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INTEGER-VALUED ENTIRE FUNCTIONSO
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RAPHAEL M. ROBINSON

Abstract. The theory of integer-valued entire functions is organized in an
improved fashion. Detailed results are proved when the indicator diagram is a line
segment. For the first time, a method is developed for treating completely integer-
valued functions with an unsymmetrical growth pattern.

1. Introduction. An entire function F(t) is said to be of exponential type if there
are positive constants k and F such that |F(r)| ^KekW for all t. The lower bound of
the possible values of k is called the type. Thus eaz has type \a\. Equivalently,
az = exp (z log a) has type |log ot|, where the principal value of the logarithm is to
be used.

By an exponential polynomial, we shall mean a finite sum of terms of the form
zneaz, where « ^ 0 is an integer, and a is a complex number. The above term may
also be written as znof. In most of the cases which we encounter in this paper, the
base cc of the exponential will be an algebraic integer.

The study of integer-valued entire functions began in 1915 with the discovery
by Pólya [9] that an entire function F(r) of type r < log 2 which has integer values
at the nonnegative integers must be a polynomial, whereas for type log 2 the
function F(t) = 2t is admissible. Thus 0 and log 2 are the first two possible types.
In the same paper, Pólya also showed that an entire function F(t) of type
T<log [(3 + \/5)/2] which has integer values at all integers must be a polynomial,
whereas for type log [(3 + \/5)/2] the function

F(t) = ((3 + V5)/2)f + ((3-V5)/2)f

is admissible. Thus 0 and log [(3 4- \/5)/2] are the first two possible types.
Improvements of these results were made by various authors. I shall not trace

the history of the problem, but shall mention only some of the newer results. For
each of the two general problems considered above, Pisot [6], [7], [8] determined
the third possible type. He also determined the critical type below which F(t) must
be an exponential polynomial. Some results where different rates of growth are
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allowed on the positive real axis, the negative real axis, and the imaginary axis
were obtained by Buck [1]. Additional references may be found in this paper.
There do not seem to have been any improvements of these results published during
the last twenty years.

In the further discussion, it will be convenient to introduce the indicator function
hick), which measures the type of F(t) along the ray amp t = c/>. It is defined as the
lower bound of real constants A such that \F(Rei"')\ ^KekR for a suitable constant
A'and all R^O. If F(z) = 0, then h(cb)= -co. We shall exclude this case throughout.
Otherwise, it turns out that h(cf>) is continuous, and is indeed the supporting function
of a certain nonempty bounded closed convex set, called the indicator diagram of
F(t), which is discussed in §2.

It may be noted that the indicator diagram is the same for F(t) as for F(t+1).
It follows that the possible indicator diagrams for functions of exponential type
are exactly the same whether we assume that F(t) has integer values at the non-
negative integers or at the positive integers. The latter assumption will be more
convenient for us. We shall call a function integer-valued if it has integer values at
the positive integers, and completely integer-valued if it has integer values at all
integers.

In this paper, aside from trying to organize the whole subject in an improved
fashion, we shall be concerned primarily with functions whose indicator diagram
is a line segment. Considerably more complete results can be given in this case than
in general.

Further progress in the theory of integer-valued functions depends largely on
an improved knowledge of the distribution of algebraic integers. However, another
weakness so far has been that a method has been lacking for treating completely
integer-valued functions whose indicator diagram is restricted to a set which is not
symmetric to the origin. I have developed such a method, and apply it in §§7-8 to
solve the following problem: If F(t) is an entire function of exponential type which
is of type 0 on the imaginary axis and assumes integer values at all integers, for what
values of X and p will the inequalities A(0) < A and A(-n-) < p, insure that Fit) is an
exponential polynomial!

Some of the theorems in this paper have been known to me for about twenty
years, and have been presented in lectures, but as they apparently have not
appeared in print, it seems appropriate to include them here with more recent
discoveries. I would like to add that, although I have not previously published
anything about integer-valued functions, my studies of the distribution of algebraic
integers, including [13], [14], [15], [17], and several other papers, grew out of my
interest in this subject. Furthermore, my extension [16] of Pólya's theorem on
power series with integer coefficients was made specifically for the application in
§8, but was carried further than needed for this purpose.

We may note here that the oldest results concerning the distribution of algebraic
integers are those of Kronecker [5] ; see also the discussion in [13]. The first theorem
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is that a set of conjugate algebraic integers lying on the unit circle consists of all
primitive roots of unity of a certain order. The second theorem is that a set of
conjugate algebraic integers lying in the interval [ — 2, 2] consists of all numbers of
the form 2 cos 2k-n/m with 0 S k á m/2 and (k, m) = 1. These results are used at
several places in the present paper.

2. The Laplace transform. An essential tool in our study of integer-valued
functions is the Laplace transform of functions of exponential type. The required
results may be found in Pólya [12, pp. 578-586], or in Doetsch [2, Chapter 5]. A
slight variation of the Laplace transform for functions of exponential type was
studied by Borel, so the term Borel transform is also used. We shall summarize the
principal results here.

Let F(t) be any entire function of exponential type, and write

n = 0

Its Laplace transform f(s) is defined by

n = 0 J

The series converges for large |s|, so/(.s) is regular at oo. Indeed, the above formulas
establish a one-to-one correspondence between entire functions F(t) of exponential
type, and functions f(s) which are regular at oo and vanish there.

