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Abstract

The integer-valued moving average model is advanced to model the num-
ber of transactions in intra-day data of stocks. The conditional mean and
variance properties are discussed and model extensions to include, e.g.,
explanatory variables are offered. Least squares and generalized method
of moment estimators are presented. In a small Monte Carlo study a fea-
sible least squares estimator comes out as the best choice. Empirically we
find support for the use of long-lag moving average models in a Swedish
stock series. There is evidence of asymmetric effects of news about prices
on the number of transactions.

Key Words: Count data, Intra-day, High frequency, Time series, Esti-
mation, Finance.
JEL Classification: C13, C22, C25, C51, G12, G14.

Umeå Economic Studies 637, 2004

∗ The financial support from the Umeå School of Business and Economics and the Jan Wal-
lander and Tom Hedelius Foundation is gratefully acknowledged. This version has gained from
the comments of seminar/workshop audiences at Umeå, Uppsala and Tilburg universities.



1. Introduction

The paper focuses on modelling time series of the number of intra-day trans-
actions in stocks. Such count data time series typically take on small numbers
even for frequently traded stocks if the counts are recorded in short time inter-
vals of, for instance, one minute length. There is an obvious connection between
the current count data model and the conditional duration model of, e.g., Engle
and Russell (1998) in the sense that long durations in a time interval correspond
to a small count and vice versa. Hence, a main use of the count data models
discussed here is also one of measuring reaction times to shocks or news. In
this context straightforward use of the Box-Jenkins methodology for identifying
parsimonious time series models raises fundamental questions about the result-
ing model specification when we wish to adhere to the integer-valued or count
data nature of the number of transactions variable.
Previous models for the number of transactions or related variables within

the intra-day financial arena have departed from conventional count data regres-
sion models or from extended model versions (e.g., Brännäs and Brännäs, 2004;
Heinen and Rengifo, 2003). Here, we consider a different approach and start
from an integer-valued model corresponding to the conventional ARMA class
of Box and Jenkins (1970). An important difference between the continuous
variable ARMA model and its corresponding integer-valued version (INARMA)
is that the latter contains parameters that are interpreted as probabilities and
then take on values in narrower intervals than do the parameters of the ARMA
model (e.g., McKenzie, 1986; Al-Osh and Alzaid, 1991; Joe, 1996; Jørgensen
and Song, 1998; McKenzie, 2003). This then may make model identification of
an appropriate model by correlation methods (Box and Jenkins, 1970) less suit-
able. While for the ARMA class, specification searches aim at models that leave
no serial correlation and satisfy stationarity and invertibility criteria, the IN-
ARMA specification should additionally have each parameter estimate of lagged
variables in the unit interval.
In this paper the empirical results indicate that long-lag INMA models sat-

isfy such restrictions, while mixed INARMA models do not. The INMA model
class has been studied by, e.g., Al-Osh and Alzaid (1988), McKenzie (1988) and
Brännäs and Hall (2001). As far as we are aware the only published, empirical
application is due to Brännäs, Hellström and Nordström (2002), who estimated
a nonlinear INMA(1) model for tourism demand. This model had time de-
pendent parameters that were functions of explanatory variables. The present
empirical study is focused on a stock transaction series (Ericsson) registered
at the order driven Stockholmsbörsen stock exchange and emphasizes different
specification issues.
The INMA model is introduced in Section 2, where we also give some mo-

ment results and discuss conditional heteroskedasticity. General expressions for
conditional and unconditional moments are obtained. Extensions to include
explanatory variables in the conditional mean and a more flexible conditional
heteroskedasticity specification are also discussed. Section 3 discusses estima-
tion of unknown parameters and gives least squares and GMM estimators for
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the model class. The section also considers aspects of model evaluation and
forecasting. A small Monte Carlo experiment to study some key characteristics
of the estimators and of forecasts is included. Section 4 contains the empirical
results for the stocks series. The final section offers some concluding comments.

2. Model

The single thing that most visibly makes the integer-valued MA (INMA) model
different from its continuous variable MA counterpart is that multiplication of
variables with real valued parameters is no longer a viable operation, when
the result is to be integer-valued. Multiplication is therefore replaced by the
binomial thinning operator

α ◦ u =
uX
i=1

vi,

where {vi}ui=1 is an iid sequence of 0− 1 random variables, such that Pr(vi =
1) = α = 1 − Pr(vi = 0). Conditionally on the integer-valued u, α ◦ u is
binomially distributed with E(α ◦ u|u) = αu and V (α ◦ u|u) = α(1 − α)u.
Unconditionally it holds that E(α ◦ u) = αλ, where E(u) = λ, and V (α ◦ u) =
α2σ2 + α(1− α)λ, where V (u) = σ2. Obviously, α ◦ u ∈ [0, u].
Employing this binomial thinning operator, the INMA(∞) model can be

written

yt =
∞X
i=0

βi ◦ ut−i, (1)

with mostly β0 = 1.
1 The {ut} is an iid sequence of non-negative and integer-

valued random variables with, as above, E(u) = λ and V (u) = σ2.
McKenzie (1988), Joe (1996), Jørgensen and Song (1998) and others stress

