INTEGERS WITH A LARGE SMOOTH DIVISOR

William D. Banks
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
bbanks@math.missouri.edu
Igor E. Shparlinski
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
igor@ics.mq.edu.au

Received: 7/19/06, Revised: 1/31/07, Accepted: 2/2/07, Published: 4/3/07

Abstract

We study the function $\Theta(x, y, z)$ that counts the number of positive integers $n \leq x$ which have a divisor $d>z$ with the property that $p \leq y$ for every prime p dividing d. We also indicate some cryptographic applications of our results.

1. Introduction

For every integer $n \geq 2$, let $P^{+}(n)$ and $P^{-}(n)$ denote the largest and the smallest prime factor of n, respectively, and put $P^{+}(1)=1, P^{-}(1)=\infty$. For real numbers $x, y \geq 1$, let $\Psi(x, y)$ and $\Phi(x, y)$ denote the counting functions of the sets of y-smooth numbers and y-rough numbers, respectively; that is,

$$
\Psi(x, y)=\#\left\{n \leq x: P^{+}(n) \leq y\right\} \quad \text { and } \quad \Phi(x, y)=\#\left\{n \leq x: P^{-}(n)>y\right\} .
$$

For a very wide range in the $x y$-plane, it is known that

$$
\Psi(x, y) \sim \varrho(u) x \quad \text { and } \quad \Phi(x, y) \sim \omega(u) \frac{x}{\log y}
$$

where u denotes the ratio $(\log x) / \log y, \varrho(u)$ is the Dickman function, and $\omega(u)$ is the Buchstab function; the definitions and certain analytic properties of $\varrho(u)$ and $\omega(u)$ are reviewed in Sections 2 and 3 below.

In this paper, our principal object of study is the function $\Theta(x, y, z)$ that counts positive integers $n \leq x$ for which there exists a divisor $d \mid n$ with $d>z$ and $P^{+}(d) \leq y$; in other words,

$$
\Theta(x, y, z)=\#\left\{n \leq x: n_{y}>z\right\}
$$

where n_{y} denotes the largest y-smooth divisor of n. The function $\Theta(x, y, z)$ has been previously studied in the literature; see $[1,6,7,8]$.

For x, y, z varying over a wide domain, we derive the first two terms of the asymptotic expansion of $\Theta(x, y, z)$. We show that the main term can be naturally defined in terms of the partial convolution $\mathcal{C}_{\omega, \varrho}(u, v)$ of ϱ with ω, which is defined by

$$
\mathcal{C}_{\omega, \varrho}(u, v)=\int_{v}^{\infty} \omega(u-s) \varrho(s) d s
$$

Using precise estimates for $\Psi(x, y)$ and $\Phi(x, y)$, we also identify the second term of the asymptotic expansion of $\Theta(x, y, z)$, which is naturally expressed in terms of the partial convolution $\mathcal{C}_{\omega, e^{\prime}}(u, v)$ of ϱ^{\prime} with ω :

$$
\mathcal{C}_{\omega, \varrho^{\prime}}(u, v)=\int_{v}^{\infty} \omega(u-s) \varrho^{\prime}(s) d s
$$

Theorem 1. For fixed $\varepsilon>0$ and uniformly in the domain

$$
x \geq 3, \quad y \geq \exp \left\{(\log \log x)^{5 / 3+\varepsilon}\right\}, \quad y \log y \leq z \leq x / y
$$

we have

$$
\Theta(x, y, z)=\left(\varrho(u)+\mathcal{C}_{\omega, \varrho}(u, v)\right) x-\gamma \mathcal{C}_{\omega, \varrho^{\prime}}(u, v) \frac{x}{\log y}+O(\mathcal{E}(x, y, z))
$$

where $u=(\log x) / \log y, v=(\log z) / \log y$, γ is the Euler-Mascheroni constant, and

$$
\mathcal{E}(x, y, z)=\frac{x}{\log y}\left\{\varrho(u-1)+\frac{\varrho(v) \log (v+1)}{\log y}+\frac{\varrho(v)}{\log (v+1)}\right\} .
$$

Similar results have been obtained concomitantly, using a more elaborate approach, by Tenenbaum [8].