The smallest convex set outside of which f(s) is regular is called the singularity
hull off(s). This is a bounded closed set, and is empty only if/(,s) = 0, that is, only
in the excluded case F(r) = 0.

Each of the functions can also be expressed in terms of the other by means of
an integral. In the first place, the name Laplace transform is explained by the fact
that we have

r<x> exp(i<Z»)
f(s) = F(t)e~stdt   for «(«'*) > h(<f>),

where the notation indicates integration along the ray amp t—j,. Conversely, we
have the inversion formula

where C is a simple closed rectifiable curve with the singularity hull off(s) in its
interior.

Using these integrals, it is not hard to show that the indicator function h(</>) of
F(t) is the supporting function of a certain bounded closed convex set, called the
indicator diagram of F(t). Indeed, the indicator diagram of F(r) is the reflection in
the real axis of the singularity hull of the Laplace transform f(s).
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3. The generating functions. Various authors have studied generating functions
corresponding to the values of F(t) at the positive integers. The essential properties
may be found in Pólya [12, pp. 598-609], where they are obtained as a special case
of a more general result. We shall sketch here a different approach.

Let Fit) he an entire function of exponential type for which A( ± -rr/2) < -n, and let
fis) he its Laplace transform. The singularity hull of/(i) lies in the strip \%js\ <■*.
We wish to show that there is a function gis) with period 2m such that gis) —fis)
is regular for \£$s\ fin, and g(s) has the expansions

CO

g(s) = 2 F(n)e~sn    for dis > A(0),
n = l

and

g(s) = -  2 F(-n)esn   for ÍRs < -hin).
n = 0

We may notice at once that the two series do converge in the indicated half-planes.
We observe next that if F(z) = c then fis) = c/s, and both series for gis) yield

g(s) = c/(es— 1). Thus g(s)—f(s) is regular at the origin, and all of the stated
conclusions follow.

It will therefore be sufficient to prove the desired results under the assumption
that F(0) = 0. Since 2-ni/(e2%lt — 1) is a function having a simple pole with residue 1
at each integer, and no other finite singularities, we see that

2F(«)e-= rfBfSr*
n = l JC «= 1

where C consists of segments of the two rays amp t= ±a for some a with 0 < a < n/2,
and an arc of \t\=N+l/2. The integrand is regular at 0 since F(0) = 0. Letting
A^ ->- oo, we find that the integral along the arc approaches 0, and we obtain the
function g(s) defined by the first series as a difference of two integrals,

/• oo exp< - ¡<rt prfy -st çé exp(ia) ptfy -st

g{S'  =   J0 -¿™—\ dt-)0 "¿Airi dt>

at least for large positive s. It follows that

/•ooexp(-lor) p(f\p-st /-ooexpCio:) pfftç-stçZnit

S(s)-f(s) = l -M=ïdt-}0 ¿*«-l    *

It is then easily checked that we may allow a to increase to n/2, at least for large
positive s. But if we start with the second series for g(s), we find that the same for-
mula holds for large negative s. Furthermore, when a = ir/2, the two integrals in,
the last formula converge uniformly for |^i|^7r + e for some e>0, and hence
g(s)—fi(s) is regular for \!$s\ sin. Thus the two original series do represent the same
function g(s) in different half-planes. The condition F(0) = 0 may now be dropped,
and the stated results hold in general.
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From the inversion formula for the Laplace transform, it follows at once that

F(t) = ±^g(sytds,

where C lies in the strip \%s\ <-n but surrounds the singularities of g(s) in the strip.
This shows that F(t) is determined by its values at the positive integers, provided
that F(t) is an entire function of exponential type with type oron the imaginary
axis.

If we make the change of variable z = es, the function g(s) is transformed into
j(z)=g(logz). Because of the periodicity of g(s), this function is single-valued. It
has the expansions

OO CO

j(z) =  2 F(h)z~n near oo,       j(z) = —  2 F( — ri)zn near 0.
71 = 1 71 = 0

Hence j(z) is regular at 0 and oo, and vanishes at oo. It is also regular for all negative
z, since g(s) is regular for ^s = tt.

Indeed, the above construction establishes a one-to-one correspondence between
entire functions F(r) of exponential type which have type <ion the imaginary
axis, and functions j(z) which are regular at 0, oo, and all negative z, and vanish at
oo. In the first place, j(z) determines g(s) =j(es) and hence F(t), by the integral
formula. It remains only to check that every j(z) of the class described is actually
obtained from some F(t). Suppose that j(z) is any function of the above class, and
let its expansion at oo be

00

j(z) =  2 c„z-".
71 = 1

Put g(s)=j(es), and then define F(t) in terms of g(s) by the integral. We see that its
indicator function satisfies

h(</>) ^ max fRCye'*),
sec

so that F(t) is admissible. Finally, we must see that it does lead back to the given
j(z). Notice that the integral formula for F(t) may be written

where C is the map of C by the transformation z = es, and zt_1 = exp [(r— 1) log z]
with the principal value of log z. If t is a positive integer n, we may replace C by a
large circle, and then we find that F(n) = cn. Thus j(z) is indeed the function corres-
ponding to F(t).