exact distributional results for yt, while we emphasize only the first two con-
ditional and unconditional moments of the model. One reason for our choice
will become apparent below when we discuss and introduce more flexible con-
ditional mean and heteroskedasticity specifications for yt than implied by (1).
As a consequence exact maximum likelihood (ML) estimation is beyond reach
though otherwise a desirable candidate for estimation. We could potentially
use ML estimation by directly specifying a conditional density for yt given its
history Yt−1; cf. the conditional duration model approach of Engle and Russell
(1998).
The finite-lag INMA(q) model

yt = ut + β1 ◦ ut−1 + . . .+ βq ◦ ut−q (2)

was introduced by McKenzie (1986). Brännäs and Hall (2001) discuss model
generalizations and interpretations resulting from different thinning operator
structures, and an empirical study and approaches to estimation are reported
by Brännäs et al. (2002).

1The INMA(∞) can, e.g., be obtained from the INAR(1) yt = α ◦ yt−1 + εt by repeated
substitution: yt = αt ◦y0+ t

i=1 α
t−i ◦εi. Assuming α ∈ [0, 1) and t large gives that βi = αi.
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Figure 1: Autocorrelation functions in the Poisson case (dot-dashed lines) and
βi parameters (solid lines) when parameters are as in the Monte Carlo study,
below.

For the INMA(∞) model in (1), with independence between and within
thinning operations,2 and with {ut} an iid Poisson sequence with σ2 = λ, and
β0 = 1, the moment expressions are:

E(yt) = V (yt) = λ

Ã
1 +

∞X
i=1

βi

!
(3a)

ρk = λ

Ã
βk +

∞X
i=1

βiβk+i

!
/V (yt), k ≥ 1. (3b)

It is obvious from these moments that they only generate positive values and
that

P∞
i=0 βi < ∞ is required for {yt} to be a stationary sequence. Assum-

ing instead, e.g., an iid distribution with mean λ and variance σ2 changes the
variance and the autocorrelation function to

V (yt) = λ
∞X
i=1

βi(1− βi) + σ2

Ã
1 +

∞X
i=1

β2i

!
(3c)

ρk = σ2

Ã
βk +

∞X
i=1

βiβk+i

!
/V (yt), k ≥ 1, (3d)

while leaving the mean unaffected and as in (3a).
In case the lag length q is finite, summing to infinity is replaced by summing

to q in (3c)-(3d) and to q − k in the numerator of (3d). In that case ρk = 0,
2Pairs of thinning operations of the type θi ◦ ut and θj ◦ ut, for i 6= j, are independent

(McKenzie, 1988). Assumptions of this type can be relaxed (cf. Brännäs and Hall, 2001).
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for k > q. Figure 1 gives an illustration of two autocorrelation functions when
βi, i ≥ 1, are set as in the Monte Carlo experiment, below.
The conditional moments for the INMA(∞) model are:

E(yt|Yt−1) = λ+
∞X
i=1

βiut−i (4a)

V (yt|Yt−1) = σ2 +
∞X
i=1

βi(1− βi)ut−i, (4b)

where Yt−1 is the information set available at time t− 1.
As the conditional variance varies with ut−i, i ≥ 1, there is conditional het-

eroskedasticity of a moving average type. We can call this property MACH(∞)
and for finite q, MACH(q) (cf. the notation ARCH(p)). Note that the re-
sponse to lagged ut−is is weaker in the conditional variance (4b) than in (4a) as
βi ∈ [0, 1]. The relative size of the two moments will largely depend on the sizes
of λ and σ2. Note also that even though a Poisson distribution for ut implies
a Poisson distributed yt, the conditional distribution of yt given its past is not
the Poisson, as indicated, e.g., by the difference between (4a) and (4b).
As measures of reaction times to shocks/news in the {ut} sequence we may

use the mean lag
P∞

i=0 iβi/w, where w =
P∞

i=0 βi. Alternatively, we may use
the median lag, which is the smallest k such that

Pk
i=0 βi/w ≥ 0.5.

2.1 Extensions

There are two obvious extensions to the model that appear of high empirical rel-
evance. First, we may let λ become time-varying and a function of explanatory
variables. The natural specification is

λt = exp(xtθ) ≥ 0, (5)

where in xt we may include k variables related to previous prices, etc. A conse-
quence of the time-varying λt is that moment expressions become time depen-
dent, but the additional difficulty with respect to estimation is marginal.
Another obvious extension in order to obtain more flexible conditional vari-

ance specifications in (4b) is to let σ2 become time dependent. We may let σ2t
depend on past values on σ2t , ut and explanatory variables in, e.g., the following
exponential way

σ2t = exp
h
φ0 + φ1 lnσ

2
t−1 + . . .+ φP lnσ

2
t−P

+ γ1(ut−1 − λ)2 + . . .+ γQ(ut−Q − λ)2 + xtα
¤

(6)

(cf. Nelson, 1991). There could also be additional contributions, or at least dif-
ferent ones, to the conditional variance if, e.g., the different thinning operations
were dependent (cf. Brännäs and Hall, 2001; Brännäs and Hellström, 2001).
It is also possible to let βi be, e.g., a logistic function of explanatory vari-

ables (Brännäs et al., 2002) and to reduce the number of βis by specifying a
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distributed lag distribution of, e.g., the form βi = δ0 exp(−δ1i) with δ0 ∈ (0, 1]
and δ1 ≥ 0 for i ≥ 1.