The proof of Theorem 1 is given below in Section 4; our principal tools are the estimates of Lemma 4 (Section 2) and Lemma 6 (Section 3). In Section 5, we use the formula of Theorem 1 to give a heuristic prediction for the density of certain integers of cryptographic interest which appear in a work by Menezes [3].

2. Integers Free of Large Prime Factors

In this section, we collect various estimates for the counting function $\Psi(x, y)$ of y-smooth numbers:

$$
\Psi(x, y)=\#\left\{n \leq x: P^{+}(n) \leq y\right\}
$$

As usual, we denote by $\varrho(u)$ the Dickman function; it is continuous at $u=1$, differentiable for $u>1$, and it satisfies the differential-difference equation

$$
\begin{equation*}
u \varrho^{\prime}(u)+\varrho(u-1)=0 \quad(u>1) \tag{1}
\end{equation*}
$$

along with the initial condition $\varrho(u)=1(0 \leq u \leq 1)$. It is convenient to define $\varrho(u)=0$ for all $u<0$ so that (1) is satisfied for $u \in \mathbb{R} \backslash\{0,1\}$, and we also define $\varrho^{\prime}(u)$ by right-continuity at $u=0$ and $u=1$. For a discussion of the analytic properties of $\varrho(u)$, we refer the reader to [6, Chapter III.5].

We need the following well known estimate for $\Psi(x, y)$, which is due to Hildebrand [2] (see also [6, Corollary 9.3, Chapter III.5]):

Lemma 1. For fixed $\varepsilon>0$ and uniformly in the domain

$$
x \geq 3, \quad x \geq y \geq \exp \left\{(\log \log x)^{5 / 3+\varepsilon}\right\}
$$

we have

$$
\Psi(x, y)=\varrho(u) x\left\{1+O\left(\frac{\log (u+1)}{\log y}\right)\right\}
$$

where $u=(\log x) / \log y$.

We also need the following extension of Lemma 1, which is a special case of the results of Saias [5]:

Lemma 2. For fixed $\varepsilon>0$ and uniformly in the domain

$$
x \geq 3, \quad y \geq \exp \left\{(\log \log x)^{5 / 3+\varepsilon}\right\}, \quad x \geq y \log y
$$

the following estimate holds:

$$
\Psi(x, y)=\varrho(u) x+(\gamma-1) \varrho^{\prime}(u) \frac{x}{\log y}+O\left(\varrho^{\prime \prime}(u) \frac{x}{\log ^{2} y}\right)
$$

where $u=(\log x) / \log y$.

The following lemma provides a precise estimate for the sum

$$
S(y, z)=\sum_{\substack{d>z \\ P^{+}(d) \leq y}} \frac{1}{d}
$$

over a wide range, which is used in the proofs of Lemmas 4 and 6 below. The sum $S(y, z)$ has been previously studied; see, for example, [7].

Lemma 3. For fixed $\varepsilon>0$ and uniformly in the domain

$$
y \geq 3, \quad 1 \leq z \leq \exp \exp \left\{(\log y)^{3 / 5-\varepsilon}\right\}
$$

we have

$$
S(y, z)=\tau(v) \log y-\gamma \varrho(v)+O(E(y, z))
$$

where $v=(\log z) / \log y$,

$$
\tau(v)=\int_{v}^{\infty} \varrho(s) d s
$$

and

$$
E(y, z)= \begin{cases}\frac{\varrho(v) \log (v+1)}{\log y} & \text { if } z \geq y \log y \\ \frac{1}{z}+\frac{\log \log y}{\log y} & \text { if } z<y \log y\end{cases}
$$

Proof. Let $Y=y \log y$. First, suppose that $z>Y$, and put $T=\frac{\exp \left\{(\log y)^{3 / 5-\varepsilon / 2}\right\}}{\log y}$. By partial summation, it follows that

$$
\begin{align*}
S(y, z) & =\sum_{\substack{z<d \leq y^{T} \\
P^{+}(d) \leq y}} \frac{1}{d}+S\left(y, y^{T}\right) \tag{2}\\
& =\frac{\Psi\left(y^{T}, y\right)}{y^{T}}-\frac{\Psi(z, y)}{z}+\log y \int_{v}^{T} \frac{\Psi\left(y^{s}, y\right)}{y^{s}} d s+S\left(y, y^{T}\right) .
\end{align*}
$$