We need to know the form of F(i) corresponding to a rational function j(z). If
a$0, then the function

= y (m+n-l\ _£l_ = a-m y (*-l\£
„4&\   m-\   )zm+n „4W-1/Z"
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corresponds to

where a' = exp [t log a] with the principal value of log a. It follows that if j(z) is a
rational function having a as its only pole, then Fit) has the form Pit)al, where Pit)
is a polynomial, and conversely. The degree of the polynomial is one less than the
order of the pole. Generally speaking, F(Z) is an exponential polynomial if and only
if jiz) is rational. The bases of the exponentials occurring in F(i) will be the poles of
;(*)■

4. Integer-valued functions (general). We shall make use of a theorem of
Pólya which states that if the power series

00

>Kz) = 2 a^~n
n=o

has integer coefficients, and if t/>iz) is regular in a region whose complement is a
bounded closed set F with transfinite diameter less than 1, then i/i(z) must be rational.
Indeed, ¡/>(z) will have the form Piz)/Qiz), where Piz) and Qiz) are polynomials
with integer coefficients, the leading coefficient of Qiz) being 1. Thus the poles of 4>iz)
can occur only at sets of conjugate algebraic integers lying in E, and all of the conju-
gates in any set will be poles of the same order. If the transfinite diameter of F is ^ 1,
then cb(z) need not be rational. There are in fact a nondenumerable infinity of possible
nonrational functions >p(z).

The concept of transfinite diameter is explained in Fekete [3]. The positive result
and the converse were proved by Pólya [10] for the case in which the complement
of E is simply connected. This is sufficient for almost all of the applications to be
made here. The positive result was extended by Pólya [11] to the general case. A
new proof of this result, and a proof of the converse in the general case, is included
in [16].

Let F(t) he an entire function of exponential type which assumes integer values
at the positive integers. Assume that h(±-rr/2)<-rr, so that the indicator diagram
D of F(t) lies in the strip |^/| <-u. Since F(t) is determined by its values at the posi-
tive integers, it follows that D is symmetric to the real axis. Hence the singularity
hull of/(i) is also D, and the singularities of g(s) in \¡¡$s\ ̂-n- lie in D, Let the trans-
formation z = es take D into D'. Theny'(z) is regular outside of D'. The coefficients
of j(z) at oo are integers. If the transfinite diameter of D' is less than 1, then j(z)
must be rational, hence F(t) is an exponential polynomial. The poles of j(z), hence
the bases of the exponentials in F(t), must consist of one or more sets of conjugate
algebraic integers lying in D'. Compare Buck [1, Theorem 2.3]. There will be a
finite number of such sets by Fekete [3]. Notice that any set of conjugate algebraic
integers, au a2, ..., am may be used to construct an integer-valued function, for
example,

Fit) = o?1 + at2+---+atm.
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If the transfinite diameter of D' is Jgl, then j(z) need not be rational, hence F(r)
need not be an exponential polynomial.

In particular, suppose that F(t) is of type r < it. Then the singularities of j(z) lie
in the set Jlog z\ ^ r, where the principal value of the logarithm is used. Choose t0
so that the transfinite diameter of |logz| í=t0 is equal to 1. Then for t<t0, F(t)
must be an exponential polynomial. The conclusion will not follow if t^t0, so t0
is the critical type. According to Pisot [7], t0 = 0.843- • •.

For t<t0, the possible types ^t may be determined by finding the sets of
conjugate algebraic integers in the set |log z\ ^ t. Hence there will be only a finite
number of types S t. The first two types were known to be 0 and log 2 = 0.693
Pisot [6], [7] showed that the only other possible type ^0.8 is |log [(3 +1 \/3)/2] |
= 0.758- • -. It is not known whether there are other possible types <t0.

On the other hand, it is easily seen that every type r ä t0 is possible. If t^tt, this
is trivial; indeed, F(t) = sin-rrt sin (t — tt)í is an exponential polynomial of type t
and vanishes at all integers. Now suppose that t0^t<tt. We may proceed as
follows. Start with the set |log z\ S *, which has transfinite diameter ä 1. Delete the
portion of this set inside of some circle \z\ = c in such a way that the remaining set
F, defined by |logz|^r, |z|^c, has transfinite diameter exactly 1. Construct a
nonrational function j(z) with integer coefficients in the expansion at oo which is
regular outside of F. This function must have the boundary of F as a natural
boundary, since otherwise j(z) would be regular outside of a set with transfinite
diameter <1. The indicator diagram of the corresponding function F(t) will be
defined by 11 \ S r, ?Ht ̂ log c, and hence F(t) will be of type t. If r = t0, then F(r) is
indeed of type t0 along every ray.

We may also notice that even if F(r) is required to be an exponential polynomial,
the possible types t will be everywhere dense in (t0, tt). This follows from Fekete
and Szegö [4], Theorem K, which implies that there will be infinitely many sets of
conjugate algebraic integers in the set rx Ú |log z\ g t2 if t0 < tx < T2 < ""■

In the following two sections, we shall try to give as complete information as
possible about the type of an integer-valued function F(t) whose indicator diagram
is a line segment, which may be either horizontal (§5) or vertical (§6).