3. Estimation

In this section we discuss approaches to the estimation of the unknown parame-
ters of the conditional mean and variance functions. Both the conditional mean
and the conditional variance will contain time dependent λt and σ2t specifica-
tions, respectively, unless otherwise stated. As we do not assume a full density
specification the proposed estimators can be viewed as semiparametric ones.
The conditional least squares (CLS) estimator is focused on the unknown

parameters of the conditional mean function and requires an additional step
to estimate the unknown parameters of the conditional variance expression, in
particular in its σ2t part. Typically, CLS estimates, of β = (β1, . . . , βq)

0 and in
case λt is time invariant λ and θ = (θ1, . . . , θk)0 when λt is time-varying, are used
and kept fixed when estimating the variance function. In a feasible generalized
least squares (FGLS) estimator, these two steps facilitate GLS estimation of
the conditional mean function in a final step. Note that for small βi parameters
we may expect the conditional variance to be almost constant if σ2t = σ2 holds
(cf. (4b)). In such an instance we expect the CLS and FGLS estimators of the
parameters to be numerically close.
By a GMM estimator (Hansen, 1982), all parameters can be estimated

jointly. For the GMM estimator weighting is with respect to moment condi-
tions and not with respect to individual observations as in FGLS. We may
anticipate better performance of the FGLS than of the GMM estimator for the
parameters of the conditional mean function (Brännäs, 1995). Brännäs and Hall
(2001) found the CLS estimator to have weaker bias/mean square error (MSE)
performance than a GMM estimator based on probability generating functions.
This type of GMM estimator will not be considered here as it is computationally
more intricate and currently rests on arbitrarily setting values on the argument
of the generating function.
Common to the considered estimators is their reliance on the prediction error

e1t = yt −E(yt|Yt−1). (7)

Moment conditions are created with e1t as the residual and instruments de-
pending on the particular model specification. This corresponds to the normal
equations of the CLS estimator, whose solution also makes up the first step of
the FGLS estimator. Alternatively, we may use the properties E(e1t) = 0 and
E(e1te1t−i) = 0, i ≥ 1. The CLS estimator minimizes the criterion function
SCLS =

PT
t=r e

2
1t, where r = q+1 and T is the time series length, with respect

to the unknown parameter vector ψ0 = (λ,β0) or ψ0 = (θ0,β0). To calculate
the e1t sequence we consider

e1t = ut − λt +
∞X
i=1

(βi ◦ ut−i − βiut−i) (8)
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and advocate using the expected value zero of the final term in (8) rather than
using some randomization device.
Obviously, there are alternative estimators, such as Durbin’s (1959) esti-

mator extended to handle λ, for the estimation of ψ. A recent summary of
least squares and related estimators (interpreted as GMM) of low order MA(q)
models utilizing dual AR representations is given in Harris (1999). Method
of moment (or GMM) estimation based on the unconditional first and second
moments requires the solution of a system of nonlinear equations. Hence, a sim-
plicity argument does not apply and moreover the properties of the estimator
are in the MA(q) model not very satisfactory. When standard software based
on the assumption E(ut) = λ = 0 is used to CLS estimate an INMA(q) model,
the obtained estimate of the constant term is an estimate of λ

Pq
i=0 βi. Given

estimates of βi it is hence possible to obtain an estimate of λ manually.
For the second step, normal equations based on the conditional variance

prediction error
e2t = (yt −E(yt|Yt−1))2 − V (yt|Yt−1) (9)

are used for FGLS estimation, and incorporated as moment conditions for GMM
estimation. Here too the conditional variance specification should have a say on
the choice of instrumental variables.
For FGLS S2 =

PT
t=s e

2
2t, where s = max(q, P,Q)+ 1, is minimized with re-

spect to the parameters of the σ2t function, i.e. ω
0 = (σ2, φ0, . . . , φP , γ1, . . . , γQ,

α0) and with the CLS estimates ψ̂ and {ût} kept fixed. In case σ2 is time in-
variant an obvious estimator is of the simple form

σ̂2 = (T − s)−1
TX
t=s

"
ê21t −

qX
i=1

β̂i(1− β̂i)ût−i

#
.

For the third step of FGLS, minimizing the criterion

SFGLS =
TX
t=s

e21t/V̂ (yt|Yt−1)

with V̂ taken as given, gives the FGLS estimates of the parameter vector ψ of
the conditional mean function. The covariance matrix estimators are:

Cov(ψ̂CLS) =

Ã
TX
t=r

∂e1t
∂ψ

∂e1t
∂ψ0

!−1
= A−1

Cov(ψ̂FGLS) =

Ã
TX
t=r

V̂ −1(yt|Yt−1) ∂2e1t
∂ψ∂ψ0

!−1
= B−1.

