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Abstract

This paper introduces a new continuous-time framework for modelling serially corre-
lated count and integer-valued data. The key component in our new model is the class of
integer-valued trawl (IVT) processes, which are serially correlated, stationary, infinitely di-
visible processes. We analyse the probabilistic properties of such processes in detail and, in
addition, study volatility modulation and multivariate extensions within the new modelling
framework. Moreover, we describe how the parameters of a trawl process can be estimated
and obtain promising estimation results in our simulation study. Finally, we apply our new
modelling framework to high frequency financial data.

Keywords: Lévy bases; Trawl processes; Stationarity; Stochastic volatility, Time change.

1 Introduction

This paper introduces a new way of building a continuous-time framework for serially correlated
count data. Count data appear in various applications including medical science, epidemiology,
meteorology, network modelling, actuarial science, econometrics and finance.

There has been very active research on various aspects of count data, see e.g. Cameron
& Trivedi (1998), Kedem & Fokianos (2002) for textbook treatments and Cui & Lund (2009),
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Davis et al. (1999), Davis &Wu (2009), Jung & Tremayne (2011), McKenzie (2003), Weiß (2008)
for recent surveys and some new developments of the literature. Count data are characterised
as being non-negative, integer-valued, and often over-dispersed, meaning that the variance is
typically greater than the corresponding mean.

In this paper, we focus on count data which exhibit a serial dependence, i.e. time-series
data. Due to the great variety of applications, the literature on count data is spread across
different disciplines. Overall, we find that two modelling approaches seem to be predominant
in the literature: First, there is the class of so-called discrete autoregressive moving-average
(DARMA) models introduced by Jacobs & Lewis (1978a,b). McKenzie (2003) pointed out that
the advantage of such stationary processes is that their marginal distribution can be of any kind.
However, this comes at the cost that the dependence structure is generated by potentially long
runs of constant values, which results in sample paths which are rather unrealistic in many
applications.

Second, there is the wide class of models obtained from thinning operations. These models
go back to the influential work of Steutel & van Harn (1979), who developed discrete analogues
of self-decomposability and stability. See also Zhu & Joe (2003) for related more recent work.
Thinning operations include e.g. binomial thinning, hypergeometric thinning, random coefficient
thinning, iterated thinning and quasi-binomial thinning, see Weiß (2008) for a detailed review.
Sample paths of thinned models often appear to be more realistic than their counterparts
stemming from DARMA processes. However, thinned models cannot generate an arbitrary
marginal distribution for integer-valued data.

Further models for count data include regression type models, which are typically based
on generalised linear models. Also, state-space and Bayesian approaches have recently been
developed in the literature, see McKenzie (2003) for a review of these models.

The new class of stationary integer-valued trawl (IVT) processes which we develop in this
paper allows for a very flexible autocorrelation structure and at the same time can generate any
kind of marginal distribution within the class of integer-valued infinitely divisible distributions.
IVT processes are nested within the wide class of so-called ambit fields, see e.g. Barndorff-
Nielsen et al. (2011), Barndorff-Nielsen & Schmiegel (2007).

A key aspect which makes this work distinct from other papers on integer-valued processes
is the fact that we can account for stochastic volatility. Stochastic volatility (or intermittency)
has been studied extensively in the last decade both in the finance literature as well as in
physics in the context of modelling turbulence, see e.g. Barndorff-Nielsen & Shephard (2013)
for a textbook treatment in the finance context and see Barndorff-Nielsen, Benth & Veraart
(2012) for relevant references in the turbulence context. In this paper, we discuss various
new methods for accounting for stochastic volatility clusters in the context of integer-valued
stochastic processes.

Moreover, we present extensions to a multivariate modelling framework, and we carry out
a simulation study, where we demonstrate how our new class of models can be estimated in
practice. In an empirical study of high frequency financial data we illustrate the relevance of
our new class of processes for empirical work.

The outline for the remaining part of the paper is as follows. Section 2 introduces the new
class of integer-valued trawl (IVT) processes. We will see that an IVT process is specified
by its marginal infinitely divisible distribution and by its trawl. Hence Section 3 focuses on
relevant classes of infinitely divisible distributions suitable for modelling count data, and Section
4 presents suitable choices of the trawl. Next, Section 5 shows how stochastic volatility can be
introduced and Section 6 presents multivariate extensions of the trawl framework. We carry
out a simulation study in Section 7, where we demonstrate how IVT processes can be estimated
in practice. Moreover, an empirical illustration in the context of high frequency financial data
is given in Section 8, and, finally, Section 9 concludes. Proofs and detailed computations for
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various examples in the paper are relegated to Section A in the Appendix.

2 Integer-valued trawl processes

While general trawl processes have recently been introduced in the literature, see Barndorff-
Nielsen (2011) and also Barndorff-Nielsen, Benth & Veraart (2012) for detailed background
material, the focus of this paper is on the important sub-class of integer-valued trawl (IVT)
processes. Such processes are stationary, integer-valued stochastic processes, which allow for
serial correlation and are infinitely divisible.

2.1 Integer-valued, homogeneous Lévy bases

Throughout the paper let (Ω,F ,P) denote the probability space. Further, let E ⊂ R
d (d ∈ N)

and let the corresponding Borel σ-algebra be denoted by E = B(E). Further µ denotes a Radon
measure on (E, E), i.e. µ(B) <∞ for every compact measurable set B ∈ E .

We start by recalling the definition of a Poisson random measure, cf. eg. Cont & Tankov
(2004, p. 57).

Definition 1 A Poisson random measure on E with intensity measure µ is defined as an
integer-valued random measure N : Ω × E → N0, (ω,B) 7→ N(ω,B) satisfying the following
three conditions:

1. For any bounded measurable set B ⊂ E, N(B) <∞ is an integer-valued random variable;
and for (almost all) ω ∈ Ω, N(ω, ·) is an integer-valued Radon measure on E.

2. For each measurable set B ⊂ E, the random variable N(·, B) = N(B) is Poisson dis-
tributed with parameter µ(B).

3. For any mutually disjoint measurable sets B1, . . . , Bn ∈ E, n ∈ N, the random variables
N(B1), . . . , N(Bn) are independent.

In the following, we are interested in certain types of Poisson random measures. For that,
let us recall the definition of a Lévy measure.

Definition 2 Let ν denote a Radon measure on R satisfying ν({0}) = 0 and
∫
R
min(|x|2, 1)ν(dx) <

∞. Then ν is called a Lévy measure.

Throughout this paper, we will be working under the following assumption.

Assumption (A) Let N be a (homogeneous) Poisson random measure on E = R× [0, 1]×R

with intensity measure µ(dy, dx, ds) = E(N(dy, dx, ds)) = ν(dy)dxds, where ν is a Lévy
measure concentrated on Z \ {0} and satisfying

∫∞
−∞min(1, |y|)ν(dy) <∞.

The key component for an IVT process is an integer-valued, homogeneous Lévy basis, which
we will define in terms of a Poisson random measure.

Definition 3 Let N be a homogeneous Poisson random measure on (E, E) satisfying Assump-
tion (A). Then we define an integer-valued, homogeneous Lévy basis on ([0, 1]×R,B([0, 1]×R))
in terms of the Poisson random measure as

L(dx, ds) =

∫ ∞

−∞
yN(dy, dx, ds). (1)
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Clearly, L is infinitely divisible (ID)1 with characteristic function E(exp(iθL(dx, ds))) =
exp(C(θ ‡ L(dx, ds))), where

C(θ ‡ L(dx, ds)) =

∫

R

(
eiθy − 1

)
ν(dy)dxds (2)

denotes the corresponding cumulant function, i.e. the distinguished logarithm of the character-
istic function, cf. Sato (1999, p. 33).

Definition 4 Let L be an integer-valued, homogeneous Lévy basis with cumulant function given
by (2). Then the random variable L′ satisfying E(exp(iθL′)) = exp(C(θ ‡L′)), with C(θ ‡L′) =∫
R

(
eiθy − 1

)
ν(dy), is called the Lévy seed associated with the Lévy basis L.

Then we can rewrite equation (2) as

C(θ ‡ L(dx, ds)) = C(θ ‡ L′)dxds. (3)

From the expressions for the cumulant functions in (3) we see that the Lévy seed represents
the infinitely divisible random variable which specifies the law of the corresponding Lévy basis.
Likewise, we find that the law of the homogeneous Lévy basis L completely determines the law
of the corresponding Lévy seed L′. We will use this important property throughout the paper.
In particular, we will typically specify a model in terms of the Lévy seed L′ and then assume
that the law of the corresponding Lévy basis is determined by (3).

Remark 1 We can associate a Lévy process denoted by (L′
t)t≥0 with the Lévy seed L′ by defining

L′
1 = L′. Then C(θ ‡ L′

t) = tC(θ ‡ L′). So the Lévy seed can simply be understood as the
ID random variable which determines an ID law from which we can construct either a Lévy
process or, more generally, a Lévy basis. In that context, the corresponding Lévy measure ν(B)
represents the expected number of jumps, in a unit time interval, whose size belongs to B, where
B ∈ B(R) is a Borel set.