5. Integer-valued functions (horizontal). Let F(t) be an entire function of
exponential type which assumes integer values at the positive integers. Suppose
that h(±-rr/2) = 0, «(0)^A, and «(ït):£/x. Here A and p denote real constants, with
\ + p^0. Then the indicator diagram of F(t) is included in the horizontal segment
— p s; t Si A. The singularities of the corresponding function j(z) will be included in
the segment e~u^z^ex. It will follow that j(z) is rational, and hence F(t) is an
exponential polynomial, if this segment has transfinite diameter < 1, that is, if
ex — e~"<4. This was proved by Buck [1, Theorem 4.1]. The possible bases for the
exponentials will be the sets of conjugate algebraic integers in the interval [e~u, eÁ}.
There will be only a finite number of such sets. Hence there will be only a finite
number of possible pairs of types «(0) jj A and h(n) á /*•
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The critical case is ex — e~" = 4. Indeed, if eA — e~"ä4, then we can construct an
admissible function F(t) which is not an exponential polynomial and for which we
have exactly A(0) = A and h(-rr) = pL. This may be done as follows. To each of the
intervals [eA — 4, eA] and [e~", e~" + 4], there will exist a nondenumerable infinity
of nonrational functions with integer coefficients at co and vanishing there which
are regular outside of the interval. The end points of the interval must be singular
points. Let j(z) he the sum of two functions, one corresponding to each interval.
We may assume that j(z) is not rational. It will be regular outside of the interval
[e~u, eK], and have the end points as singularities. The corresponding F(t) will
satisfy the stated conditions. Even if we restrict ourselves to exponential poly-
nomials, we see using [13] that the possible pairs (A(0), A(7r)) are everywhere dense
in the region ex — e~">4.

We shall discuss three special cases in some detail, namely the cases p = 0, p«x>,
and X = p.

The case p, = 0. Here F(t) is of type 0 in the left half-plane, and t = A(0). If
A<log 5, then this case is subcritical, and F(t) is an exponential polynomial. The
poles of j(z) lie in the interval 1 ̂  z < 5. Now the sets of conjugate algebraic integers
in this interval have the form

z m 3 + 2 cos 2k-n/m       [0 ^ k ^ m/2, (k, m) = I],

where m ̂  2. (Recall the theorems of Kronecker which were mentioned at the end
of §1.) If one of these points is a pole of j(z) of a certain order, then so are all the
others. The most general function F(t) of type 0 in the left half-plane and type
t < log 5 which assumes integer values at the positive integers is of the form

FW=  2 2 Fmfc(/)(3 + 2cos2A7r/m)t,
m = 2 0SkSm/2;(Jc,m)=l

where Pmk(t) is a polynomial. Also, for each zn, all of the polynomials Pmk(t) have
the same degree, or all vanish identically. If N is chosen as small as possible, then
this function has the type

t = log (3 + 2 cos l-n/N)       (N = 2, 3, 4, 5, ...).

These are the only possible types < log 5. The type log 5 is possible not only for
F(t) = 5* and other exponential polynomials, but also for functions which are not
exponential polynomials. Every type > log 5 is possible. Even for exponential
polynomials, the possible types are everywhere dense in (log 5, co).

FAe case p<oo. In this case, no restriction is placed on the rate of growth of
F(t) on the negative real axis, beyond the assumption that it is of exponential type.
If A ̂  log 4, then this case is subcritical, and F(t) is an exponential polynomial. The
most general such function of type < log 4 on the positive real axis has the form

*M-   2 2 Fmfc(0(2 + 2cos2A7r/m)i,
m=3 0SfcSm/2;(fc,m) = l
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where Pmk(t) is a polynomial. The possible types A(0) < log 4 are given by

A(0) = log (2 + 2 cos 2-n/N)       (N = 3, 4, 5, 6, ...).

If F(t) has type log 4 on the positive real axis, then a term P(t) ■ 4* may be added,
where P(t) is a polynomial. Every type A(0) > log 4 is possible, and the types A(0)
for which F(t) is an exponential polynomial are everywhere dense in (log 4, co).

FAe case X = p. Here we are concerned with the type r = max (A(0), h(-rr)). This
case is subcritical if X = p<log(\/5 + 2). The poles of j(z) will lie in the interval
i\/5 — 2, \/5 + 2). We cannot give as complete results in this case as in the other
two, since we do not know all of the sets of conjugate algebraic integers in this
interval. We can, however, find the first eleven possible types r and certain addi-
tional ones less than the critical type r=log i\/5 + 2).

We start by finding the possible types t < log 4. For this purpose, we need only
find all sets of conjugate algebraic integers in the interval (1/4, 4). These are easily
seen to be

z = 2-2 cos 2k-n/m       [0 ^ A ^ m/2, (A, m) = 1],

for 3^m^ 12. These may also be written in the form

z = 2 + 2 cos 2A7r/zn       [OáH m/2, (k, m) = 1],

for m = 6, 4, 10, 3, 14, 8, 18, 5, 22, 12, respectively. The type on the positive real
axis is determined from the largest conjugate, corresponding to k = 1. The type on
the negative real axis is determined from the smallest conjugate, corresponding to
the maximum k. We find by examination of the cases that the type on the negative
real axis is never greater than the type on the positive real axis. Thus the first ten
possible types are

r = log (2 + 2 cos 2-r/N)       (N = 3, 4, 5, 6, 8, 10, 12, 14, 18, 22).

In each case, A(0) = t, and for N=3, 5, 12, we also have h(-n) = T, but in the other
seven cases, A(w) < t.