A robust estimator for the CLS estimator is of the form A−1BcA
−1, where Bc

is as B with V̂ −1(yt|Yt−1) replaced by ê21t.
Using a finite maximum lag q for a true INMA(∞) model can be expected

to have a biasing effect on the estimator of the constant term λ of the condi-
tional mean function of the INMA(q) model. The conditional expectation of
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the difference between the infinite and finite models is
P∞

i=q+1 βiut−i, which
has expectation λ

P∞
i=q+1 βi. For large q the latter sum will be close to zero as

we expect βi, i ≥ q+1, to approach zero for large q. An estimate of the constant
term can then be expected to be only moderately too large. In analogy with
a linear regression model and the OLS estimator the conventional analysis of
the consequences of omitted variables, i.e. ut−q−1, . . . , ut−∞, suggests that we
should expect a positive bias in the estimates of βi for small q. This is so, since
all βi > 0 and the covariance between included and incorrectly excluded lags
of ut is always λ

2 as E(utut−j) = λ2, j 6= 0, under independence. By a related
argument, we expect no additional bias if q is chosen larger than some true value
q∗. An immediate consequence of these intuitive arguments is that q should, at
least, initially be chosen large. Subsequent testing could later be used to reduce
the initial q.
The GMM criterion function

q =m0Ŵ−1m

has the vector of moment conditions m depending on the specification and is
minimized with respect to η0 = (ψ0,ω0). The moment conditions corresponding
to the conditional mean are collected into

m1 = (T −m)−1
TX

t=m+1

m1t,

where m ≥ q. In the Monte Carlo study below we use e1t, e1te1t−1, . . . , e1te1t−m
for m1, while for the empirical results we use the first order condition of the
CLS estimator, i.e. e1t∂e1t/∂ψk = 0, to give the conditions.
For the conditional variance the moment conditions are formed from E(e21t)−

σ2t −
Pq

i=1 βi(1−βi)ut−i with instruments from the collection of σ2t−i, e21t−i and
xkt. The conditions are collected into a vector m2. Finally, m =(m0

1,m
0
2)
0. As

a consistent estimator of the weight matrixW we use

Γ̂ = (T −m)−1
TX

t=m+1

mtm
0
t.

The covariance matrix of the parameter estimator is, when W is set equal to
an identity matrix, estimated by Cov(η̂) = (T −m)−1(Ĝ0Ĝ)−1Ĝ0Γ̂Ĝ(Ĝ0Ĝ)−1,
where Ĝ = ∂m̂/∂η̂0. When the numbers of moment conditions and parameters
are equal; Cov(η̂) = (T −m)−1Ĝ−1Γ̂(Ĝ

0
)−1.

3.1 Model Evaluation

To test against serial correlation in standardized residuals ê1t/V̂
1/2(yt|Yt−1)

and squared standardized residuals we may use the Ljung-Box test statistic
LBK = T (T + 2)

PK
i=1 r

2
i / (T − i), where ri is the lag i autocorrelation of the
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standardized residual. Under homoskedasticity and independence the test sta-
tistic is asymptotically χ2(K) distributed. Davis and Dunsmuir (2000) and Lo-
bato, Nankervis and Savin (2001) recently considered corrections to the Ljung-
Box statistic when heteroskedasticity and serial correlation are present.

3.2 Forecasting

For an INMA(∞) model the forecasts µT+h|T = E(yT+h|YT ), h ≥ 1, are

µT+h|T = λ
h−1X
i=0

βi +
∞X
i=h

βiuT+h−i, h ≥ 1.

The limiting value of the forecast as h→∞ is λ
P∞

i=0 βi, which is the mean of
the process. For finite q the sum to infinity in the second term is replaced by
summing up to q for h ≤ q. For h > q, the forecast is again equal to the mean
of the process, i.e. λ

Pq
i=0 βi.

The variance of the forecast error eT+h = yT+h−µT+h|T is for the INMA(∞)
model with known parameters

sT+h|T = σ2
h−1X
i=0

β2i + λ
∞X
i=1

βi(1− βi).

For h ≤ q, the forecast error variance for the INMA(q) model is sT+h|T =

σ2
Ph−1

i=0 β
2
i + λ

Pq
i=1 βi(1− βi).

Obviously, the uncertainty in estimated parameters will increase these vari-
ances. To obtain expressions for such variances we could consider various ap-
proximations to V (eT+h) = Eη̂(sT+h|T,η̂) + Vη̂(µT+h|T,η̂). Using first order
Taylor expansions of the two terms around the true parameter vector η we get
the approximative variance

V (eT+h) ≈ sT+h|h + g0 [E(η̂)− η] + h0Cov(η̂)h,

where g = ∂sT+h|h/∂η and h = ∂µT+h|h/∂η. Most often a consistent estimator
(E(η̂) − η = 0) and a large sample (Cov(η̂) ≈ 0) are assumed in which case
sT+h|T evaluated at estimates is the expression to employ.