Note that a given realisation of the Lévy basis determines a countable set R of points
(y, x, s) in Z \ {0} × [0, 1] × R, where the last two coordinates (x, s) are uniformly distributed
over [0, 1]×R while y is the value of the basis at that point. The projection of R onto the time
axis constitutes the realisation of a (two-sided) Poisson process with intensity

∫∞
−∞ ν(dy). Now

let (y, x, s) be a point in R. In the case of a Poisson Lévy basis, we always have y = 1, whereas
for general integer-valued Lévy bases any y ∈ Z \{0} can potentially occur. Figure 1 illustrates
this feature. The picture on the left hand side shows a realisation of a Poisson Lévy basis,
whereas the graph on the right hand side shows a realisation of a negative Binomial Lévy basis,
where y ∈ N. While the points in the Poisson case are all of the same size (corresponding to
1) we used different point sizes to indicate different natural numbers in the negative Binomial
case. Alternatively, one could have used a three-dimensional picture where the third dimension
reflects the size of y or one could think of a marked point process, where the mark reflects the
size of y.

2.2 Definition of integer-valued trawl processes

After having defined an integer-valued, homogeneous Lévy basis, we turn to defining the trawl.
Throughout the paper we will denote the Lebesgue measure by leb(·).

1Recall that a probability measure ρ is infinitely divisible, if for any n ∈ N there exists a probability measure
ρn such that ρ can be written as the n-fold convolution of the measure ρn with itself, cf. Sato (1999, p. 31). In
our case, ρ represents the law of L.
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Figure 1: (a) Point pattern associated with a realisation of a Poisson Lévy basis on [0, 1] × R.
(b) Point pattern associated with a realisation of a negative Binomial Lévy basis on [0, 1]×R.
While in the Poisson case each dot represents y = 1, in the negative Binomial case, the different
dot sizes indicated different values of y ∈ N.

Definition 5 A trawl is a Borel set A ⊂ [0, 1] × (−∞, 0] such that leb(A) <∞. Then, we set

At = A+ (0, t), (4)

which gives the position of the trawl at time t.

Note that by working with the definition (4), we ensure that the trawl is non-anticipative. From
the definition it is obvious that the size of the trawl does not change over time, i.e. we have
leb(At) = leb(A) for all t.

Typically, we choose A to be of the form

A = {(x, s) : s ≤ 0, 0 ≤ x ≤ d(s)}, (5)

where d : (−∞, 0] 7→ [0, 1] is a continuous function such that leb(A) <∞. Then we define

d⋆ = leb(A) =

∫ 0

−∞

∫ d(s)

0
dxds =

∫ 0

−∞
d(s)ds. (6)

Further,

At = A+ (0, t) = {(x, s) : s ≤ t, 0 ≤ x ≤ d(s − t)}.

If, in addition, d is monotonically non-decreasing, then we call A a monotonic trawl.
Figure 2 illustrates the construction of the trawl. At time zero, we consider the set A = A0,

which can be any set in R
2, which has finite Lebesgue measure. As time progresses, we shift

the trawl forward along the time axis. E.g. at time t, we consider the set At = A+ (0, t).

Example 1 Suppose that d(s) = exp(λs) for λ > 0, s ≤ 0. Then A = {(x, s) : s ≤ 0, 0 ≤ x ≤
d(s)} is a monotonic trawl, and At = A+ (0, t) = {(x, s) : s ≤ t, 0 ≤ x ≤ exp(λ(s − t))}.

Now we define the new class of integer-valued trawl processes as an integer-valued Lévy
basis evaluated over a trawl.

Definition 6 A stationary integer-valued trawl (IVT) process (Yt)t∈R is defined as

Yt = L(At) =

∫

[0,1]×R

IA(x, s − t)L(dx, ds),

where L is defined as in Definition 3, and At = A+ (0, t) is a trawl as defined in Definition 5.
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Figure 2: Illustration of a particular choice of a trawl A, which is then moved along the time
axis, leading to At. The shape of the trawl does not change as time t progresses.

The assumption that leb(A) <∞ guarantees the existence of the above integral in the sense of
Rajput & Rosinski (1989). Note that by construction, an IVT process has finite variation.

Remark 2 IVT processes take values in Z. If one is interested in modelling count data, one
needs to add the assumption that the corresponding Lévy measure ν is only supported on N.

Note that we can express the trawl process in terms of its associated Poisson random measure
as follows

Yt =

∫

R×[0,1]×R

yIA(x, s − t)N(dy, dx, ds) =

∫

R×[0,1]×R

yIAt(x, s)N(dy, dx, ds).

Hence, intuitively, we can think of the realisation of the trawl process at time t being obtained
by adding up the marks y of the points (x, s) which are contained in the set At (which is
equivalent to saying that the points (x, s − t) are in the set A). I.e. let R denote again the
countable set of points stemming from the realisation of the Lévy basis. Let (y, x, s) be such a
point in R. The moment time reaches s the value of the process Y changes by the amount y.
As time progresses, the point (y, x, s) can leave the trawl again. In that case, Y changes by the
amount y. For monotonic trawls, a point which has left the trawl will not re-enter the trawl.
Note that the character of the trawl A can be learned from the autocorrelation function of Y
as we will see in the following section.

Remark 3 Note that Wolpert & Taqqu (2005) study a subclass of general trawl processes
(not necessarily restricted to the (positive) integers) under the name “up-stairs” representa-
tion, which is essentially defined as “the random measure of a moving geometric figure in a
higher-dimensional space”, cf. Wolpert & Taqqu (2005), Section 2.3. Also, in a later paper
Wolpert & Brown (2011) study so-called “random measure processes” which fall into the trawl-
ing framework.

2.3 Properties of integer-valued trawl processes

Let us study some key properties of trawl processes.
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2.3.1 Infinite divisibility and stationarity

First of all we show that an IVT process is infinitely divisible and stationary.
For any n ∈ N and θ1, . . . , θn, t1, . . . , tn ∈ R, the corresponding finite dimensional distribu-

tion is characterised through the characteristic function by

E


exp


i

n∑

j=1

θjYtj




 = E


exp


i
∫

[0,1]×R

n∑

j=1

θjIA(x, s− tj)L(dx, ds)






= exp



∫

[0,1]×R

C




n∑

j=1

θjIA(x, s − tj) ‡ L
′


 dxds




= exp

(∫

[0,1]×R

∫

R

(
ei

∑n
j=1 θjIA(x,s−tj)y − 1

)
ν(dy)dxds

)
.

Now we lift the measure ν×leb from [0, 1]×R
2 to Rn by defining a new measure U on R

n through
the mapping (x, s, y; t) 7→ (IA(x, s−tj)y)j=1,...,n, where t = (t1, . . . , tn)

⊤. Let z = (z1, . . . , zn)
⊤,

then we have

E


exp


i

n∑

j=1

θjYtj




 = exp

(∫

Rn

(ei
∑n

j=1 θjzj − 1)U(dz)

)
.

Note that the fact that U is a Lévy measure on R
n follows directly from the fact that ν is a

Lévy measure on R and that leb(A) < ∞. Hence we can conclude that we have indeed an ID
process.

Next, a simple change of variable argument shows that

E


exp


i

n∑

j=1

θjYtj






= exp



∫

[0,1]×R

C


θ1IA(x, u) +

n∑

j=2

θjIA(x, u− (tj − t1)) ‡ L
′


 dxdu


 ,

i.e. the dependence on t1, . . . , tn is only through the differences t2− t1, . . . , tn− t1, which proves
the stationarity of the processes.

2.3.2 Mixing property and ergodicity

From Definition 6 we immediately see that an IVT process is a special case of a so-called mixed
moving average (MMA) process. Such processes have been introduced in the context of a stable
Lévy basis by Surgailis et al. (1993), who also showed that such processes are mixing. Recall
that a real-valued stochastic process X = (Xt)t∈R on the canonical probability space (Ω,F ,P)

is mixing if P(A ∩ StB) → P(A)P(B), as t → ∞; it is weakly mixing if T−1
∫ T
0 |P(A ∩ StB)−

P(A)P(B)|dt, as T → ∞; and it is ergodic if T−1
∫ T
0 P(A ∩ StB)dt → P(A)P(B), as T → ∞,

where A,B ∈ F and S = (St)t∈R denotes the shift operator. Clearly a mixing process is also
weakly mixing and every weakly mixing process is ergodic.

Recent work by Fuchs & Stelzer (2013) finds that (multivariate) MMA processes are mixing
as long as they exist, which implies that our IVT processes are indeed mixing and hence also
weakly mixing and ergodic.
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Mixing properties and ergodicity are interesting properties of stochastic processes in their
own right, but are particularly relevant in the context of parameter estimation. In particular, it
is well-known that moment-based estimation methods are consistent if the underlying stationary
stochastic process is ergodic, see e.g. Mátyás (1999).

2.3.3 Cumulants and autocorrelation structure

An immediate consequence of (2) is that the cumulant function of a trawl process is given by

C(θ ‡ Yt) = C(θ ‡ L(At)) = leb(A)C(θ ‡ L′). (7)

This is an important result, which implies that to any infinitely divisible integer-valued law
π, say, there exists a stationary integer-valued trawl process having π as its one-dimensional
marginal law, see Barndorff-Nielsen (2011) for more details.

We can now easily derive the cumulants of the trawl process, provided they exist. In
particular, the mean and variance are given by

E(Yt) = leb(A) E(L′), V ar(Yt) = leb(A) V ar(L′).