By Lemma 1, we have the estimate $\frac{\Psi(z, y)}{z}=\varrho(v)+O\left(\frac{\varrho(v) \log (v+1)}{\log y}\right)$.
We now recall that

$$
\begin{equation*}
\varrho(w)=\exp (-w \log w+O(w \log \log w)) \tag{3}
\end{equation*}
$$

see [5, Lemma 3(iv)]. Thus, by our choice of T we have

$$
\varrho(T)=\exp \left\{-(1+o(1)) \frac{\exp \left\{(\log y)^{3 / 5-\varepsilon / 2}\right\}}{(\log y)^{2 / 5+\varepsilon / 2}}\right\}
$$

On the other hand, since $v \leq \log z \leq \exp \left\{(\log y)^{3 / 5-\varepsilon}\right\}$, it follows that

$$
\begin{aligned}
\frac{\varrho(v) \log (v+1)}{\log y} & =\frac{\exp (-v \log v+O(v \log \log v))}{\log y} \\
& \geq \exp \left\{-(1+o(1)) \exp \left\{(\log y)^{3 / 5-\varepsilon}\right\}(\log y)^{3 / 5-\varepsilon}\right\}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{\Psi\left(y^{T}, y\right)}{y^{T}} \ll \varrho(T) \ll \frac{\varrho(v) \log (v+1)}{\log y} . \tag{4}
\end{equation*}
$$

The following bound is given in the proof of [7, Corollary 2]:

$$
S\left(y, y^{T}\right)=\sum_{\substack{d>y^{T} \\ P^{+}(d) \leq y}} \frac{1}{d} \ll \varrho(T) e^{\varepsilon T}+y^{-(1-\varepsilon) T}
$$

from which we deduce that

$$
\begin{equation*}
S\left(y, y^{T}\right) \ll \frac{\varrho(v) \log (v+1)}{\log y} \tag{5}
\end{equation*}
$$

To estimate the integral in (2), we apply Lemma 2 and write

$$
\int_{v}^{T} \frac{\Psi\left(y^{s}, y\right)}{y^{s}} d s=I_{1}+I_{2}+O\left(I_{3}\right)
$$

where

$$
\begin{aligned}
I_{1} & =\int_{v}^{T} \varrho(s) d s=\tau(v)-\tau(T) \\
I_{2} & =\frac{(\gamma-1)}{\log y} \int_{v}^{T} \varrho^{\prime}(s) d s=\frac{(\gamma-1)(\varrho(T)-\varrho(v))}{\log y} \\
I_{3} & =\frac{1}{\log ^{2} y} \int_{v}^{T} \varrho^{\prime \prime}(s) d s=\frac{\varrho^{\prime}(T)-\varrho^{\prime}(v)}{\log ^{2} y}
\end{aligned}
$$

Using (1) together with [6, Lemma 8.1 and bound (61), Chapter III.5] we see that $\left|\varrho^{\prime}(v)\right| \asymp$ $\varrho(v) \log (v+1)$. Furthermore, as in our derivation of (4), we see that (3) yields

$$
\tau(T) \ll \varrho(T) \ll \frac{\varrho(v) \log (v+1)}{\log ^{2} y}
$$

Therefore,

$$
\begin{equation*}
\int_{v}^{T} \frac{\Psi\left(y^{s}, y\right)}{y^{s}} d s=\tau(v)-\frac{(\gamma-1) \varrho(v)}{\log y}+O\left(\frac{\varrho(v) \log (v+1)}{\log ^{2} y}\right) \tag{6}
\end{equation*}
$$

Inserting the estimates (4), (5), and (6) into (2), we obtain the desired estimate when $z>Y$.
Next, suppose that $y \leq z \leq Y$, and put $V=\frac{\log Y}{\log y}=1+\frac{\log \log y}{\log y}$. Since $\varrho(s)=1-\log s$ for $1 \leq s \leq 2$, we have $1 \geq \varrho(v) \geq \varrho(V)=1+O\left(\frac{\log \log y}{\log y}\right)$; therefore,

$$
\begin{equation*}
\varrho(v)-\varrho(V) \ll \frac{\log \log y}{\log y} \tag{7}
\end{equation*}
$$