3.3 A Small Monte Carlo Experiment

In this small Monte Carlo experiment we study the bias and MSE properties of
the CLS, FGLS and GMM estimators for finite-lag specifications, when data is
generated according to an infinite-lag INMA model. In addition, we study the
serial correlation properties of estimated models by the Ljung-Box statistic as
well as the properties of forecasts one and two steps ahead.
The data generating process is as in (1), with βi = exp(γ0 + γ1i), i ≥ 1,

and β0 = 1. The {ut} sequence is generated as Poisson with parameter λ, so

8



that σ2 = λ is time invariant in the conditional variance (4b).3 We set λ = 5,
γ0 = −1.5, γ1 = −0.1,−0.2,−0.3 and −0.4, and T = 1000 and 10 000. The
number of replications is 1000 in each design point. In generating the data the
first 50 observations are discarded, which appears safe as βi is effectively zero
at lag 50 for the used γ0 and γ1 combinations.
For the estimators we choose q = 10, 20 and 30. By the q choices we will

effectively study under as well as overparameterized model version.4 We use
a simplex algorithm to minimize the criterion function of each estimator. For
the GMM estimator we set W equal to the identity matrix. The Ljung-Box
statistic is based on 10 autocorrelations, and the forecast horizon is h = 2.
We report bias and MSE results for βi after accumulation over i = 1, . . . , 10

for all employed q values. The full results are summarized in Table A1 of the
Appendix, while Figure 2 contains the results for the CLS estimator. Starting
with the CLS estimator we find that as sample size increases there is a decline
in MSE throughout. For the bias there is a decline only for the most overpa-
rameterized case of q = 30. Biases and MSEs drop as q increases. Biases are
negative for q = 10 and 20, with the exception of the γ1 = −0.1 case for q = 10.
This is the most underparameterized model. For q = 10 the absolute bias drops
from 14.6 percent (or on average 1.46 percent for the individual parameter) for
γ1 = −0.1 to 4.4 percent and less for γ1 ≤ −0.2. The FGLS and GMM es-
timators also focus on the σ2 parameter, albeit in different ways. The biases
and MSEs of the GMM estimator are in most cases the poorest. The FGLS
estimator has smaller biases and MSEs than the CLS estimator for q ≤ 20 and
all estimators are quite close for q = 30. Setting σ2 = λ and letting all other
parts of the conditional variance be known improves on the performance of the
GMM estimator though not by much. Note that the use of a weight matrix
different from the identity matrix may change these outcomes.
In some additional experiments with e1t∂e1t/∂ψk = 0 instead of e1te1t−k in

forming the m1 part of the moment conditions for the GMM estimator it was
found that the MSE is larger for γ1 = −0.1 but smaller for other γ1-values, in
particular for T = 10 000. The bias is larger is larger for γ1 = −0.1 and −0.2
and smaller for the other γ1-values. For q = 30 the large number of parameters
makes this a very slow estimator, at least, for simulations.
In summary, the FGLS estimator comes out as the best estimator of

P10
i=1 βi.

However, the CLS estimator which is the simplest to use of the three considered
estimators is not far behind. It is also clear that q should be chosen large.
The ability of the Ljung-Box statistic to detect remaining serial correlation

is studied by counting the number of replications exceeding a critical value of
χ20.95(10) = 18.307. The results are summarized in Table A2. For q = 10
and 30 and T = 10 000 the statistic indicates remaining serial correlation in
a large fraction of instances. For q = 20 indications are strong only for γ1 ≤

3The experiments are performed using Fortran codes. Poisson random deviates are gener-
ated by the POIDEV function (Press et al., 1992), while the binomial thinning is performed
by the BNLDEV function.

4 10
i=0 βi = 2.34 and βk < 0.01 for k ≥ 32 for γ1 = −0.1, the sum is 1.87 for k ≥ 16 and

γ1 = −0.2, 1.61 for k ≥ 11 and γ1 = −0.3, and 1.45 for k ≥ 8 and γ1 = −0.4.
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Figure 2: Bias and MSE properties in the Monte Carlo experiment of the CLS
estimator of
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Figure 3: Time series plots for Ericsson.

−0.2. Hence, both under and overparameterization give rise to detectable serial
correlation.
The forecasting performance is reported in Table A3. Both in terms of bias

(or mean error) and MSE the FGLS estimator performs better than the other
two estimators. In addition, the GMM performance is weaker than that of
the CLS estimator. For q = 30 the differences between the performances of
estimators are small. If the alternative GMM estimator is used the performance
improves and brings GMM close to FGLS.

4. Data and Descriptives

The time series for the number of transactions per minute in Ericsson B, in
the period July 2 — 22, 2002, are displayed in Figure 3. There are frequent
zero frequencies and hence the use of a count data modelling approach is called
for. In producing the graph and for the analyses of this paper we have deleted
all trading before 0935 (trading opens at 0930) and after 1714 (order book is
closed at 1720). The reason for these deletions is that our main focus is on
ordinary transactions and the first few minutes are likely to be subject to a
different mechanism with considerably higher trading frequencies. The final
minutes of the trading day have practically no trading. The basic data were
downloaded from the Ecovision system and later filtered by the authors. Due
to a technical problem in capturing transactions the first captured minute of
July 19 is 0959. There are altogether 6875 observations for the Ericsson series.
Descriptive statistics and a histogram for the series are given in Figure 4.
Autocorrelation functions for the series and its first difference are given in

Figure 5. For the level series, the function indicates long memory. The auto-
correlations after lag one of the first difference series are practically zero. The
partial autocorrelation functions die out gradually for both the level and the
difference series. Taken together the functions for the first difference series sig-
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Table 1: ARMA estimation results (standard errors in parentheses) for the
Ericsson series.