Further, the autocorrelation structure is given as follows. Let h > 0, then

ρ(h) = Cov(Yt, Yt+h) = leb(A ∩Ah)V ar(L
′). (8)

Hence

r(h) = Cor(Yt, Yt+h) =
leb(A ∩Ah)

leb(A)
.

In the case of a monotonic trawl, we get

leb(A ∩Ah) =

∫ 0

−∞
d(s − h)ds =

∫ ∞

h
d(−x)dx.

Hence,

ρ(h) =

∫ ∞

h
d(−x)dxV ar(L′),

and, if ρ is differentiable, then

ρ′(h) = −d(−h)V ar(L′). (9)

So in the case that the autocovariance function is differentiable, we can use the above equality
(9) to construct a trawl process for a given differentiable autocovariance function – provided ρ′

is monotone. Further, for the autocorrelation function we get

r(h) = Cor(Yt, Yt+h) =

∫∞
h d(−x)dx∫∞
0 d(−x)dx

,

and hence the first derivative of the autocorrelation function is given by

r′(h) =
−d(−h)∫∞

0 d(−x)dx
.
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2.3.4 Increments of IVT processes

Finally, let us consider the increments of an integer-valued trawl process. Note that whatever
the type of trawl, we have the following representation for the increments of the process for
s < t,

Yt − Ys = L (At\As)− L (As\At) , almost surely. (10)

Note that the sign “\” denotes the set difference. Due to the independence of L (At\As) and
−L (As\At), we get the following result for the cumulant function of the increments

C(θ ‡ Yt − Ys) = C(θ ‡ L (At\As)) + C(−θ ‡ L (As\At))

= leb(At\As)C(θ ‡ L′) + leb(As\At)C(−θ ‡ L′)

= leb(At−s\A)C(θ ‡ L′) + leb(A\At−s)C(−θ ‡ L′).

(11)

Since leb(At−s\A) = leb(A)(1 − r(t− s)) = leb(A\At−s), we have

C(θ ‡ Yt − Ys) = leb(A)(1 − r(t− s))
[
C(θ ‡ L′) + C(−θ ‡ L′)

]
. (12)

We will use this result in the following to obtain the distribution of the increments of a trawl
process in some concrete examples.

3 Specifying the marginal distribution

We have seen that an IVT process is fully specified by two key components: The marginal
distribution associated with the Lévy seed L′ and by the trawl. In the following we present
some relevant choices for the stationary distribution of an IVT process, and Section 4 gives an
overview on how the trawl can be specified.

3.1 The Poisson trawl process

As a good starting point for exploring the wide class of IVT processes, we choose the Poisson
trawl process, which we obtain by choosing a Poisson basis for the Lévy basis L or, equivalently,
by choosing the Levy seed L′ ∼ Poi(v) for an intensity parameter v > 0. Then

Yt = L(At) ∼ Poi(vleb(A)), for all t ∈ R.

The intuition behind such a basic model is the following one: Suppose L is a Lévy basis on
[0, 1]×R and At ⊂ [0, 1]×R. If we consider a realisation of L again, then we obtain a countable
set R of points (y, x, s) in {1} × [0, 1] × R, where – as before – the last two coordinates (x, s)
are uniformly distributed over [0, 1] × R while y is the value of the basis at that point, which
in the case of a Poisson basis is always equal to 1. Hence as soon as time reaches s the value
of the process Y increases by 1. As time progresses, the point will eventually drop out of the
trawl again, which will result in the value of the process dropping by one. This finding can be
used to set up a simulation algorithm for such processes, which we do in Section 7.

Example 2 (A Poisson exponential-trawl process) Let us consider a specific example of
a monotonic trawl given by At = {(x, s) : s ≤ t, 0 ≤ x ≤ e−λ(t−s)}, for λ > 0. The trawl thins
some of the elements in the field. We call this a Poisson exponential-trawl model, which is mo-
tivated from the class of non-Gaussian Ornstein-Uhlenbeck (OU) processes, see e.g. Barndorff-
Nielsen & Shephard (2001). It is illustrated in Figure 3. It shows the impact of the trawl At

with points not in the shaded area being excluded. It highlights the times t = 5 and t = 7 to
focus attention. As Yt is a trawled Poisson field, at any point in time Yt is marginally Poisson.
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Figure 3: Constructing a Poisson exponential-trawl process by trawling a Poisson basis with
v = 50 using At = {(x, s) : s ≤ t, 0 ≤ x ≤ e−λ(t−s)} for λ = 1.8. Snapshots are taken at t = 5
and 7. All points in the shaded area appear in Y5 and Y7 respectively.

An immediate consequence of the results in Section 2.3 is that the increments of a Poisson trawl
process follow a Skellam distribution, i.e. for s < t, the corresponding cumulant function, see
(12), is given by

C(ζ ‡ Yt − Ys) = leb(A)(1 − r(t− s))v [exp(iζ) + exp(−iζ)− 2] ,

which is the cumulant function of the symmetric Skellam distribution, i.e.

Yt − Ys ∼ Skellam(ψt−s, ψt−s), where ψt−s = leb(A)(1 − r(t− s))v.

3.2 The negative binomial trawl process

In a next step, we would like to allow for up- and downwards jumps which are not restricted
to be of size one as in the Poisson/Skellam case. One possibility to overcome this restriction is
to focus on the negative binomial distribution.

Throughout the paper, we denote by NB (m, θ) the negative binomial law with parame-
ters m ∈ N and θ ∈ (0, 1). Suppose that the Lévy seed satisfies L′ ∼ NB(m, θ), i.e. the
corresponding probability mass function is given by

P
{
L′ = j

}
=

1

j!

Γ (m+ j)

Γ (m)
(1− θ)m θj, for j ∈ N0.

Remark 4 Note that the Lévy process (L′
t)t≥0 associated with the Lévy seed through L′ law= L′

1

satisfies L′
t ∼ NB (mt, θ). We recall that the negative binomial Lévy process may be thought of

as a compound Poisson process L′
t =

∑Nt
i=1 Ci where N is a Poisson process with intensity v =

m |log (1− θ)| and the innovations Ci follow the logarithmic distribution with point probabilities

P(Ci = j) =
1

|log (1− θ)|

θj

j
, for j ∈ N. (13)

The above representation result will prove useful in the context of simulating a negative Binomial
trawl process, see Section 7. Alternatively L′ is representable through mixing the parameter ν

of a Poisson process by endowing ν with the Gamma law Γ
(
m, θ

1−θ

)
.

10



Integer-valued trawl processes

Recall that the cumulant function of the negative Binomial Lévy seed is given by

C
(
ζ ‡ L′

)
= m

(
log (1− θ)− log

(
1− θeiζ

))
, (14)

which implies, in particular, that

Yt = L(At) ∼ NB(leb(A)m, θ).

Also, for s < t, the increment Yt − Ys is distributed as

Yt − Ys ∼ ∆NB (mt−s, θ,mt−s, θ) , where mt−s = mleb(A)(1 − r(t− s)).

Here ∆NB (mt−s, θ,mt−s, θ) is the notation introduced in Barndorff-Nielsen, Pollard & Shep-
hard (2012) for the difference between two independent and – in our case identically distributed
– negative binomial random variables with laws NB (mt−s, θ).

3.3 IVT processes with support on Z

Many of the well-known infinitely divisible distributions which are integer-valued, such as
e.g. the Poisson or negative binomial distribution have support on non-negative integers. Such
distributions are suitable for modelling count data.

In some applications however, one might need distributions which have support on both
the positive and negative integers. Since such a situation can be easily dealt with in our
new modelling framework, we give a brief outlook on IVT processes with support on Z in the
following.

A very natural way of tackling this problem is to work with a construction where the Lévy
seed L′ is modelled as the difference of two independent integer-valued Lévy subordinators L

′(+)

and L
′(−), say, see Barndorff-Nielsen, Pollard & Shephard (2012). I.e.

L′ = L
′(+) − L

′(−). (15)

Note here that due to the finiteness of the Lévy measure (which is implied by the fact that we
work with integer-valued Lévy processes), we know that L′ has bounded variation and, hence,
has necessarily a representation of type (15). In many situations we would tend to choose the
same distribution for both the upward jumps, represented by L

′(+), and the downward jumps
given by L

′(−), although this is not a necessary requirement.
Similarly to the computations in (11) we can derive the cumulant function of L′, which is

given by

C
(
ζ ‡ L′

)
= C

(
ζ ‡ L′(+)

)
+C

(
−ζ ‡ L′(−)

)
. (16)

Let L(+) and L(−) denote the independent Lévy bases associated with the independent Lévy
seeds, then we get immediately that, at least in law,

Yt = L(+)(At)− L(−)(At).

3.3.1 The Skellam trawl process

Probably the most obvious example to consider is the case when L
′(+) and L

′(−) have Poisson(ψ+)
and Poisson(ψ−) distribution, respectively. Then L′ has the Skellam(ψ+, ψ−) distribution, i.e.
C(ζ ‡ L′) = − (ψ+ + ψ−) + ψ+eiζ + ψ−e−iζ .