By partial summation, it follows that

$$
\begin{align*}
S(y, z) & =\sum_{\substack{z<d \leq Y \\
P^{+}(d) \leq y}} \frac{1}{d}+S(y, Y) \tag{8}\\
& =\frac{\Psi(Y, y)}{Y}-\frac{\Psi(z, y)}{z}+\log y \int_{v}^{V} \frac{\Psi\left(y^{s}, y\right)}{y^{s}} d s+S(y, Y)
\end{align*}
$$

Using Lemma 1 together with (7), it follows that

$$
\begin{equation*}
\frac{\Psi(Y, y)}{Y}-\frac{\Psi(z, y)}{z}=\varrho(V)-\varrho(v)+O\left(\frac{1}{\log y}\right) \ll \frac{\log \log y}{\log y} \tag{9}
\end{equation*}
$$

Applying the estimate from the previous case, we also have

$$
\begin{equation*}
S(y, Y)=\tau(V) \log Y-\gamma \varrho(V)+O\left(\frac{1}{\log y}\right) \tag{10}
\end{equation*}
$$

To estimate the integral in (8), we use Lemma 1 again and write

$$
\int_{v}^{V} \frac{\Psi\left(y^{s}, y\right)}{y^{s}} d s=I_{4}+O\left(I_{5}\right)
$$

where

$$
\begin{aligned}
I_{4} & =\int_{v}^{V} \varrho(s) d s=\tau(v)-\tau(V) \\
I_{5} & =\frac{1}{\log y} \int_{v}^{V} d s=\frac{\log (Y / z)}{\log ^{2} y} \ll \frac{\log \log y}{\log ^{2} y} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\int_{v}^{V} \frac{\Psi\left(y^{s}, y\right)}{y^{s}} d s=\tau(v)-\tau(V)+O\left(\frac{\log \log y}{\log ^{2} y}\right) \tag{11}
\end{equation*}
$$

Inserting the estimates (9), (10) and (11) into (8), and taking into account (7), we obtain the stated estimate for $y \leq z \leq Y$.

Finally, suppose that $1 \leq z<y$. In this case,

$$
\begin{equation*}
S(y, z)=\sum_{z<d \leq y} \frac{1}{d}+S(y, y) \tag{12}
\end{equation*}
$$

By partial summation, we have

$$
\begin{aligned}
\sum_{z<d \leq y} \frac{1}{d} & =\log y-\log z+O\left(z^{-1}\right)=(1-v) \log y+O\left(z^{-1}\right) \\
& =\log y \int_{v}^{1} \varrho(s) d s+O\left(z^{-1}\right)=(\tau(v)-\tau(1)) \log y+O\left(z^{-1}\right)
\end{aligned}
$$

Applying the estimate from the previous case, we also have

$$
S(y, y)=\tau(1) \log y-\gamma \varrho(1)+O\left(\frac{\log \log y}{\log y}\right)
$$

Inserting these estimates into (12), and using the fact that $\varrho(v)=\varrho(1)=1$, we obtain the desired result.

Lemma 4. For fixed $\varepsilon>0$ and uniformly in the domain

$$
x \geq 3, \quad y \geq \exp \left\{(\log \log x)^{5 / 3+\varepsilon}\right\}, \quad 1 \leq z \leq x / y
$$

we have

$$
\sum_{\substack{z<d \leq x / y \\ P^{+}(d) \leq y}} \frac{\varrho\left(u-u_{d}\right)}{d} \ll \mathcal{C}_{\varrho, \varrho}(u, v) \log (u+1)+\varrho(u-v) \varrho(v)+\varrho(u-1),
$$

where $u=(\log x) / \log y, v=(\log z) / \log y, u_{d}=(\log d) / \log y$ for every integer d in the sum, and

$$
\mathcal{C}_{\varrho, \varrho}(u, v)=\int_{v}^{\infty} \varrho(u-s) \varrho(s) d s .
$$

Proof. By partial summation, we have

$$
\sum_{\substack{z<d \leq x / y \\ P^{+}(d) \leq y}} \frac{\varrho\left(u-u_{d}\right)}{d}=S(y, x / y)-\varrho(u-v) S(y, z)+\int_{v}^{u-1} \varrho^{\prime}(u-s) S\left(y, y^{s}\right) d s
$$

