. 

Remark. Another way of looking at X(oo) in Theorem 4.1 is to regard it as 

the limit of the embedded discrete-time process (Y )00, with Y = X(T ) and n n n 

X(t) as in (1.9). Now take s = TI and put C
n 

= B(T t ) (Tn) ~ B(TI). Then 

Y satisfies 
n 

(4.3) Y = UO Y + C , 
n n n-I n 

with U ,Y and C independent. Equation (4.3) is a special case of (1.1) n n n 

o 

and we have (cf. [IOJ) Y + Y with Y = X + C and X = UOy as before. A simi­
n 

lar remark goes for Theorem 4.2. 



- 14 -

5. Stable distributions. 

In this section we obtain the analogue for NO-valued processes of 

the following result of Wolfe [11J. 

Theorem 5.1. Let X(t) be as in (1.10) and let to > O. Then 

(5.1) 

if and only if X(oo) is strictly stable with exponent (ato)-l. 

Proof. Let ljJ = log (jlB(1) with <PB the moment generating function of B. Then 

by Lukacs' theorem (the analogue of Lemma 3.1) (5.1) is equivalent to 

00 

-ou 
(e s) du , 

and differentiation yields to 0 ljJ' (s) = ljJ (s) /s, and so ljJ(s) 

Theorem 5.2. Let X(t) be as in (3.2) and let to > O. Then 

(5.2) 

-1 
if and only if X(oo) is F-stable with exponent (ot

O
) • 

Proof. Le t R = log P B (1)' Then by Lemma 3.1 (5.2) is equivalent to 

to R(z) = f R(F au (z) )du , 

o 

and so, on account of (2.9) and (2.10) (see also (2.2» 

00 

AI (z) 
R' (F (z»F' (z)du = -:-;-~ 

QU .' au A(z) 

z 

J 
o 

o 
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and hence 

1 R'(z)/R(z) == (ft A'(z)/A(z), 
o 

or P(z) :== exp(R(z» = exp(-A{A(z)}l/(oto» for some A > O. The result now 

follows from Theorem 2.3. 0 

Remark. In his paperWol£e [I1J considers the relationX(oo) ~bB(tO) for 

some b > 0 (not necessarily b = 1). This leads to a differential equation 

for ~ of the form 

(5.3) 

which is satisfied by ~(s) == clsa
} + c

2
sa2 , with real a j satisfying 

a 8 to a b == 1. I t 'is by no means obvious however that these are the only so-

lutions of (5.3), and the argument in [IIJ seems insufficient. The same 

problem occurs for a generalized version of Theorem 5.2. 

6. Some analogies for supercritical branching processes. 

In the present section we derive a discrete-state analogue of the 

following result which slightly generalizes a theorem of Yamazato [12J. 

For a continuous-state, continuous-time analogue see Biggins and Shanbbag [2J. 

Theorem 6.1. Let either T ==]NO or T = [0,(0), and let (Xt)tET be a branching 

process with P(X
O 

= 1) = I, P(X
1 

> 0) = 1 and EX
I 

=: m E (l,oo). Then there 

is a positive function c on T and a random variable W such that 

(6.1 ) lim c(t + s) 
c(t) t-+«> 

s =m for's E T, 
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(6.2) P(lim X/c(t) = W) == 1 , 
t-+<><> 

P(W> 0) = I, and the characteristic function (ch. f) ~W of W satisfies 

(6.3) is a ch. f. for all u € T. 

In particular, ~W is self-decomposable if T == [O,~). 

Proof. Statements (6.1) and (6.2) are contained in Theorem 1.10.3 of [1] 

(q == 0) and its continuous-time analogue as indicated on pages 112 and 113 

of [1]. In fact, it can be shown that, apart from null sets, [W == 0] == eXt + 0], 

which has probability zero since P(X1 > 0) == 1. Hence peW > 0) == I. Since 

P(X ~ I) == I for all u € T we have for fixed u 
n 

d 
X == X'(l) + X"eX - I) t+n t t u ' 

where Xt
l
(]) and X"(X - I) are independent branching processes with the same 

t u 

offspring distribution, but with and X-I individuals in the zeroth ge­
u 

neration. It follows that 

lim {X'(I) + XII (X - l)}/c(t + u) == W, 
t t u 

exists with probability one, with W, g W. Moreover, by (6.1) 

x' (I) 
1 im ---,_t_-.­

c(t + u) 
t-+<><> 

X' (1) 
1

. t 
1m --"7"( ~)-, • 

t-+<><> c t 

c(t) 
c(t + u) 

exists with probability one, and consequently so does 

x" (X - 1) 
lim t u 

c(t + u) 
t-

d 
== R 

u 
, say. 
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We conclude that a rv R exists such that 
u 

d -u W = m W + R (Wand R independent), 
u u 

which is equivalent to (6.3). 

Remark. If EX} logX
1 

< "", then we may take c(t) = mt in Theorem 6.1 (cf. 

[IJ, Theorem I.IO.I). 

We now formulate our discrete-state analogue. 

Theorem 6.2. Let (Xt)t€T be a branching process as in Theorem 4.1, and let 

® be defined as in (2.3). Then there is a positive function c on T and a 
~ 

random variable W such that 

(6.4) lim 'C(t + s) 

t~ c(t) 

s 
=m 

d ~ 
(l!C(t» ® X + W 

t . 

for s € T, 

(t+""), 

peW > 0) = 1, and the p g f p~ of W satisfies 
W 

is a p g f for all s E: T • 

In particular, if T = [0,"") thenPW is F-self-decomposable, and even 

P_ € IT (cf. (2.15». 
W 

Proof. Let the function c be as in Theorem 6.1. Then Xt/c(t) + W as t + "". 

We now apply Theorem 2.4 (to an arbitrary sequence t + "", t € T), and it 
n n 

follows that we can choose c such that (cf. (2.11) and (2.13» 

(6.5) lim c(t)V «C(t»l/o) = 1, 
t~ 

o 
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and it follows that 

d ~ 
lim (I!c(t» ® X(t) + W 
t-lo<lO 

with Pw = 'lf1/J
W 

(cf. (2.12) and (2.14». Moreover by properties of the map 

'If (see [3J, Lemma 5.1) and by (6.3) 

is a pgf for all s e: T, in particular P~ E: II (cf. (2.15» if T = [0,(0). 
W 

As peW > 0) = 1 by Theorem 6.1, 1/JW(AO(Z» + 0 as z + 0, i.e. P(W> 0) = I. 

Finally, V varies regularly at 00 with exponent -0 (cf. [4J, (3.16», so 
,.., -1 

the inverse V of V varies regularly at 0 with exponent -0 (cf. de Haan 

[3J, Gorollary 1.2.1.5, p.24). Consequently, by (6.1), (6.5) and [3J, 

Corollary 1.2.].2 

c( t + s) 

c(t) 
[ V~l/C(t+S»]O + 

V(I!c(t» 

s 
m 

as t + 00, t E T for all sET, which proves (6.4). 

Remark. If EX 1 logX
1 

< 00 and also EY1log(Y1 + I) < 00, where Yt is the 

(sub-critical) branching process corresponding to (F t ) , we may choose 

c(t) = mt (cf. remark following theorem 6.1 and Remark 8.6 in [4J). 

o 
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