From equation (7) we can now deduce that the corresponding trawl process Y has a Skellam
distribution, more precisely

Yt ∼ Skellam(leb(A)ψ+, leb(A)ψ−). (17)

11



Integer-valued trawl processes

Example 3 We call a trawl process Yt a Skellam exponential-trawl process if (17) holds and
the trawl is given by At = {(x, s) : s ≤ t, 0 ≤ x ≤ e−λ(t−s)}.

Remark 5 Many further classes of infinitely divisible distributions with support on the (non-
negative) integers can be constructed along the lines of Barndorff-Nielsen, Pollard & Shephard
(2012), Section 3.5, or by using Lévy-mixing as described in Barndorff-Nielsen, Perez-Abreu &
Thorbjørnsen (2012).

3.3.2 Markov property

It should be noted that IVT processes are not in general Markov processes. In the following, we
characterise the necessary and sufficient conditions for an IVT process to be a Markov process.

Proposition 1 Let Y = (Yt)t∈R denote an integer-valued trawl process as defined in Definition
6 with a trawl defined in (5).

Then Y is a Markov process if and only if the Lévy seed associated with the Lévy basis has
Poisson distribution and the trawl is determined by the exponential function, i.e. d(x) = exp(λx)
for λ > 0, x ≤ 0.

Proof. In the case of an exponential trawl, Wolpert & Brown (2011), Theorem 3, have shown
that Y is a Markov process if and only if Y has Poisson marginal law. In particular, a Poisson
trawl process with exponential trawl is a birth-death process, where the birth rates are given
by the intensity parameter of the Poisson distribution, and the death rates are determined by
the parameter in the exponential trawl.

As soon as the trawl is not given by an exponential function (or is even non-monotonic), the
resulting holding times for each state are not exponentially distributed and hence the process
is not Markovian.

We remark that the work by Wolpert & Brown (2011) is complementary to this article since
they are interested in fully characterising the class of Markovian, infinitely divisible, stationary,
non-negative integer-valued (MISTI) processes. They mention the class of trawl processes
briefly (and call them random measure processes), but then focus on the MISTI processes in
their paper, whereas we show in this article that despite the fact that our processes are not in
general Markovian, they nevertheless form a highly tractable class of stochastic processes. This
makes them interesting for applications as we demonstrate in Section 8.

4 Specifying the trawl

We have discussed several examples of how we can specify an integer-valued Lévy basis, so
now we will focus on specifying the trawl. We have already seen that the trawl determines the
autocorrelation structure and hence is a key component in our model. As mentioned earlier,
there are only two assumptions, which have to be satisfied by the trawl: First, it has to have
finite Lebesgue measure. Second, since we focus on stationary processes here, we assume that
the shape of the trawl does not change over time. Note that in Section 5 we will discuss how
the latter assumption can be relaxed. The flexibility obtained from the trawl function sets the
trawl framework apart from many traditional models for count or integer-valued data.

In order to simplify the exposition, throughout this Section, we restrict our discussions to
trawls At = A+ (0, t) where A = {(x, s) : s ≤ 0, 0 ≤ x ≤ d(s)}, for a (typically non-decreasing)
function d such that leb(A) <∞.

12
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4.1 Exponential trawls and superpositions

A natural starting point is the exponential trawl, which is motivated from Ornstein-Uhlenbeck
processes and was already mentioned in Example 2.

Example 4 Suppose we have a trawl defined as the one in Figure 3, i.e. d(x) = exp(λx) for
λ > 0, x ≤ 0. Then leb(A ∩Ah) =

1
λ exp(−λh) and, hence, r(h) = exp(−λh), for h ≥ 0.

Clearly, choosing an exponential trawl leads to an autocorrelation function which can model
short memory processes. A natural extension would be to consider a weighted sum of exponen-
tial functions, see the following example.

Example 5 Let wj ≥ 0, for j = 1, 2, ..., J and set

d(t) =

J∑

j=1

wje
λjt,

J∑

j=1

wj = 1, (18)

see e.g. Barndorff-Nielsen & Shephard (2001) for superposition type models. This allows d(t)
to increase slowly for small t and then increase very quickly for large t by simply setting J = 2
and allowing λ1 to be large and λ2 to be small. Clearly

d∗ =

∫ 0

−∞
d(x)dx =

J∑

j=1

wj

∫ 0

−∞
exp(λjx)dx =

J∑

j=1

wj

λj
,

and, hence, we have

Cor(Yt, Yt+h) =

J∑

j=1

wj

λj
exp(−λjh)




J∑

j=1

wj

λj




−1

.

A very flexible way of parametrising the trawl function, which we study in the following, is to
work with a superposition of exponential trawls. Here we randomise the memory parameter λ.
Such a modelling framework is motivated from the supOU processes, see e.g. Barndorff-Nielsen
(2001) and Barndorff-Nielsen & Stelzer (2011). In fact, the previous example is just a special
case of the general construction we study next.

Example 6 Let

d(z) =

∫ ∞

0
eλzπ(dλ), for z ≤ 0,

for a probability measure π on (0,∞). Note that if π(dλ) is the Dirac measure for a fixed λ, we
are back to the exponential case.

In the case that π is absolutely continuous with density fπ, we get

d(z) =

∫ ∞

0
eλzfπ(λ)dλ.

Note that d(z) is increasing (non-decreasing) in z, hence, d(s − t) is also increasing (non-
decreasing) in s for s ≤ t. Then the autocorrelation function is given by

r(h) = Cor(Yt, Yt+h) =

∫∞
0

1
λe

−λhπ(dλ)∫∞
0

1
λπ(dλ)

,

where we assume that
∫∞
0

1
λπ(dλ) <∞.

13
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Let us study a concrete example for the choice of π next. More precisely, we will choose a
generalised inverse Gaussian (GIG) density function for fπ.

Example 7 In the GIG case, we have

fπ(x) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−
1

2
(δ2x−1 + γ2x)

)
, (19)

where ν ∈ R and γ and δ are both nonnegative and not simultaneously equal to zero. Also,
Kν(·) is the modified Bessel function of the third kind. Let us denote the constant in the density

by c(γ, ν, δ) := (γ/δ)ν

2Kν(δγ)
. The trawl function is then given by

d(z) =

(
1−

2z

γ2

)− ν
2 Kν(δγ

√
1− 2z

γ2 )

Kν(δγ)
.

Also,

leb(A) =
(γ/δ)Kν−1(δγ)

Kν(δγ)
.

And the autocorrelation function is given by

r(h) = Cor(Yt, Yt+h) =
Kν−1(δ

√
γ2 + 2h)

Kν−1(δγ)

(
1 +

2h

γ2

) 1
2
(1−ν)

.

In the inverse Gaussian case (i.e. ν = 1
2 ), the trawl function has the form

d(z) =

(
1−

2z

γ2

)− 1
2

exp

(
δγ

{
1−

√
1−

2z

γ2

})
; (20)

also, leb(A) = γ/δ and the correlation function is given by

r(h) = Cor(Yt, Yt+h) = exp

(
δγ

{
1−

√
1−

2h

γ2

})
.

Throughout the paper, we will refer to a trawl function defined by (20) as sup-IG trawl.

In Figure 4 we illustrate the use of a Poisson Lévy basis with an exponential and a sup-IG trawl
function. Figure 4 (a) shows the realisation of the point pattern coming from a Poisson Lévy
basis, an exponential trawl and the corresponding sample path of the trawl process. Figure
4 (c) depicts the corresponding empirical and theoretical autocorrelation function. Using the
same Poisson basis, but a different trawl function, namely a sup-IG trawl function, we show
the corresponding realisation of the point pattern, the sample path in Figure 4 (b) and the
autocorrelation function in Figure 4 (d). In Figure 5 we show a similar illustration, but now
the Poisson Lévy basis is replaced by a negative binomial Lévy basis.

Next we turn to an example which allows for long memory.

Example 8 Suppose π is absolutely continuous with density given by the Γ(H,α) density func-
tion, that is π(dλ) = fπ(λ)dλ with

fπ(dλ) =
1

Γ (H)
αHλH−1e−λα.
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Figure 4: Poisson basis with exponential and sup-IG trawl function: (a) The upper picture
shows a realisation of the Poisson Lévy basis with parameter v = 10 with exponential trawl
with parameter λ = 1.8. The lower picture shows the sample path of the corresponding trawl
process. (b) The upper picture shows a realisation of the Poisson Lévy basis with parameter
v = 10 with sup-IG trawl, where the corresponding parameters are given by δ = 0.75 and
γ = 0.5. The lower picture shows the sample path of the corresponding trawl process. (c) and
(d) show both the sample and the theoretical autocorrelation function for the exponential trawl
and the sup-IG trawl, respectively.
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Figure 5: Negative Binomial basis with exponential and sup-IG trawl function: (a) The upper
picture shows a realisation of the negative Binomial Lévy basis with parameters m = 10 and
θ = 0.5 with exponential trawl with parameter λ = 1.8. The lower picture shows the sample
path of the corresponding trawl process. (b) The upper picture shows a realisation of the
negative Binomial Lévy basis with parameters m = 10 and θ = 0.5 with sup-IG trawl, where
the corresponding parameters are given by δ = 0.75 and γ = 0.5. The lower picture shows
the sample path of the corresponding trawl process. (c) and (d) show both the sample and the
theoretical autocorrelation function for the exponential trawl and the sup-IG trawl, respectively.
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Recall that the Gamma density can be obtained from the GIG density, see (19), as the limiting
case when δ → 0. Then

d(z) =

∫ ∞

0

αHλH−1

Γ (H)
e−λα(1− z

α)dλ =
(
1−

z

α

)−H
, (21)

which means that d∗ = α
H−1 <∞, if H > 1. Also, leb(A ∩Ah) =

α
H−1

(
1 + h

α

)1−H
, so

Cor(Yt, Yt+h) =

(
1 +

h

α

)1−H

. (22)

Note that the integrated autocovariance

∫ ∞

0
Cov(Yt, Yt+h)dh =

∫ ∞

0
λ−2π(dλ) =

∫ ∞

0

αHλH−3

Γ (H)
e−λαdλ,

is infinite if H ≤ 2, otherwise it is finite and equals

∫ ∞

0
Cov(Yt, Yt+h)dh =

α2Γ (H − 2)

Γ (H)
.