ŷt = 0.991
(0.002)

ŷt−1 + 8.179
(0.870)

− 0.757
(0.012)

ût−1 − 0.088
(0.012)

ût−2

s2 = 18.25, LB20 = 28.16 (p = 0.11)

∇ŷt = 0.110
(0.014)

∇ŷt−1 − 0.001
(0.007)

− 0.874
(0.007)

ût−1

s2 = 18.32, LB20 = 29.79 (p = 0.07)
Note: Models estimated in SPSS.

nal that a model for such a series should include a MA(1) component. The
autocorrelations for the level series suggest that a low order AR-part is required
together with a low order MA-part. With respect to the mean pattern over the
day there is more trading during the first two hours than later.
When specifying and estimating INARMA models according to the conven-

tional Box-Jenkins methodology, in both level and first difference forms, it is
obvious that, at least, the β̂1 estimates are large and have negative signs and
that the INAR(1) parameter is suspiciously close to one (cf. Table 1).5 Hence
there is a violation of the probability interpretation of βi. It also appears that
pure but higher order INAR models are not successful in eliminating serial cor-
relation. Therefore, there is empirical justification for considering INMA models
with long lags even though such models are less parsimoniously parameterized.
For the purpose of evaluating the impact of explanatory variables on λt and

σ2t we also have access to price, volume and spread. These are recorded at
the last transaction of the previous minute, i.e. at t − 1. In case there is no
transaction in the previous minute(s), we use the most recent previous notations.
Instead of including variables in levels we use first differences to reflect news:
∇pt = pt−1−pt−2 reflects the news (innovation when pt follows a random walk)
value in the price, ∇vt = vt−1 − vt−2 in volume and ∇st = st−1 − st−2 in the
spread. For volume we divide through by 10 000 000.

5. Empirical Results

The empirical results are presented in terms of finite-lag INMA(q) models. Es-
timation is carried out by the conditional and feasible generalized least squares
(CLS(FGLS) estimators for the standard INMA(q) model as well as when a
time-varying λt is allowed for. GMM estimation is employed for full models
including conditional heteroskedasticity and time-varying λt specifications.
AIC and SBIC criteria are used to find the lag length q, allowing for no

5Note that for a count data INAR(1) model with a unit root the observed sequence of
observations can not decline. Adding a MA part to the INAR(1) does not alter this feature.
As is obvious from Figure 3 there are ups and downs in the present time series, so that a unit
root can not logically be supported by the data.

13



Table 2: Estimation results for INMA(q) models for Ericsson (s.e. times 100).

q = 47 q = 50

Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e.
1 .2407 .28 26 .1146 .30 1 .2378 .28 26 .1102 .30
2 .1509 .29 27 .0919 .30 2 .1466 .29 27 .0899 .30
3 .1539 .29 28 .0917 .30 3 .1520 .29 28 .0891 .30
4 .1776 .29 29 .1025 .30 4 .1734 .29 29 .0991 .30
5 .1545 .30 30 .1135 .30 5 .1498 .30 30 .1114 .30
6 .1559 .30 31 .0905 .30 6 .1512 .30 31 .0869 .30
7 .1175 .30 32 .0901 .30 7 .1141 .30 32 .0863 .30
8 .1310 .30 33 .0737 .30 8 .1260 .30 33 .0696 .30
9 .1414 .30 34 .1060 .30 9 .1382 .30 34 .1031 .30
10 .1365 .30 35 .0874 .30 10 .1309 .30 35 .0855 .30
11 .1377 .30 36 .0683 .30 11 .1321 .30 36 .0676 .30
12 .1358 .30 37 .0476 .30 12 .1320 .30 37 .0494 .30
13 .1457 .30 38 .0669 .30 13 .1426 .30 38 .0665 .30
14 .1120 .30 39 .0775 .30 14 .1090 .30 39 .0780 .30
15 .1200 .30 40 .0407 .30 15 .1139 .30 40 .0380 .30
16 .1203 .30 41 .0578 .30 16 .1147 .30 41 .0545 .30
17 .1333 .30 42 .0313 .30 17 .1269 .30 42 .0293 .30
18 .1470 .30 43 .0412 .29 18 .1412 .30 43 .0395 .30
19 .1393 .30 44 .0368 .29 19 .1347 .30 44 .0369 .30
20 .1252 .30 45 .0528 .29 20 .1200 .31 45 .0540 .29
21 .1245 .30 46 .0583 .29 21 .1198 .30 46 .0633 .29
22 .0990 .30 47 .0289 .28 22 .0938 .30 47 .0324 .29
23 .1127 .30 23 .1090 .30 48 .0200 .29
24 .0936 .30 24 .0899 .30 49 .0029 .29
25 .1020 .30 25 .0974 .30 50 .0179 .28