Lemma 3 implies that

$$
\begin{aligned}
S(y, x / y) & =\tau(u-1) \log y+O(\varrho(u-1)), \\
S(y, z) & =\tau(v) \log y+O(\varrho(v))
\end{aligned}
$$

and

$$
\int_{v}^{u-1} \varrho^{\prime}(u-s) S\left(y, y^{s}\right) d s=I_{1} \log y+O\left(I_{2}\right)
$$

where

$$
\begin{aligned}
& I_{1}=\int_{v}^{u-1} \varrho^{\prime}(u-s) \tau(s) d s=\varrho(u-v) \tau(v)-\tau(u-1)+\mathcal{C}_{\varrho, \varrho}(u, v) \\
& I_{2}=\int_{v}^{u-1}\left|\varrho^{\prime}(u-s)\right| \varrho(s) d s
\end{aligned}
$$

Finally, using the bound $\left|\varrho^{\prime}(t)\right| \ll \varrho(t) \log (t+1)$ (for $t>1$), we see that

$$
I_{2} \ll \log (u+1) \int_{v}^{u-1} \varrho(u-s) \varrho(s) d s \leq \mathcal{C}_{\varrho, \varrho}(u, v) \log (u+1)
$$

Putting everything together, the result follows.

3. Integers Free of Small Prime Factors

In this section, we collect various estimates for the counting function $\Phi(x, y)$ of y-rough numbers:

$$
\Phi(x, y)=\#\left\{n \leq x: P^{-}(n)>y\right\} .
$$

As usual, we denote by $\omega(u)$ the Buchstab function; for $u>1$, it is the unique continuous solution to the differential-difference equation

$$
\begin{equation*}
(u \omega(u))^{\prime}=\omega(u-1) \quad(u>2) \tag{13}
\end{equation*}
$$

with initial condition $u \omega(u)=1(1 \leq u \leq 2)$. It is convenient to define $\omega(u)=0$ for all $u<1$ so that (13) is satisfied for $u \in \mathbb{R} \backslash\{1,2\}$, and we also define $\omega^{\prime}(u)$ by right-continuity at $u=1$ and $u=2$. For a discussion of the analytic properties of $\omega(u)$, we refer the reader to [6, Chapter III.6]

The next result follows from [6, Corollary 7.5, Chapter III.6]:
Lemma 5. For fixed $\varepsilon>0$ and uniformly in the domain

$$
x \geq 3, \quad x \geq y \geq \exp \left\{(\log \log x)^{5 / 3+\varepsilon}\right\}
$$

the following estimate holds:

$$
\Phi(x, y)=(x \omega(u)-y) \frac{e^{\gamma}}{\zeta(1, y)}+O\left(\frac{x \varrho(u)}{\log ^{2} y}\right)
$$

where $u=(\log x) / \log y$, and $\zeta(1, y)=\prod_{p \leq y}\left(1-p^{-1}\right)^{-1}$.
Lemma 6. For fixed $\varepsilon>0$ and uniformly in the domain

$$
x \geq 3, \quad y \geq \exp \left\{(\log \log x)^{5 / 3+\varepsilon}\right\}, \quad 1 \leq z \leq x / y
$$

we have

$$
\sum_{\substack{z<d \leq x / y \\ P^{+}(d) \leq y}} \frac{\omega\left(u-u_{d}\right)}{d}=\mathcal{C}_{\omega, \varrho}(u, v) \log y-\gamma \mathcal{C}_{\omega, \varrho^{\prime}}(u, v)+O(E(y, z)),
$$

where $u=(\log x) / \log y, v=(\log z) / \log y, u_{d}=(\log d) / \log y$ for every integer d in the sum, and $E(y, z)$ is the error term of Lemma 3.

Proof. By partial summation, it follows that

$$
\sum_{\substack{z<d \leq x / y \\ P^{+}(d) \leq y}} \frac{\omega\left(u-u_{d}\right)}{d}=S(y, x / y)-\omega(u-v) S(y, z)+\int_{v}^{u-1} \omega^{\prime}(u-s) S\left(y, y^{s}\right) d s
$$