Hence if H ∈ (1, 2] then this is a stationary long-memory model, while if H > 2 it is a stationary
short-memory process.

In Figure 6 we display this process in the cases of a Poisson basis and a negative binomial
basis, when α = 1, and H = 1.03. The corresponding correlogram for this process, based
upon a sample of length 1, 000, 000, is given in the lower right of Figure 6 together with the
corresponding true autocorrelation function based on (22). This shows the very slow decay in
the function for longer lags. Even though the sample size of this process is massive, there is
quite a large difference between the true and empirical autocorrelation function. This is not
surprising as it is known that correlograms converge very slowly for long-memory processes, e.g.
Hosking (1996).2

4.2 A seasonal trawl function

So far we have only focused on monotonic trawl functions. However, our modelling framework
also allows for seasonally fluctuating trawl functions.

Example 9 A possible seasonal model would be

d(t) = dp(t)ds(t),

where dp(t) monotonically increases with t while ds(t) is a purely periodic seasonal effect. Notice
this does not generate different average levels in different seasons. An example of this structure
is where

d(t) =
1

2
exp (λt) [cos (at) + 1] , a = 2πψ,

where ψ is the period of the seasonal (hence if ψ = 10 the seasonal lasts 10 units of time). The
important feature here is that d is not generally monotonic. This is illustrated in Figure 7 based
on λ = 0.3. We obtain

d∗ =
1

2λ

(
2λ2 + a2

λ2 + a2

)
,
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Figure 6: Poisson and negative binomial basis with long memory trawl function: (a) The upper
picture shows a realisation of the Poisson Lévy basis with parameter v = 1 with a long memory
with parameter α = 1 and H = 1.3. The lower picture shows the sample path of the corre-
sponding trawl process. (b) The upper picture shows a realisation of the negative Binomial Lévy
basis with parameters m = 1 and θ = 0.5. The lower picture shows the sample path of the cor-
responding trawl process. (c) and (d) show both the sample and the theoretical autocorrelation
function for the two cases.
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Figure 7: Trawl function for a seasonal process using λ = 0.3 and the uniform height with
realisation U = 0.45. In order to count in the Yt process, the corresponding realisation from
the Poisson field would have to fall below the dashed line. The solid line is the exp (−λ(10 − t))
function.

and

Cor(Yt, Yt+h) =
e−λh

2λ2 + a2
(
λ2 cos(ah) + aλ sin(ah) + λ2 + a2

)
.

Figure 8 illustrates this with ψ = 10 and λ = 0.1.

5 Volatility modulated integer-valued trawl processes

A very natural question to ask is how some form of stochastic volatility can be introduced in an
(integer-valued) trawl process. Stochastic volatility has been studied in great detail in financial
applications, see e.g. Shephard (2005), Chapter 1, and Barndorff-Nielsen & Shephard (2013)
for reviews. In the classical stochastic volatility literature, one distinguishes between two types
of volatility modulation: Either one introduces stochastic volatility in terms of a stochastic
integrand or as a time change. While the former can be regarded as stochastically changing
the amplitude of the stochastic process, the latter corresponds to modulating its intensity.

We should be aware that these two concepts are fundamentally different (unless we are in
a Brownian or stable case, where the scaling property allows us to transfer one case into the
other). Working with the former concept of volatility modulating is generally not suitable if
one wants to stay within the class of integer-valued processes. Hence we focus on the concept
of time change, which will ensure that we stay in the class of integer-valued processes.

The concept of stochastic time change was introduced by Bochner (1949), see also Veraart
& Winkel (2010) for further references. So if (Yt)t∈R is an IVT processes as defined before, then
we define

Ỹt = YTt , t ≥ 0,

2If Cor(Yt, Yt+h) ∼ λh1−H , then if H ∈ (1, 2) then n(H−1)/2
{

Y − E(Yt)
}

has a zero mean Gaussian limit.
Hence H = 1.03 delivers a remarkably slow rate of convergence of averages to their means
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Figure 8: Cor(Yt, Yt+h) for a seasonal model with ψ = 10 and λ = 0.1. The solid blue line
represents the non-seasonal exponential decline, while the red line plus symbol represents the
seasonal autocorrelation function.

where T is a random time change, that is an increasing stochastic process with stationary
increments.

A suitable choice for the time change process is a process of the type

Tt =

∫ t

0
τsds, t ≥ 0,

where τ = (τt)t≥0 denotes a stationary nonnegative process, e.g. a non-Gaussian Ornstein-
Uhlenbeck process driven by a Lévy subordinator. We typically refer to τ as the intensity
process.

Then Ỹ is again a stationary process and T embodies the volatility. Clearly, a time changed
integer-valued process will be integer-valued itself.

Alternative ways of accounting for stochastic volatility include extended subordination, see
Barndorff-Nielsen (2010), Barndorff-Nielsen & Pedersen (2011), probability and Lévy mixing,
see Barndorff-Nielsen, Perez-Abreu & Thorbjørnsen (2012), and also random trawls, where
the trawl is no longer a deterministic set, but random. These methods will be developed in
more detail elsewhere and a recent review on this aspect and related topics can be found in
Barndorff-Nielsen, Benth & Veraart (2012).

Note that stochastic volatility introduces a clustering-effect in the data. In the context of
count data, one often finds an excess of zeros compared to standard distributions such as the
Poisson or negative binomial distribution. Traditional models often work with zero-inflated
distributions, see e.g. Johnson et al. (1992), Chapter 8, Section 2.2. However, such an effect
could also be regarded as a volatility effect. E.g. when thinking of random trawls, one could
easily shrink and expand the trawl such that clusters of zeros (or of any other value) can appear
in the sample paths of an IVT process. This would be an instance of intensity volatility.
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6 Extensions to the multivariate case

There are various ways of extending trawling to a multivariate framework, and we will describe
such models in the following.

6.1 Multivariate IVT processes based on a multivariate Lévy seed

Dependence between the components of a multivariate trawl process can be introduced by
dependent Lévy bases and by intersecting trawls.

One possibility of defining a multivariate trawl process Yt = (Y
(1)
t , . . . , Y

(n)
t )′ for n ∈ N is

given as follows. In the one-dimensional definition of the Lévy measure, we could replace the
Lévy basis by a vector valued Lévy basis L = (L(1), . . . , L(n))′. I.e.

Yt =
(
L(1)(A

(1)
t ), . . . , L(n)(A

(n)
t )
)
,

where for each component Y (i), we define an trawl A(i) = A
(i)
0 which is assumed to have finite

Lebesgue measure. Then we set A
(i)
t = A(i) + (0, t) for i ∈ {1, . . . , n}. As in the univariate case

we restrict our attention to Lévy bases which take values in Z
n \ {0} or Nn.

For applications, we typically want to allow for dependence between the individual Lévy
bases. Such a dependence structure can be introduced as follows. Similarly to the one-
dimensional case, we can associate an n-dimensional Lévy seed L′ with the n-dimensional Lévy
basis. Then the cumulant function of the Lévy seed is given by

C{ζ ‡ L′} =

∫

Rn

(
eiζ

′
y − 1

)
ν(dy), (23)

where ν denotes the joint n-dimensional Lévy measure which is supported on the (positive)
integers only. Then, for the multivariate homogeneous Lévy basis we have, as in the one-
dimensional case, that

C{ζ ‡ L(dξ, ds)} = C{ζ ‡ L′}dξds.

Let N(dy, ds, dξ) denote the n-dimensional Poisson random measure associated with L(dξ, ds).
Further, let n(dy, dξ, ds) = ν(dy)dξds denote its compensator and let Ñ = N − n.

Then we get the following result for the covariance between two components 1 ≤ i ≤ j ≤ n
for t, h ≥ 0:

ρi,j(h) = Cov
(
L(i)(A

(i)
t ), L(j)(A

(j)
t+h)

)
= leb

(
A(i) ∩A

(j)
h

)(∫

R

∫

R

yiyjν
i,j(dxi, dxj)

)
,

where the joint Lévy measure for the two components is given by

νi,j(d·, d·) =

∫

R

. . .

∫

R

ν(dy1, . . . , dyi−1, d·, dyi+1, . . . , dyj−1, d·, dyj+1, . . . , dyn).