Table 1

N e* e*

3
4
5
6
8

10
12
14
18
22

1.0000
2.0000
2.6180
3.0000
3.4142
3.6180
3.7321
3.8019
3.8794
3.9190

56
46
5c
4d
5/
le
6d
3c
Ih

4.0000
4.0431
4.0953
4.1064
4.1268
4.1388
4.1532
4.1588
4.1701
4.1867

4a
If
11
3d
So
5d
Sw
Si
8m
**

4.1935
4.2018
4.2101
4.2143
4.2215
4.2242
4.2306
4.2321
4.2356
4.2361
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The eleventh possible type is r = log 4. In this case, again «(0) = t and h(it) < r.
By examining the tables in [14], we can read off 18 additional sets of conjugate
algebraic integers in the interval (v/5 — 2, y/5 + 2). All of these are roots of equations
of degree at most 8. There are probably no other admissible equations of degree
^ 8, and certainly none of degree ^ 6. In this way, we find 18 additional possible
types less than the critical type. In each case, we have «(0) = t and h(-n) < r.

For all of the known types up to the critical type, the value of e1 is shown in
Table 1, rounded off to four decimals. For the first 10 types, the corresponding
value of N is shown. The other 20 types are marked with a symbol S. The symbol
* marks the 11th type, ex = 4, and the symbol ** marks the critical type, ez = \/5 + 2.
The 18 known types between * and ** are marked with a symbol indicating the
corresponding equation in [14]. The digit indicates the degree of the equation. The
roots of this equation must be increased by 2 to give a set of conjugate algebraic
integers in (-\/5 — 2, -\/5 + 2). The largest of these conjugates is el. It is not
known how many other possible types there are less than the critical type.
The type r = log 4.04314- ■ ■ is probably the 12th possible type, but it is not easy
to show this.

Considering only functions with «(0) = «(tt) = t, we can show that every type
t S: log (-y/5 + 2) is possible. Even for exponential polynomials, the possible types
are everywhere dense in (log (\/5 + 2), oo), and we can choose at which end of the
real axis the type is to be attained.

6. Integer-valued functions (vertical). Let F(t) be an entire function of ex-
ponential type which assumes integer values at the positive integers. As usual, we
shall assume that h(±ir/2)<ir. The indicator diagram of F(t) will be a vertical
segment if h(tr) = —«(0). If «(0)<0, then F(«) = 0 for large positive integers «, and
hence F(r) = 0 identically. Thus we may assume that «(0)^0. We shall put «(0)
= log R and h(rr)= -log R, where Ää 1. In other words, we assume that F(t)R~l
is of type 0 on the real axis. The indicator diagram of F(t) will be a segment of the
line 9îr = logF which is symmetric to the real axis. Hence the singularities of j(z)
will lie on an arc of the circle \z\ =R having its midpoint at R. The critical type will
be determined by making the transfinite diameter of this arc be equal to 1.

It is not hard to see that the required arc of \z\ =R having transfinite diameter 1
is defined by \z — R\ S.2, or by |amp z\ -¿2 arc sin 1/F. See, for example, [17, §4].
Thus in the critical case, the indicator diagram of F(t) is the segment 9tr = log R,
\$¡t\-¿2 arc sin 1/F, so that the critical type on the imaginary axis is 2 arc sin 1/F.

The cases F=l and F> 1 are very different from each other. When F=l, the
critical case is h( + ir/2) = TT, which is on the boundary of the permissible values.
Thus the assumption «( ± tt/2) < tr, which we made, insures that F(t) is an expo-
nential polynomial. The function j(z) will have all of its poles on the unit circle,
but different from — 1. The poles of j(z), and hence the bases of the exponentials in
F(t), must be at sets of conjugate roots of unity. Compare Buck [1, Theorem 3.2].
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The type will be determined by the root nearest to — 1. Thus it will be convenient
to write the sets of conjugates in the form

z = -e2]cMm       [1 ^ k ¿ m-l, (A, zn) = 1],

for m ̂  2. We see that Fit) must have the form

m =2      2 Pmkit)em-m)Mtlm,
m = 2 lSkSm-l:(fc,m) = l

where Pmkit) is a polynomial. If A is minimal, then the type on the imaginary axis is

A(±7r/2) = (1 -2/A)7r       (A = 2, 3, 4, 5, ...).

These are the only possible types with A( + it/2) < n. (A particularly simple function
realizing the smallest positive type is F(i) = 2 cos ttz/3.) On the other hand, for any
t^tt, we can find an exponential polynomial F(Z) with A(0) = A(7r) = 0, A( ± tt/2) = t,
and F(f) = 0 at every integer.

Now suppose that R > 1. The first observation is that in general there are no
admissible functions which are exponential polynomials. For all the poles of jiz)
must lie on \z\ =R, and by [17, Theorem 2.1], unless some power of R is an integer,
no set of conjugate algebraic integers lies on the circle. Furthermore, even for
values of R for which exponential polynomials are possible, there are very few
admissible types below the critical type, indeed, by [17, Theorem 4.1], at most three.

This is the first case which we have found where we can prove that there are only
a finite number of types less than the critical type. The critical type itself is always
possible. For most values of R, it is indeed the smallest possible type.