By Lemma 3 we have the estimates $S(y, x / y)=\tau(u-1) \log y-\gamma \varrho(u-1)+O(E(y, x / y))$ and $S(y, z)=\tau(v) \log y-\gamma \varrho(v)+O(E(y, z))$. Also,

$$
\int_{v}^{u-1} \omega^{\prime}(u-s) S\left(y, y^{s}\right) d s=I_{1} \log y-\gamma I_{2}+O\left(I_{3}\right)
$$

where

$$
\begin{aligned}
& I_{1}=\int_{v}^{u-1} \omega^{\prime}(u-s) \tau(s) d s=\omega(u-v) \tau(v)-\tau(u-1)+\mathcal{C}_{\omega, \varrho}(u, v) \\
& I_{2}=\int_{v}^{u-1} \omega^{\prime}(u-s) \varrho(s) d s=\omega(u-v) \varrho(v)-\varrho(u-1)+\mathcal{C}_{\omega, \varrho^{\prime}}(u, v) \\
& I_{3}=\frac{1}{\log y} \int_{v}^{u-1}\left|\omega^{\prime}(u-s)\right| E\left(y, y^{s}\right) d s
\end{aligned}
$$

Putting everything together, we see that the stated estimate follows from the bound

$$
\begin{equation*}
E(y, x / y)+\omega(u-v) E(y, z)+I_{3} \ll E(y, z) \tag{14}
\end{equation*}
$$

To prove this, observe that $E\left(y, z_{1}\right) \ll E\left(y, z_{2}\right)$ holds for all $z_{1} \geq z_{2} \geq 1$. Therefore, $E(y, x / y) \ll E(y, z)$, and

$$
I_{3} \ll \frac{E(y, z)}{\log y} \int_{v}^{u-1}\left|\omega^{\prime}(u-s)\right| d s \ll \frac{E(y, z)}{\log y} .
$$

Taking into account the fact that $\omega(u-v) \asymp 1$, we derive (14), completing the proof.

4. Proof of Theorem 1

For fixed y, every positive integer n can be uniquely decomposed as a product $n=d e$, where $P^{+}(d) \leq y$ and $P^{-}(e)>y$. Therefore,

$$
\begin{aligned}
\Theta(x, y, z) & =\sum_{\substack{z<d \leq x \\
P^{+}(d) \leq y}} \sum_{\substack{e \leq x / d \\
P^{-(e)>y}}} 1=\sum_{\substack{z<d \leq x \\
P^{+}(d) \leq y}} \Phi(x / d, y) \\
& =\Psi(x, y)-\Psi(x / y, y)+\sum_{\substack{z<d \leq x / y \\
P^{+}(d) \leq y}} \Phi(x / d, y) .
\end{aligned}
$$

Using Lemma 1, it follows that $\Psi(x, y)-\Psi(x / y, y)=\varrho(u) x+O\left(\frac{\varrho(u-1) x}{\log y}\right)$. By Lemma 5 , we also have

$$
\begin{align*}
\sum_{\substack{z<d \leq x / y \\
P^{+}(d) \leq y}} \Phi(x / d, y)= & \sum_{\substack{z<d \leq x / y \\
P^{+}(d) \leq y}}\left\{\left(\frac{x \omega\left(u-u_{d}\right)}{d}-y\right) \frac{e^{\gamma}}{\zeta(1, y)}+O\left(\frac{x \varrho\left(u-u_{d}\right)}{d \log ^{2} y}\right)\right\} \\
= & \frac{e^{\gamma} x}{\zeta(1, y)} \sum_{\substack{z<d \leq x / y \\
P^{+}(d) \leq y}} \frac{\omega\left(u-u_{d}\right)}{d}-\frac{e^{\gamma} y}{\zeta(1, y)}\{\Psi(x / y, y)-\Psi(z, y)\} \tag{15}\\
& +O\left(\frac{x}{\log ^{2} y} \sum_{\substack{z<d \leq x / y \\
P^{+}(d) \leq y}} \frac{\varrho\left(u-u_{d}\right)}{d}\right)
\end{align*}
$$

Applying Lemma 1 again, we have $-\frac{e^{\gamma} y}{\zeta(1, y)}\{\Psi(x / y, y)-\Psi(z, y)\} \ll \frac{\varrho(u-1) x}{\log y}$. Inserting the estimates of Lemmas 4 and 6 into (15), and making use of the trivial estimate

$$
\mathcal{C}_{\varrho, \varrho}(u, v) \log (u+1) \ll \log y \int_{v}^{\infty} \varrho(s) d s \ll \frac{\varrho(v) \log y}{\log (v+1)}
$$

it is easy to see that

$$
\Theta(x, y, z)=\left(\varrho(u)+\mathcal{C}_{\omega, \varrho}(u, v) \frac{e^{\gamma} \log y}{\zeta(1, y)}\right) x-\gamma \mathcal{C}_{\omega, \varrho^{\prime}}(u, v) \frac{e^{\gamma} x}{\zeta(1, y)}+O(\mathcal{E}(x, y, z))
$$