Also, for the auto- and cross-correlation function, we get

Cor
(
L(i)(A

(i)
t ), L(j)(A

(j)
t+h)

)
=

leb(A(i) ∩A
(j)
h )
(∫

R

∫
R
yiyjν

i,j(dyi, dyj)
)

√
leb(A(i))V ar(L′(i))leb(A(j))V ar(L′(j))

.

Remark 6 The dependence induced by the joint Lévy measure could be modelled more explicitly
by using the concept of Lévy copulas, see e.g. Cont & Tankov (2004).
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6.2 A general model

It is important to note that one can construct a more general set-up for multivariate trawl

processes: Suppose Yt = (L(1)(A
(1)
t ), . . . , L(n)(A

(n)
t ))′, where the trawls are given by A

(i)
t =

A(i) + (0, t), for i = 1, . . . , n, as above, and where L(i) denote univariate Lévy bases for i =
1, . . . , n. Note that such a construction generally does not imply that L = (L(1), . . . , L(n)) is a
multivariate Lévy basis since the joint law might not be infinitely divisible. I.e. the dependence
structure between the components might be more involved than the one induced by an n-
dimensional Lévy basis.

7 Simulation study and parameter estimation

For illustration purposes, we carry out a brief simulation study, where we show how IVT
processes can be simulated and how their parameters can be estimated. Throughout this
section we will focus on monotonic trawls only.

7.1 Simulation algorithm for IVT processes with monotonic trawls

We have already discussed in Section 2.2 that an integer-valued Lévy basis on [0, 1]×R generates
a random point pattern. Its realisations is a countable set R of points (y, x, s) in Z \ {0} ×
[0, 1] × R. Let (Nt) denote the Poisson process with intensity v =

∫∞
−∞ ν(dy) obtained from

projecting the point pattern to the time axis. Then, associated with the arrival times t1, ..., tNt

of the Poisson process Nt are the standard uniform heights U1, ..., UNt .
For ease of exposition, suppose that A = {(x, s) : s ≤ 0, 0 ≤ x ≤ d(s)}, where d is mono-

tonically non-decreasing and leb(A) < ∞. Now we define g(s) := d(−s), which monotonically
declines as s increases. Then we will find the value Rj which solves

d(tj − (Rj + tj)) = Uj ⇔ g(Rj) = Uj,

that is the inverse of the function Rj = g−1(Uj), as this is length of time a new arrival will
survive the trawl function (e.g. if Uj is high then it will not survive long).

Example 10 If d(s) = exp(λs), i.e. g(t) = exp(−λt) for λ > 0, then g−1(Uj) = −λ−1 log(Uj).
Hence the continuous time process only jumps up at the times {tj} and down at the times{
tj + g−1(Uj)

}
. This means the role of λ is to lengthen the period until the new arrival is

killed.

We call g−1(Uj) the “random survival period” of the jth arrival. Also, let N−
t denote the

counting process corresponding to the times
{
tj + g−1(Uj)

}
.

In the case of a Poisson trawl process, we obtain the representation

Yt = Nt −N−
t ,

where Nt, N
−
t are not independent processes. An alternative is to write the Poisson trawl

process in continuous time as

Yt = Y0 +

Nt∑

j=1

1{tj+g−1(Uj)>t}. (24)

Note that in the Poisson case, it suffices to treat the behaviour of the process for t ≥ 0. The
representation (24) is central to developments of a simulation algorithm given below.
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Remark 7 The representation (24) shows the close connection these models have to M/G/∞
queues, so-called infinite-server queues, where we can think of g−1(Uj) as a drawing from the
“service time” distribution function G.

For an M/G/∞ queue we define the normalised integrated tail

G∗(x) =
1∫∞

0 udG(u)

∫ x

0
{1−G(u)} du,

then the continuous time queue length at time t, written Qt, has the property that

Cor(Qt, Qt+h) = 1−G∗(h).

This is called Reynolds’ formula. A good discussion of the statistics of this kind of queue is
given by, for example, (Bingham & Pitts 1999, Section 5). Other references include Lindley
(1956), Reynolds (1968) and Bartlett (1978, Chapter 6.31).

Thus the M/G/∞ queue is specified in terms of the service time distribution, which implies
the autocorrelation function of the queue length. In trawl processes we specify a trawl func-
tion which directly parametrises the autocorrelation function. This implies the service time
distribution.

When g is not monotonic then the analogy with the M/G/∞ queue breaks down.

More generally, an IVT process with monotonic trawl can be represented as

Yt = Y0 +

Nt∑

j=1

Cj1{tj+g−1(Uj)>t}, (25)

where the Cj are independent, identically distributed random variables taking values in Z \{0}
(or in N).

Suppose we want to simulate a sample path of an IVT process Y with representation (25)
on the time interval [0, T ] for T > 0.

Algorithm 1 (Simulation algorithm for an IVT process with representation (25))

1. Generate the Poisson basis, L(dx, ds), with mean measure vdxds as pairs {ti, Ui}i=1,...,tv.
Here the tis constitute the series of tv arrival times that are uniformly distributed on [0, t],
so the expected number of arrivals in each unit interval is v. Corresponding to each arrival
time are the random heights, Ui, that are uniform on [0, 1].

2. The trawl process is now constructed on a ∆-grid

Y∆j =

∆j∑

l=1

Cl1{g(∆j−l)≥Ul}, j = 1, . . . , t/∆,

where g(∆j − l) = exp(−λ(∆j − l)) for an exponential trawl (We use ∆ = 10000 and
pretend that we observe the process on a 0.1 grid). For the sup-IG case we use g(∆j− l) =
d(−(∆j − l)) with d(·) given in (20).

For the Poisson based trawl processes we set Cl ≡ 1. For a negative binomial trawl process,
the innovations Cl follow the logarithmic distribution, see (13).
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7.1.1 Discretisation of an IVT process

Next let us briefly study the structure of a discretised IVT process. In particular, we will
see that the discretised Markovian IVT processes can be related to an integer-valued AR(1)
(INAR(1)) process.

Now using the same notation as in the simulation algorithm, suppose we observe the IVT
process at equidistant points on a ∆-grid. Then we can express Yt as

Yt = L(At ∩At−∆) + L(At \ At−∆),

where L(At∩At−∆) can be regarded as the value of the Lévy basis due to the “survivors” from
time t − ∆, and L(At \ At−∆) represents the value of the Lévy basis due to new arrivals in
[t−∆, t] which have not yet been killed in the interval [t−∆, t]. By definition of the Lévy basis
these two terms are independent and hence the cumulant function can be written as

C(θ ‡ Yt) = C(θ ‡ L(At ∩At−∆)) + C(θ ‡ L(At \ At−∆))

= (leb(A∆ ∩A0) + leb(A∆ \ A0))C(θ ‡ L′).

We note that the term L(At ∩ At−∆) cannot in general be expressed in terms of Yt−∆ due
to the non-Markovian structure of the IVT process. However, in the case of a Markovian trawl,
i.e. a Poisson trawl with L′ ∼ Poi(v) for v > 0 and with exponential trawl function with
parameter λ > 0, we get a more explicit result. From our previous considerations we know that
the probability of “surviving” an interval of length ∆ is given by P(g−1(U) ≤ ∆) = g(∆) =
exp(−λ∆). Hence we can write L(At ∩ At−∆) = g(∆) ◦ Yt−∆, where ◦ denotes the Binomial
thinning operator. Now set ∆ = 1, then we get the following INAR(1) representation of a
discretised Poisson-exponential IVT process:

Yt = g(1) ◦ Yt−1 + ǫt, t ∈ N,

where ǫt is independent of Yt−1 and the (ǫt)t∈N are i.i.d. with C(θ ‡ ǫt) = leb(A1 \A0)C(θ ‡L′).
More precisely, g(1) = exp(−λ) and leb(A1 \ A0) = λ−1(1 − exp(−λ)), which implies that
ǫt ∼ Poi(vλ−1(1 − exp(−λ))). It is well-known that for an INAR(1) process with thinning
parameter α > 0, the autocorrelation function is given by ρj = αj for j ∈ N. In our case this
means that ρj = exp(−λj), which is in line with our computations in Example 4.

7.2 Parameter estimation by GMM

In the following we will describe how the parameters of an IVT process can be estimated using
the method of moments, see e.g. Mátyás (1999) and Hall (2005) for textbook treatments on the
generalised method of moments (GMM).

Let θ0 denote the vector of the unknown parameters from both the trawl and the Lévy basis
we wish to estimate, and let Θ denote the corresponding compact parameter space satisfying
θ0 ∈ Θ.

Suppose we have n ∈ N equidistant observations of the trawl process Y on a ∆-grid (as
described in the previous section) denoted by (Y∆, Y2∆, . . . , Yn∆). Then we define the vector

Zt = (Yt∆, Y(t+1)∆, . . . , Y(t+ñ)∆), where t ∈ {1, . . . , n− ñ},

for an ñ ∈ N with ñ ≥ 2 representing the number of lags in the autocovariance function we will
consider for the estimation. Next, we need to find a vector of measurable functions f satisfying
a population moment condition of the form E[f(Zt, θ0)] = 0. More precisely, we need that θ0 is
the unique solution, i.e. for any θ ∈ Θ we need

E[f(Zt, θ)] = 0 ⇔ θ = θ0,
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meaning that θ0 is identifiable through the moment condition. Then we estimate θ0 as follows.
We denote by gn−ñ(θ) = (n− ñ)−1

∑n−ñ
t=1 f(Zt, θ) the sample moment of E[f(Zt, θ)]. The GMM

estimator of θ0 is the value of θ minimising

gn−ñ(θ)
⊤Wn−ñgn−ñ(θ),

where Wn−ñ denotes a positive definite weight matrix. Hall (2005) describes that a two-step
iterated GMM is advantageous and we follow this procedure in the following.