Table 2

Critical type Earlier types

V2
2
3
4
5
6
7
8
9

k2 + l
k2 + k + l

28'

32'

114°
90°
70°
60°
53° 8'
48° 11'
44° 25'
41° 25'
38° 57'

2 arc sin \/R
2 arc sin Ï/R

112° 30'
45°
30°
0°

26'
35
19
27'
0'

arc sin \/l/R
arc sin V(4/- 1)/2Ä

18'
44'

82° 14'

34'
16'
6'

53'

41° 25'
47° 52'

40° 54'

33° 33'
(Jt = 3, Iâ/â3;/fcâ4, 0á/á3)
0t = 3, Ig/ä3;/fcä4, lá/¿4)

The possible values of R for which there are any exponential polynomials below
the critical type are shown in Table 2. All of the cases with more than one type
below the critical type are listed individually. The critical type on the imaginary
axis is shown, where for convenience we have used degrees and minutes (rounded
off to the nearest minute) instead of radian measure. All possible earlier types are
also shown. The entries here correspond to the entries in the table in [17, §4]. For
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example, when F = 2, the critical type on the imaginary axis is 7r/3. The two possible
earlier types are realized by the functions F(t) = 2' and

F(t) = ((3 + Wl)/2y + ((3-WT)l2)K

In this particular case, the critical type can be realized by

F(0 = (l+V3)i + (1-V3)i,

as well as by a function which is not an exponential polynomial.
We shall now show that any type greater than the critical type is possible. Let

ß be the desired type on the imaginary axis, where ß>2 arc sin 1/F. The result is
trivial if ß^TT. So suppose ß<-rr, and choose a so that the set defined by \z\ —R,
o£^|ampz|^ß, which consists of two arcs, has transfinite diameter equal to 1.
Then we can find j(z) with integer coefficients at co which is regular outside of
these arcs but is not a rational function. Since the exterior region is not simply
connected, we need the strong form of the converse of Pólya's theorem proved in
[16]. The points Reie and Re'"* must be singularities of j(z). It follows that
h(±n/2)=ß, that is, F(t) has the desired type ß on the imaginary axis.

On the other hand, considering only exponential polynomials, the possible types
will not be dense above the critical type. Only if some power of F is an integer is
there any integer-valued exponential polynomial with type <tt on the imaginary
axis. In this case, there will be a smallest type ß0 above which the types of such
functions on the imaginary axis are everywhere dense. This type ß0 will be less than
n, but larger than the critical type on the imaginary axis.

7. Completely integer-valued functions (general). Suppose that F(t) is an entire
function of exponential type which assumes integer values at all integers. Assume
that h(±rr/2)<TT, so that the indicator diagram D of F(t) lies in the strip |3?| <-n.
As in §4, the singularities ofy'(z) will lie in £>', the transform of D by z = es. In the
present case, the expansions of j(z) at both 0 and oo will have integer coefficients.
Pólya's theorem, used in §4, does not provide a direct method of exploiting both
facts. We can, however, make use of this theorem in an indirect way.

Let D" be obtained from D' by the transformation w = z+\/z. In other words,
D" is obtained from D by the transformation w = es + e~s. If F is symmetric with
respect to the origin, then each point of D" will correspond to two points of Dor D'.
Otherwise, replacing D by its symmetric hull, obtained as the union of D and its
reflection in the origin, will increase D' but leave D" unchanged.

First suppose that F(t) is odd. Then g(s) is even, hence j(l/z)=j(z). If we put
w=z+ 1/z, theny'(z) will be transformed into a single-valued function q(w), regular
outside of D". Since j(z) has integer coefficients at oo, the same will be true for q(w).
Hence, by Pólya's theorem, q(w) will be rational if the transfinite diameter of D"
is less than 1. Then j(z)=q(z+1/z) will be rational as well, hence F(t) will be an
exponential polynomial.
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If Fit) is even, then gis) is odd, and so y(l/z)= — y'(z). In this case, jiz)2 will be
transformed into a single-valued function q*(w), regular outside of D". If the
transfinite diameter of D" is < 1, then q*(w) will be rational. Hence /(z)2 will also
be rational. To conclude that y(z) is rational, an additional argument is needed.
Notice that Fj(t) = tF(t) is odd and has integer values at all integers, hence the
corresponding function jj(z) = —zj\z) is rational, that is,/(z) is rational. From the
fact that hoth jiz)2 and j\z) are rational, we can conclude that 7(2) is rational, and
hence that F(t) is an exponential polynomial.

In the general case, F(t) — F( — t) is odd and F(t) + F(—t) is even. Both have
integer values at all integers. The singular points of their Laplace transforms
will be included in the symmetric hull of D. The corresponding q(w) and q*(w)
will be regular outside of D", as before. Hence F(t) will be an exponential poly-
nomial if the transfinite diameter of D" is less than 1. Compare Buck [1, Theorem
5.1]. The poles of q(w) or q*(w) will consist of one or more sets of conjugate
algebraic integers in D". Hence the poles of j(z) will consist of sets of conjugate
algebraic units in D', and these will be the bases of the exponentials in F(i). Notice
that any set of conjugate algebraic units alt a2, ..., am may be used to construct
a function Fit) which has integer values at all integers, for example,

Fit) = aíi + ct2+---+aím.

The weakness of this method is that if D does not have symmetry with respect
to the origin, then we do not fully utilize the given information on the growth of
Fit). On the other hand, if D is symmetric with respect to the origin, then we have
obtained a satisfactory conclusion. Indeed, if D is symmetric and the transfinite
diameter of D" is ^ 1, then F(i) need not be an exponential polynomial. For we
can construct a nondenumerable infinity of functions qiw) regular outside of D"
which have integer coefficients at 00 and vanish there. The corresponding functions
jiz)=qiz+ 1/z) are regular outside of £>', have integer coefficients at both 0 and 00,
and cannot all be rational. Thus we will obtain odd functions F(i) which assume
integer values at all integers, which are not exponential polynomials, and whose
indicator diagram lies in D.