To complete to proof, we use the estimate (see Vinogradov [9]):

$$
\zeta(1, y)=e^{\gamma} \log y\left(1+\exp \left\{-c(\log y)^{3 / 5}\right\}\right)
$$

which holds for some absolute constant $c>0$, together with the trivial estimate

$$
\max \left\{\mathcal{C}_{\omega, \varrho}(u, v), \mathcal{C}_{\omega, \varrho^{\prime}}(u, v)\right\} \ll \int_{v}^{\infty} \varrho(s) d s \ll \frac{\varrho(v)}{\log (v+1)}
$$

5. Cryptographic Applications

Suppose that two primes p and q are selected for use in the Digital Signature Algorithm (see, for example, [4]) using the following standard method:

- Select a random m-bit prime q;
- Randomly generate k-bit integers n until a prime $p=2 n q+1$ is reached.

The large subgroup attack described in [3, Section 3.2.3] leads one naturally to consider the following question: What is the probability $\eta(k, \ell, m)$ that n has a divisor $s>q$ which is 2^{ℓ}-smooth?

It is natural to expect that the proportion of those integers in the set $\left\{2^{k-1} \leq n<2^{k}\right\}$ having a large smooth divisor should be roughly the same as the proportion of integers in

$$
\left\{2^{k-1} \leq n<2^{k}: n=(p-1) /(2 q) \text { for some prime } p \equiv 1 \quad(\bmod 2 q)\right\}
$$

having a large smooth divisor. Accordingly, we expect that the probability $\eta(k, \ell, m)$ is reasonably close to

$$
\frac{\Theta\left(2^{k}, 2^{\ell}, 2^{m}\right)-\Theta\left(2^{k-1}, 2^{\ell}, 2^{m}\right)}{2^{k-1}}
$$

Theorem 1 then suggests that $\eta(k, \ell, m) \approx 2 \wp(k, \ell, m)-\wp(k-1, \ell, m)$, where

$$
\wp(k, \ell, m)=\varrho(k / \ell)+\mathcal{C}_{\omega, \varrho}(k / \ell, m / \ell)-\frac{\gamma \mathcal{C}_{\omega, \varrho^{\prime}}(k / \ell, m / \ell)}{\ell \log 2} .
$$

In particular, the most interesting choice of parameters at the present time is $k=863, \ell=80$, and $m=160$ (which produce a 1024 -bit prime p); we expect $\eta(863,80,160) \approx 0.09576$.

Acknowledgements. The authors would like to thank Alfred Menezes for bringing to our attention the cryptographic applications which initially motivated our work. We also thank Gérald Tenenbaum for pointing out a mistake in the original manuscript, and for many subsequent discussions. This work was started during a visit by W. B. to Macquarie University; the support and hospitality of this institution are gratefully acknowledged. During the preparation of this paper, I. S. was supported in part by ARC grant DP0556431.

References

[1] R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, Cambridge, UK, 1988.
[2] A. Hildebrand, 'On the number of positive integers $\leq x$ and free of prime factors $>y,{ }^{\prime}$ J. Number Theory 22, (1986), no. 3, 289-307.
[3] A. J. Menezes, 'Another look at HMQV', Cryptology ePrint Archive, Report 2005/205, 2005, 1-15.
[4] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of applied cryptography, CRC Press, Boca Raton, FL, 1996.
[5] É. Saias, 'Sur le nombre des entiers sans grand facteur premier,' (French) J. Number Theory 32 (1989), no. 1, 78-99.
[6] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, Cambridge, UK, 1995.
[7] G. Tenenbaum, Crible d'Ératosthéne et modéle de Kubilius, Number theory in progress, Vol. 2 (ZakopaneKościelisko, 1997), de Gruyter, Berlin, 1999, 1099-1129.
[8] G. Tenenbaum, Integers with a large friable component, Preprint, 2006.
[9] A. I. Vinogradov, 'On the remainder in Merten's formula,' (Russian) Dokl. Akad. Nauk SSSR 148 (1963), 262-263.