Recall that an IVT process is stationary, mixing and hence ergodic. So we can deduce the
following result: For fixed t ∈ R assume that E[f(Zt, θ)] is a function only depending on θ.
If θ0 is identifiable through the moment condition, then the corresponding GMM estimator is
consistent.

Now, let us consider some examples and derive the relevant identifying moment conditions.
We will identify the parameters of the trawl through a suitable number of lags in the auto-
correlation function and we will estimate the parameters from the Lévy basis through suitable
sample moments of the trawl process.

First, we consider the exponential trawl, which is characterised by one parameter, denoted
by λ > 0. Referring back to Example 4, it is clear that we can estimate λ by

λ̂ = log(r̂h)
∆

0.1 · h
.

In the case of the sup-IG trawl as in Example 7, which depends on two nonnegative param-
eters denoted by γ, δ, we can utilize that the autocorrelation function is given by

r(h) = r(h; δ, γ) = exp

(
δγ

{
1−

√
1−

2h

γ2

})
,

and find the γ and δ that minimize

H∑

h=1

[
r( ∆

0.1·h ; δ, γ) − r̂h
]2
, for H ≥ 2.

Next, we study how we can identify the parameters of two different Lévy basis: a Poisson
basis and a negative binomial basis.

We start with a Poisson Lévy basis with L′ ∼ Poi(v) for v > 0. Recall that E(Yt) =
leb(A)E(L′). If leb(A) is identifiable from the autocovariance function, then we can identify the
mean of the Lévy basis from the moment condition v = E(L′) = E(Yt)leb(A)

−1.
We first consider the estimation of a Poisson trawl process with exponential trawl. In Table

1 we present the simulation results based on 1000 repetitions with v = 50 and λ = 1.8 for
various sample sizes. Here v is estimated using the fact that E(Yt) = leb(A)E(L′) = v/λ for

this model. So v̂ is simply the sample average of the process multiplied by λ̂. It is interesting
to note that quite a long sample is needed to estimate λ precisely.
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Table 1: Estimation results for a Poisson trawl process with exponential trawl

v̂ λ̂
Nobs ave bias rmse ave bias rmse
100 50.0126 0.0126 3.0436 2.2861 0.4861 0.9626
250 50.0205 0.0205 1.8733 1.9734 0.1734 0.4960
500 50.0722 0.0722 1.3850 1.8828 0.0828 0.3237
750 50.0465 0.0465 1.1321 1.8557 0.0557 0.2603

1000 50.0325 0.0325 0.9654 1.8417 0.0417 0.2207
2000 50.0359 0.0359 0.6234 1.8243 0.0243 0.1532
4000 50.0122 0.0122 0.3635 1.8124 0.0124 0.1082

Now for the same Levy basis we replace the exponential trawl with the sup-IG version.
Then we have E(Yt) = leb(A)E(L′) = γδ−1v. So v̂ is estimated using the sample average of the

trawl process multiplied by δ̂γ̂−1. In Table 2 we present the simulation results based on 1000
repetitions with v = 50, γ = 2, δ = 2 and H = 5 for various sample sizes.

Table 2: Estimation results for a Poisson trawl process with a sup-IG trawl

v̂ γ̂ δ̂
Nobs ave bias rmse ave bias rmse ave bias rmse
100 49.987 -0.013 3.159 2.405 0.405 3.093 4.704 2.704 10.36
250 50.012 0.012 2.054 1.868 -0.132 0.645 2.256 0.256 1.640
500 49.961 -0.039 1.477 1.913 -0.087 0.237 2.087 0.087 0.244
750 49.992 -0.008 1.197 1.948 -0.052 0.186 2.052 0.052 0.192
1000 50.000 0.000 1.060 1.959 -0.041 0.160 2.042 0.042 0.166

For the two simulation scenarios studied above the processes could only increase or decrease
by one. Next we consider a negative binomial Lévy basis, characterised by two parameters m ∈
N and θ ∈ (0, 1), which results in a more flexible model. Now we need two moment condition
to identify m and θ in addition to identifying the parameters of the trawl function. Here we
can estimate m and θ from the first two moments of the process. Since E(Yt) = leb(A)E(L′)
and Var(Yt) = leb(A)Var (L′) with E(L′) = θm(1 − θ)−1 and Var (L′) = pm(1 − θ)−2, we
just need to match the scaled sample mean and variance of the process to the mean and
variance of the negative Binomial distribution. In Table 3 we present the simulation results
for the negative binomial exponential-trawl process based on 1000 repetitions with v = 50,
m = ν/| log(1− θ)| ≃ 41.52, θ = 0.7, λ = 1.8 and H = 5 for various sample sizes.

Table 3: Estimation results for a negative binomial trawl process with an exponential trawl

m̂ θ̂ λ̂
Nobs ave bias rmse ave bias rmse ave bias rmse
300 60.3 18.8 45.0 0.681 -0.0192 0.101 2.326 0.526 0.834
400 59.0 17.5 41.0 0.686 -0.0143 0.074 2.299 0.499 0.876
500 56.1 14.5 35.5 0.687 -0.0127 0.070 2.243 0.443 0.792
1000 48.9 7.41 23.2 0.695 -0.0051 0.038 2.021 0.221 0.636
2000 44.8 3.26 12.7 0.697 -0.0030 0.024 1.888 0.088 0.376
4000 43.3 1.80 8.22 0.698 -0.0020 0.017 1.847 0.047 0.249
8000 42.4 0.83 5.34 0.699 -0.0006 0.012 1.824 0.024 0.165

16000 41.8 0.25 3.67 0.700 -0.0000 0.009 1.808 0.008 0.113

Finally, in Table 4 we present the simulation results for a negative binomial sup-IG process
based on 1000 repetitions with v = 50, m = ν/| log(1 − θ)| ≃ 41.52, θ = 0.7, γ = 2, δ = 4 and
H = 5 for various sample sizes.
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Table 4: Estimation results for a negative binomial trawl process with a sup-IG trawl

m̂ θ̂ γ̂ δ̂
Nobs ave bias rmse ave bias rmse ave rmse ave rmse
300 54.5 13.01 31.6 0.679 -0.0215 0.064 1.929 0.386 4.059 0.608
400 51.4 9.84 25.0 0.683 -0.0170 0.054 1.933 0.324 4.032 0.169
500 49.7 8.13 21.4 0.685 -0.0147 0.048 1.942 0.289 4.028 0.150

1000 44.8 3.25 13.1 0.694 -0.0057 0.034 1.982 0.206 4.008 0.107
2000 42.8 1.32 8.47 0.698 -0.0024 0.023 1.998 0.147 4.000 0.077
4000 42.2 0.71 5.86 0.699 -0.0012 0.016 1.998 0.106 4.001 0.055
8000 41.8 0.27 4.02 0.700 -0.0003 0.011 2.000 0.074 4.000 0.039
16000 41.6 0.06 2.83 0.700 0.0000 0.008 2.001 0.052 3.999 0.027

Overall, it appears that our moment-based estimation method works quite well. In future
research it will be interesting to explore the possibility of likelihood-based estimation methods
as well.

8 Empirical Illustration

As an empirical illustration we apply our trawl process to high frequency stock market data.
Since most stocks are traded in prices living on a lattice, our integer-valued processes constitute
a promising building block for such data. However, since asset prices themselves rarely behave
like stationary processes, we rather focus on the corresponding high frequency spread data in
our empirical study. Recall that the spread is the distance from the bid price to the ask price
for an asset. Specifically, we consider two American stocks from the S&P 600 smallcap index.
The stocks are Lindsay Corporation (ticker: LNN) and Navigant Consulting, Inc. (ticker: NCI)
and they were selected randomly from the index. The high frequency bid and ask data used for
constructing the time series of spreads have been pre-processed using the methods described in
Barndorff-Nielsen et al. (2009). We study the high frequency data for both stocks for one day
each using observations between 10am and 4pm, which ignores the effects right after market
opening. For LNN we have 2499 observations and for NCI we have 909 observations in total.
Note that we count observations as follows: An observation is generated when a new set of
quote arrives, but it is only counted as a new observation if it alters the spread. So, in between
observations, the spread stays constant as indicated in our plots which demonstrate that the
sample path of the spread mimics a step function. As such we can think of the spread process
as a continuous-time process which takes values in the natural numbers.

In Figures 9 and 10 we present the results of fitting the negative binomial trawl process
with sup-IG trawl to this data. We picked a day for each ticker where the process seems to fit
the data quite well. We estimated the model parameter using the moment matching method
that we also used in the simulation section. Note that the spread data were not observed at
equidistant time intervals, but we have new observations as soon as a quote arrives which alters
the spread. While this is not a concern for estimating the mean and the variance of the trawl
process, for this particular implementation of the estimation method we do need equidistant
data for using the information coming from the (sample) autocovariance function. Hence we
sampled each data set at equidistant time intervals (30 second intervals) using the previous tick
method, where we used the most recent spread which was recorded, cf. Barndorff-Nielsen et al.
(2009) for details.