In particular, suppose that F(t) is of type t < -n. Then D is included in the circle
\tI<¡t, D' in the set |logz\ ár, and D" in the set

,     w + \/(w2 — 4)log-H-'-

Choose t = t0 so that this set has transfinite diameter equal to 1. Then t0 is the
critical type, that is, F(t) must be an exponential polynomial if t < t0 but not neces-
sarily if t^ t0. Pisot [8] gave the value r0 = 0.9934- ■ •.

The first two possible types for F(t) were known to be 0 and log [i3 + \/5)/2].
Pisot [8] also determined the third type. It is not known whether there are other
possible types < t0.
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One can show by methods similar to those used in §4 that every type t^t0 is
possible, and that even for exponential polynomials, the possible types are dense in
(t0, tt) and include all types t^tt.

An alternative procedure to the one described above would be to apply the
following extension of Pólya's theorem:

Let E be a bounded closed set symmetric to the real axis and not containing the
origin. Let the complement of E be a region G. Suppose that i/i(z) is regular in G and
has the expansions

OO CO

4>(z) =  2 avz~v riear co,       cb(z) =   ]jT bvzv near 0,
v = 0 v =0

where both series have integer coefficients. If there exists a function

H(z) = zp + Ap^xz"~1+ • ■ • +A.n+1z-n + 1 + z-n,

withp>0 and«>0, such that \H(z)\ < 1 on E, then cb(z) is rational.
This is a special case of the main theorem of [16], and is stated just before the

main theorem itself. Furthermore, if there is any such TT(z), then there is also one
with integer coefficients. In this case, we can say that the poles of </<(z) occur at the
zeros of TT(z), and hence lie at sets of conjugate algebraic units contained in F.

With the same notation used previously, if the set D" has transfinite diameter
< 1, then by Fekete [3] there is a polynomial P(w) = wn+ ■ ■ ■ such that \P(w)\ < 1
on D". Hence TT(z)=F(z-r-l/z) = zn+ • • • +z~n satisfies |TT(z)|<l on D'. By the
above theorem, j(z) is rational. Thus we are led to exactly the same conclusion as
before. We did not need to consider odd functions and even functions separately.

The new method, unlike the old one, can also make use of the assumption that
F(t) has an indicator diagram which is not symmetrical with respect to the origin.
The method is applied in §8 to find the critical rates of growth at the two ends of the
real axis for a function of type 0 on the imaginary axis. Thus §8 concerns com-
pletely integer-valued functions whose indicator diagram is a horizontal segment.

The case where the indicator diagram is a vertical segment can be settled briefly,
hence does not require a separate section. Assuming as usual that «( ± 7r/2) < 7r, we
see that F(r) = 0 identically unless the segment is on the imaginary axis. This corres-
ponds to the case F= 1 in §6, except that the functions there were only assumed to
have integer values at the positive integers. However, the poles of j(z) were found
to be at sets of conjugate algebraic units, so that the expansion of j(z) had integer
coefficients at 0 as well as at oo. Thus the functions F(t) obtained there do in fact
have integer values at all integers, so that the solution to the present problem is
exactly the same.

8. Completely integer-valued functions (horizontal). Suppose that F(t) is an
entire function of exponential type which assumes integer values at all integers.
Suppose also that F(t) is of type 0 on the imaginary axis, that is, «( ± tt/2) = 0. If
«(0)5jA and h(n)^p, then for what values of A and p. can we conclude that F(r)
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must be an exponential polynomial ? Here A and p denote real constants. It will be
sufficient to consider the case where A>0 and p.>0, since otherwise F(t) will be a
polynomial.

Under the above assumptions, the indicator diagram of F(t) is included in the
segment —/x^i^A. It follows that the singularities of jiz) are included in the in-
terval e~"^z^e\ Also, the expansions of jiz) at Oand co have integer coeffiicients.
Can we conclude that Jiz) is rational ?

We shall show that the critical case is the one in which [e~", eK] is a critical
interval for the problem of algebraic units, that is, an interval which can be approxi-
mated both by intervals containing infinitely many sets of conjugate algebraic
units, and by intervals containing only finitely many such sets. By [15, §5], these
intervals are defined by LXL2=L2, where

Lj=\oge—^ = \oge-^,

lo8 "xx^r - log
1

4e*e-" 4eA

and
eW2 + e-tf'2 _       e«+»)za + i

^  _  1°S eW2_g-«/2   ~  l°g e(A + H)/2_1 "

In contrast to this, we found in §5 above that the critical case for the corresponding
problem where Fit) has integer values at the positive integers only is eK — e~u = 4,
orLi=0.

By [15, §5], if LjL2=L2, then Fi>0 and L2>0. Hence A>log 4 and /A>log4.
As A increases from log 4 to co, p. decreases from oo to log 4. They are equal when
X=p. = log (3 + 2-v/2). Also, if LjL2>L2, then [e~", eA] contains a critical interval
for the problem of algebraic units in its interior, whereas if LjL2<L2, then
[e~*, ex] is contained in the interior of a critical interval.