λ 1.341 1.67 1.362 1.72

LB20 14.37 14.80
LB2

20 81.74 84.06

Note: The Ljung-Box statistics LB20 and LB
2
20 are obtained with σ̂

2 = λ̂.
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gaps in the βi sequence. For Ericsson AIC is minimized at q = 50, while SBIC
indicates an order q = 47. Both criterion functions are quite flat indicating some
uncertainty with respect to a true q-value.6 CLS estimation results for pure
INMA models are presented in Table 2. Though differences between estimates
are quite small, the smaller q-value gives estimates that are larger for low lags
and smaller for large lags. The standard errors of the estimates (based on a
numerical derivative version of A−1) are throughout small and for both q-values
individual hypotheses of βi = 0, i = 1, . . . , q, are rejected throughout. Note
also that β̂i estimates are larger than zero throughout even if an unrestricted
estimator is used. The confidence intervals at the same lag overlap in most
instances. For q = 47, the β̂i estimates give a mean lag of 15.8 minutes and a
median lag of 14 minutes, while for q = 50 the mean lag is 16.0 minutes and the
median 14 minutes. Hence, for the measurement of reaction time the q-choice
does not matter much in this case.
For both models R2 = 0.54, while the fit of models containing an INAR(1)

parameter (cf. Table 1) is better than for pure INMA models. Note also that
there are no strong correlations between estimates in this case. Table 2 suggests
that the β̂is are roughly linear in i. A linear regression gives β̃i = 0.175−0.0029i
(R2 = 0.84) for q = 47 and β̃i = 0.174 − 0.0029i (R2 = 0.85) for q = 50. The
goodness-of-fit improves further if β̂1 is dropped for these regressions.
There is no remaining serial correlation in the standardized residual, for

either q-value, when for the conditional variance we use that of the Poisson
distributed INMA(q), i.e. we set σ̂2 = λ̂. However, the squared standardized
residuals indicate remaining conditional heteroskedasticity for both models. The
largest autocorrelation coefficient is 0.057 for the squared and −0.018 for the
standardized residual. As a first step of attempting to find a remedy for the
squared residual problem, a time invariant σ2 is estimated in a second step of
the FGLS estimator. For both q-values the σ̂2s are substantially larger than the
corresponding λ̂ estimates. Using σ̂2 instead of λ̂ gives roughly the same LB20
statistic, while for the squared standardized residual values increase substan-
tially. Estimating models with βi = κ0+κ1i, where κ0 and κ1 are the unknown
parameters, leads to more severe serial correlation.
Next, we consider the impact of explanatory variables on λt and on σ2t .

Table 3 reports FGLS and CLS estimates for INMA(q) with λt specifications
for q = 50. The FGLS estimates are obtained by using the CLS estimates
ê1t and

Pq
i=1 β̂i(1 − β̂i)ût−i to estimate a σ2t model. Corresponding to the

λ̂t specification we have σ̂
2
t = exp(1.17 + 0.03 ln σ̂2t−1 − 3.70∇pt + 0.08∇p+t +

8.58∇st), R2 = 0.10. This suggests that a negative price change increases
volatility while a positive change reduces volatility. A negative spread change
lowers volatility while a widening spread increases volatility. A dummy variable
for trading before 1101 AM had no significant effect even though trading is more
frequent in the early hours of the day.
On comparison with Table 2, the CLS β̂i estimates are marginally smaller for

6 In some experimentation with an AstraZeneca series lower order model representations
(q = 18 and 30) are found.
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Table 3: FGLS and CLS estimation results for INMA(50) with exponential λt
models for Ericsson (s.e. times 100). For the σ2t specification, see the text.

FGLS CLS
Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e. Lag β̂i s.e.
1 .2257 .80 26 .1035 .84 1 .2312 .28 26 .1069 .30
2 .1481 .82 27 .0839 .85 2 .1412 .29 27 .0854 .30
3 .1466 .82 28 .0868 .85 3 .1511 .29 28 .0853 .30
4 .1641 .83 29 .0941 .85 4 .1701 .29 29 .0943 .30
5 .1502 .83 30 .1110 .85 5 .1463 .30 30 .1078 .30
6 .1468 .83 31 .0914 .85 6 .1462 .30 31 .0845 .30
7 .1124 .84 32 .0844 .85 7 .1116 .30 32 .0826 .30
8 .1207 .84 33 .0631 .85 8 .1215 .30 33 .0666 .30
9 .1301 .84 34 .0993 .85 9 .1295 .30 34 .1004 .30
10 .1301 .84 35 .0855 .85 10 .1255 .30 35 .0835 .30
11 .1296 .84 36 .0594 .85 11 .1273 .30 36 .0625 .30
12 .1251 .85 37 .0417 .84 12 .1283 .30 37 .0436 .30
13 .1435 .85 38 .0607 .84 13 .1401 .30 38 .0606 .30
14 .1034 .85 39 .0689 .84 14 .1012 .30 39 .0718 .30
15 .1159 .85 40 .0302 .84 15 .1126 .30 40 .0333 .30
16 .1096 .86 41 .0500 .84 16 .1080 .30 41 .0540 .30
17 .1254 .85 42 .0316 .84 17 .1252 .30 42 .0281 .30
18 .1402 .85 43 .0390 .84 18 .1374 .30 43 .0381 .30
19 .1317 .86 44 .0331 .84 19 .1292 .30 44 .0328 .30
20 .1160 .86 45 .0548 .84 20 .1173 .31 45 .0500 .29
21 .1193 .85 46 .0616 .82 21 .1172 .30 46 .0599 .29
22 .0910 .85 47 .0308 .82 22 .0930 .30 47 .0301 .29
23 .0991 .85 48 .0172 .81 23 .1057 .30 48 .0174 .29
24 .0847 .85 49 .0051 .81 24 .0883 .30 49 -.0001 .29
25 .0927 .85 50 .0235 .80 25 .0973 .30 50 .0158 .28