Let us look at the results for LNN first. We study the data on 4 October 2012, where we have
2499 observations in total between 10am and 4pm. In Figure 9 we provide three plots. First,
the evolution of the spread (in cents) is shown. Underneath the plot we report the parameter
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Figure 9: Estimation of a negative binomial sup-IG trawl process for Lindsay Corporation
(ticker: LNN). The first graph shows the spread level of LNN on 4 October 2012 between 10am
and 4pm. Overall we have 2499 observations. The empirical and estimated autocorrelation
function and the corresponding probability mass functions are compared in the second and third
picture, respectively.

estimates from our negative binomial trawl process with sup-IG trawl. The two smaller plots
compare the sample ACF with the estimated ACF (where one lag corresponds to an interval
of length 30 seconds) and sample histogram and with the estimated probability mass function
(pmf).

We repeat the exercise for NCI, where we have 909 observations from 12 October 2012. We
report the corresponding results in Figure 10.

It is interesting to note that while both processes live on a grid, LNN ranges over more than
five times the number of distinct values than NCI does. In both cases the model fit appears to
be quite good, especially for the LNN data. Hence we conclude that IVT processes are not only
interesting from a mathematical point of view, but also represent an interesting alternative to
traditional (discrete-time) time series models for count data. Due to the fact that IVT processes
model the serial correlation and the marginal distribution independently of each other, they
constitute a flexible class of stochastic processes. In our application to high frequency spread
data, we found that an IVT process specified through a negative Binomial Lévy basis together
with a sup-IG trawl function can describe our data well.

9 Conclusion

This paper has introduced the class of integer-valued trawl processes for modelling serially de-
pendent and integer-valued data in a continuous-time framework. In terms of model building
there are two key components: First, the Lévy basis provides the source of randomness deter-
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Figure 10: Estimation of a negative binomial sup-IG trawl process for Navigant Consulting,
Inc. (ticker: NCI). The first graph shows the spread level of NCI on 10 October 2012 between
10am and 4pm. Overall we have 909 observations. The empirical and estimated autocorrelation
function and the corresponding probability mass functions are compared in the second and third
picture, respectively.

mining the marginal distribution of the model. All integer-valued infinitely distributions fall
into our modelling framework starting from the Poisson and the negative binomial distribution
to more advanced classes obtained as the marginal law from time-changing a Poisson process
with a subordinator or by Lévy-mixing of an integer-valued infinite divisible distribution. Sec-
ond, the choice of the deterministic function specifying the trawl is of key importance and
sets the modelling framework apart from many traditional models for count data. We have
seen that the trawl determines the autocorrelation function of the process and, vice-versa, the
autocorrelation function determines the integrated trawl function. Here we can allow for very
flexible classes of trawl functions e.g. exponential functions and superpositions thereof, which
are motivated from Ornstein-Uhlenbeck and supOU processes. In addition, one could also
allow for seasonal behaviour in the trawl function, which leads to non-monotonic trawls and
autocorrelation functions. That said, note that the autocorrelation structure and the marginal
distribution will be modelled independently of each other, which is a considerable advantage of
the trawling framework compared to traditional models for count data, and we can associate a
trawl process with any infinitely divisible (integer-valued) distribution.

The basic trawl framework can be extended to allow for volatility clusters. In order to
ensure that one stays within the class of integer-valued processes, we have discussed that the
concept of time-change is suitable. Alternatively, the concept of Lévy-mixing or random trawls
can also be used for volatility modulation of an IVT process.

Multivariate trawl processes can be constructed in a very straightforward fashion, where we
can allow for dependence coming both from the corresponding Lévy basis and from intersecting
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trawls.
In our simulation study, we have seen that we can estimate the parameters of a given IVT

process using a generalised method of moments. We have applied our estimation method in the
context of high frequency financial data and obtained promising empirical results.

A Detailed computations for some of the examples

A.1 Details for Example 4

In the following we provide the computations for the exponential case in more detail. Let
d(x) = exp(λx), for λ > 0. Note that leb(A) = leb(A0) =

∫ 0
−∞ d(s)ds =

∫ 0
−∞ exp(λs)ds = 1

λ <
∞. Then d(s − t) = exp(λ(s − t)) = exp(−λ(t − s)) and the autocorrelation function is given
by r(h) = Cor(Yt, Yt+h) = exp(−λh).

A.2 Details for Examples 6 and 7

Now we present the detailed computations for the case where we randomise the memory param-
eter λ and work with a superposition type model. I.e. d(z) =

∫∞
0 eλzπ(dλ), for a probability

measure π on (0,∞). In the case that π is absolutely continuous with density fπ, we get
d(z) =

∫∞
0 eλzfπ(λ)dλ. Then

leb(A) = leb(A0) =

∫ 0

−∞
d(z)dz =

∫ 0

−∞

∫ ∞

0
eλzπ(dλ)dz =

∫ ∞

0

∫ 0

−∞
eλzdzπ(dλ)

=

∫ ∞

0

1

λ
π(dλ).

Further, from the monotonicity of d, we get

Cov(Yt, Yt+h) = leb(A0 ∩Ah) =

∫ 0

−∞
d(s − h)ds =

∫ 0

−∞

∫ ∞

0
e−λheλsπ(dλ)ds

=

∫ ∞

0
e−λh

∫ 0

−∞
eλsdsπ(dλ) =

∫ ∞

0

1

λ
e−λhπ(dλ).

Then

r(h) = Cor(Yt, Yt+h) =

∫∞
0

1
λe

−λhπ(dλ)∫∞
0

1
λπ(dλ)

.

Let us focus on the GIG case, where we have

fπ(x) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−
1

2
(δ2x−1 + γ2x)

)
,

and Kν(·) is the modified Bessel function of the third kind. Let us denote the constant in the

density as c(γ, ν, δ) := (γ/δ)ν

2Kν(δγ)
. The trawl function is then given by

d(z) =

∫ ∞

0
exzπ(dx) =

∫ ∞

0
exzfπ(x)dx

=

∫ ∞

0
exz

(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−
1

2
(δ2x−1 + γ2x)

)
dx

=

∫ ∞

0

(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−
1

2
(δ2x−1 + (γ2 − 2z)x)

)
dx
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=
c(γ, ν, δ)

c(
√
γ2 − 2z, ν, δ)

=
(γ/δ)ν

2Kν(δγ)

2Kν(δ
√
γ2 − 2z)

(
√
γ2 − 2z/δ)ν

=

(
γ√

γ2 − 2z

)ν
Kν(δ

√
γ2 − 2z)

Kν(δγ)

=

(
1−

2z

γ2

)− ν
2 Kν(δγ

√
1− 2z

γ2 )

Kν(δγ)
.

Then

leb(A) =

∫ ∞

0

1

x
π(dx) =

∫ ∞

0

1

x
fπ(x)dx =

∫ ∞

0

(γ/δ)ν

2Kν(δγ)
x(ν−1)−1 exp

(
−
1

2
(δ2x−1 + γ2x)

)
dx

=
c(γ, ν, δ)

c(γ, ν − 1, δ)
=

(γ/δ)ν

2Kν(δγ)

2Kν−1(δγ)

(γ/δ)ν−1
=

(γ/δ)Kν−1(δγ)

Kν(δγ)
.

Also,

∫ ∞

0

1

x
e−hxπ(dx) =

∫ ∞

0

1

x
e−hxfπ(x)dx

=

∫ ∞

0

(γ/δ)ν

2Kν(δγ)
x(ν−1)−1 exp

(
−
1

2
(δ2x−1 + (γ2 + 2h)x)

)
dx

=
c(γ, ν, δ)

c(
√
γ2 + 2h, ν − 1, δ)

=
(γ/δ)ν

2Kν(δγ)

2Kν−1(δ
√
γ2 + 2h)

(
√
γ2 + 2h/δ)ν−1

=
Kν−1(δ

√
γ2 + 2h)

Kν(δγ)
δ−1 γν

√
γ2 + 2h

ν−1

=
Kν−1(δ

√
γ2 + 2h)

Kν(δγ)

γ

δ

(
1 +

2h

γ2

) 1
2
(1−ν)

.

Hence

r(h) = Cor(Yt, Yt+h) =
Kν−1(δ

√
γ2 + 2h)

Kν−1(δγ)

γν−1

√
γ2 + 2h

ν−1

=
Kν−1(δ

√
γ2 + 2h)

Kν−1(δγ)

(
1 +

2h

γ2

) 1
2
(1−ν)

.

The corresponding results for the inverse Gaussian case, i.e. when ν = 1
2 , follow immediately

from the above results by noting that K 1
2
(x) = K− 1

2
(x) =

√
π
2x

− 1
2 e−x.
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Telecom process: Upstairs and downstairs’, Signal Processing 85, 1523–1545.

Zhu, R. & Joe, H. (2003), ‘A new type of discrete self-decomposability and its application to
continuous-time Markov processes for modeling count data time series’, Stochastic Models
19(2), 235–254.

34