Suppose first thatFiF2>F2, so that [e~u, eA] is an enlargment of a critical inter-
val. By [15, §8], there are positive integers p and n, and a function of the form

Hiz) = zp + Ap_jZp~1+- ■ ■ +A_n+iZ~n + 1 + z-\

with integer coefficients, which has p + n arbitrarily large oscillations in the interval
[e~u, ex]. Choose a fixed//(z) which has p + n oscillations at least between ±2inthe
interval. Then H(z) cannot assume any values in [ — 2, 2] elsewhere. We can then
choose a nondenumerable infinity of functions Q(w) which are regular outside of
the interval [—2, 2], have integer coefficients in the expansions at oo, and vanish
there. Consider the functions j(z) = Q(H(z)). These functions will have integer
coefficients at both 0 and oo, and will vanish at both points. Furthermore, j(z) will
be regular outside of the interval [e~u, eA], hence the corresponding F(t) will satisfy
the required conditions. Only a denumerable infinity of the functions j(z) can be
rational. In the remaining cases, F(t) will not be an exponential polynomial.
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Now suppose that LxL2<L2, so that [e~u, ex} is a proper part of a critical
interval. In this case, by [15, §9], we can find a function TT(z) of the same form
considered previously for which

|TT(z)| < 1    for <r» ^ z á e\

If F(t) is an admissible function, then j(z) will be regular outside of the interval
[e~u, eA}. We can then apply the main theorem of [16] to j(z), as indicated in §7
above, and draw the conclusion that /(z) is rational, and hence that F(t) is an expo-
nential polynomial. Also, the poles of j(z), and hence the bases of the exponentials
in F(t), lie at zeros of TT(z), and therefore at sets of conjugate algebraic units in the
interval [e~", eK}.

In summary, the conditions «(0) ^ A and «(w) ̂  p insure that F(t) is an exponential
polynomial when LxL2<L2, but not when LxL2>L2. Presumably the conclusion
also fails when LXL2=I?, but I do not see how to prove this. (The answer was
proved to be negative in the critical case for the problems considered previously.)
We can, however, completely solve a slightly modified problem, as promised in §1.
Indeed, from the above results it follows easily that the conditions «(0) < A and
h(ir)<p insure that F(t) is an exponential polynomial if and only if LxL2^L2.

It seems likely that we could find an admissible function F(t) for which «(0) = A
and h(tr) = p whenever FiF2^F2, but I do not see how to prove this, even for the
case LxL2>L2. However, we can see that the values of A and p for which we can
satisfy «(0) = A and h(ir) = p are everywhere dense in the region LXL2>L2, and this
remains true when we insist that F(t) should be an exponential polynomial.

There are two special cases where we can give quite complete results. These are
the cases where the growth restriction is dropped on one end of the real axis
(p<co), and the symmetrical case (A = /u).

The case p<co. This is subcritical if A^log4, so all admissible functions are
exponential polynomials. The poles of j(z) lie in the interval 0 < z ^ 4, and must be
algebraic units. By [13, §4], these will have the form

z = 2 + 2 cos 2for/m       [0 ^ k ^ m/2, (k, m) = 1],

where m ̂  3 is not twice a prime power. Hence the possible types on the positive
real axis which are less than log 4 are

h(0) = log (2 + 2 cos 2tt/N)       (N = 3, 5, 7, 9, 11, 12, 13, ...),

where N is not twice a prime power. Although these approach log 4, the type
«(0) = log 4 itself is not possible. However, the possible types h(0) are everywhere
dense in (log 4, oo), even for exponential polynomials. I do not see how to prove
that all types h(0) > log 4 are possible.

The case X = p. Here we are concerned with the type r = max («(0), hfr)). This
case is subcritical if A=^<log(3+2\/2). Because of the symmetry, it could be
treated as indicated in §7, without the use of [15] and [16]. Indeed, it was treated by
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Buck [1, Theorem 5.3], but we shall give a more complete answer. The poles of
j(z) will lie at sets of conjugate algebraic units in the interval (3 — 2\/2, 3 + 2\/2).
Such a set of conjugates is taken by the transformation w = z + \/z into a set of
conjugate algebraic integers in 2 ̂  w < 6. These have the form

w = 4 + 2 cos Ik-tr/m       [0 ^ A ^ m/2, (A, m) = 1],

where m ̂  2. The corresponding values of z either form a single set of conjugates,
or fall into two equally numerous sets, each containing one of the two reciprocal
values of z corresponding to a given w. As pointed out in [15, §2], the latter happens
for m = 2,l, and 30, but probably not in any other case. (For m = 2, both sets
consist of z=l.) Thus the possible types t < log (3 + 2-\/2) are determined from

e' + e-' = 4 + 2 cos 2tt/A       (N = 2, 3, 4, 5, ...),

which yields

t = log [2 +cos 2t7/A+-v/((1 +cos 2tt/A0(3 + cos 2-n/N))]       (A = 2, 3, 4, 5, ...).

In general, F(t) will have this type at both ends of the real axis. However, at least
for A=7 and A =30, this need not be the case. It is not known whether there are
any other exceptions.

The critical type r = log (3 + 2\/2) is attained at both ends of the real axis by

F(i)=(3 + 2V2)i + (3-2A/2)t,

but can also be attained by functions which are not exponential polynomials.
Indeed, for every r ä log (3 + 2-\/2), we can find a completely integer-valued function
F(t) which is not an exponential polynomial, and for which h(±tr/2) = 0 and
h(f)) = h(ir) = T. For there are a nondenumerable infinity of nonrational functions
qiw) which are regular outside of the interval [eT + e_I — 4, ex + e~*], have integer
coefficients at co, and vanish there. The ends of the interval must be singular
points. The corresponding functions jiz)=qiz+\/z) cannot all be rational, and
must have e1 and e_I as singular points, which yields the required result. We can
also see that the possible types for exponential polynomials are everywhere dense
in(log(3 + 2V2),oo).
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