θ0 .2483 31.54 -.5802 4.01
λ∗t−1 .3281 3.07 -.0151 1.33
∇pt -3.892 142.6 -7.276 51.59
∇p+t -4.154 314.4 13.60 18.79
∇st 11.128 54.85 4.987 35.40
1t .2420 2.86 .3613 1.30

LB20 43.95 20.66
LB2

20 12.60 33.28
Note: λt = exp(θ0 + θ1λ

∗
t−1 + θ2∇pt + θ3∇p+t + θ4∇st + θ51t), where λ

∗
t−1 =

lnλt−1, ∇p+t = 0 for ∇pt ≤ 0 and ∇p+t = ∇pt for positive news, and 1t =
1(t ≤ 1100).
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all lags. In addition, the FGLS estimates are sometimes smaller than the CLS
estimates. For CLS the lag 49 estimate has a negative sign but is insignificant.
It remains insignificant and small when estimated by the FGLS estimator the
sign is correct.
In the λt function the lagged mean level, λt−1, has a rather small but signif-

icant effect when estimated by the FGLS estimator, while it is insignificant in
the CLS estimated model. In terms of the CLS estimates there are significant
asymmetric but not very different effects for the price change variable; with a
tick size of 0.1 SEK we expect an enhancing average effect of 0.63 for a positive
and 0.73 for a negative one tick change. The asymmetry is insignificant for
FGLS but the corresponding estimated effects are larger and equal to −0.81
and 0.39, respectively. News about spread increase the frequencies. These are
expected signs when compared to duration models for the same underlying data
(Brännäs and Simonsen, 2003). The current effects are more significant as for
the duration data only the news about prices came out with a significant ef-
fect. To account, at least, partly for seasonal within days effects we included a
dummy variable 1(t ≤ 1100) which takes value one for transactions before 1101
AM and zero otherwise. The estimated effect is positive and significant for both
estimators.
There is no practical change in the serial correlation properties for the CLS

estimated model with σ̂2t = λ̂t, though the Ljung-Box statistic for the squared
residuals is much smaller and not very far from a p-value of 0.05. In this case the
largest autocorrelations are −0.038 and 0.032 (squared standardized residual)
for q = 50. The effect of news in volume also come out significantly but implies
substantial serial correlation in both ê1t/V̂ 1/2(yt|Yt−1) and its square. When λt
is changed to have a linear form there are no serial correlation problems. Unfor-
tunately, λ̂t is then negative for some 30 percent of the observations. Obviously,
this is a logically unappealing feature. For the FGLS estimated model we note
that conditional heteroskedasticity no longer appears a problem, while the stan-
dardized residual now signals trouble. The largest autocorrelation coefficients
are 0.042 and 0.021 (squared standarized residual).
Full models including σ2t of the exponential type in (6) have been estimated

by GMM. In each instance there is no serial correlation in the standardized
residual, but there is serial correlation in the squared standardized residuals of
about the same magnitude as the CLS of Table 3.

6. Concluding Remarks

The suggested integer-valued moving average model has relatively straightfor-
ward moment properties and estimating the unknown parameters by well-known
techniques is relatively simple. In addition, both the conditional least squares
and feasible least squares estimators are readily available in many standard
statistical packages and have the good statistical properties.
The current paper focused on modelling a time series of the intra-day num-

ber of transactions per time unit using the integer-valued moving average model
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class. In its practical implementation for the time series of the number of trans-
actions in Ericsson B, we found both promising and less advantageous features
of the model. With the CLS estimator it was relatively easy to model the con-
ditional mean in a satisfactory way in terms of both interpretation and residual
properties. It was more difficult to obtain satisfactory squared residual prop-
erties for the conditional variance specifications that were tried. The FGLS
estimator reversed this picture and we suggest that more empirical research is
needed on the interplay between the conditional mean and heteroskedasticity
specifications for count data. Depending on research interest the conditional
variance parameters are or are not of particular interest. For studying reaction
times to shocks or news it is the conditional mean that matters, in much the
same way as for conditional duration models. In addition, the conditional vari-
ance has no direct ties to, e.g., risk measures included in, e.g., option values or
portfolios.
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