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Integers without large prime factors

by ADOLF HILDEBRAND* AND GERALD TENENBAUM
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o. Introduction

The purpose of this paper is to give a survey of recent work on the distri-
bution of integers without large prime factors. A similar survey had been
published about twenty years ago by K. Norton (1971), but in the interven-
ing time the subject has been considerably advanced and is now in a mature
and largely satisfactory state. Moreover, the results have found some new
and rather unexpected applications in diverse areas of number theory. We
therefore felt it appropriate to give an account of the present state of the
subject which may be useful for those interested in studying the subject
for its own sake as well as those interested in applying the results. While
integers without small prime factors may be viewed as approximations to
primes and as such form a natural object of study in prime number theory,
the reasons for studying integers without large prime factors are less ob-
vious. Integers without large prime factors, also called "smooth" integers,
are necessarily products of many small prime factors and are, in a sense,
the exact opposite of prime numbers. However, it turns out that results
on integers without large prime factors play an important auxiliary role
in several problems in prime number theory, in particular in the construc-
tion of large gaps between primes (Rankin (1938)) and in the analysis of
algorithms for factoring and primality testing (Pomerance (1987), Lenstra
(1987)). They are also relevant in some other problems in number theory
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such as bounds on the least kth power non-residues (Vinogradov (1926),
Norton (1969,1971)), Waring’s problem (Vaughan (1989), Wooley (1992)),
and Fermat’s conjecture (Lehmer &#x26; Lehmer (1941), Granville (1991b)).
Most recently, a result on integers of the form p + 1 without large prime
factors played an essential role in the resolution of a long-standing conjec-
ture of Carmichael (Alford, Granville, &#x26; Pomerance (1993)). In addition,
the study of integers without large prime factors is an interesting and diffi-
cult problem for its own sake that can be attacked by a variety of methods,
some of which have led to advances on other problems in analytic number
theory.

The principal object of investigation is the function

where P(n) denotes the largest prime factor of n, with the convention that
P(l) = 1. The ratio iY(x, y)j[x] may be interpreted as the probability
that a randomly chosen integer from the interval ~1, ~~ has all its prime
factors  y.

Non-trivial estimates for q, (x, y) can be obtained by a variety of methods,
depending on the relative size of y and x and the nature of the desired result.
In Section 1 we shall survey the principal results and discuss some of the
methods of proof. Section 2 will be devoted to the Dickman function, a
function defined by a differential-difference equation which arises in this
connection. In Sections 3 and 4 we shall give complete proofs of two of
the main results on In Section 5 we consider the distribution of

integers without large prime factors in short intervals and prove a new result
in this context (Theorem 5.7) which extends a recent result of Friedlander &#x26;

Lagarias. Section 6 is devoted to the distribution in arithmetic progressions,
and in the final section we survey various other results on integers without
large prime factors. We conclude with a comprehensive bibliography of
papers on the subject that have appeared since the publication of Norton’s
memoir. The reader may find another quite thorough list of references in
Moree’s thesis (1993), which also incudes a clear introduction to the matter
as well as interesting new contributions.

Notation. We let logk x denote the kfold iterated logarithm, defined by
log, x = log x and logk x = loglogk_1 x for k &#x3E; 1. Given a complex num-
ber s, we denote its real and imaginary parts by a and T, respectively.
The letter E denotes as usual an arbitrarily small, but fixed constant; other
constants will be denoted by c, yo, etc., and need not be the same at each
occurrence. We use the notations f(x) = 0(g(x)) and f(x) « inter-

changeably to mean that cg(x) holds with some constant c for all
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x in a range which will normally be clear from the context. The constant c
here is allowed to depend on c (if the functions involved depend on E), but
any dependence on other parameters will be explicitly indicated by writing
Ç)k, ~71’ etc. We write I(x) x g(x) if both f (x) « g(x) and f (x)
hold.

Acknowledgements. We are grateful to Jean-Marie DeKoninck, Heini
Halberstam, Aleksandar Ivic, , Pieter Moree, Karl Norton, Carl Pomerance,
Eric Saias, J. Sandor, and Jie Wu for their comments on earlier versions of
this paper.

1. Estimates for ~(:r,~) 2013 a survey
We begin by pointing out a natural but false heuristic for the size of

BII ( x, y). It consists of the approximation

which is suggested by a simple probabilistic argument and also by "extrap-
olation" from the sieve estimate

which holds for any set of primes P contained in [1, xl/2-E] (see, e.g., Hal-
berstam &#x26; Ri chert (1974)) By Mertens’ theorem, the right-hand side of
(1.1) is of order x/u with u = log x/ log y. However, as the results below
show, T(x, y)lx is in fact exponentially decreasing in u, and therefore of
much smaller order of magnitude. The reason for this discrepancy is that
the validity of (1.2) depends on certain independence assumptions which
are not satisfied if the set P contains large primes. For example, primes in
the interval x~ do not act independently in the sense that if an integer
n  x is divisible by one such prime then it cannot be divisible by any other
prime in this interval. We remark that in many applications it is precisely
this discrepancy between the expected and the actual size of BIf(x, y) which
is exploited.

The failure of the heuristic (1.1) shows that classical sieve methods are
not an appropriate tool for estimating T(x, y). Indeed, these methods
would lead to an approximation for consisting of a main term of
the order of the right-hand side in (1.1), and an error term which in view of
the above remarks would have to be of at least the same order of magnitude
as the main term. Thus one cannot hope to obtain a lower bound for T(x, y)
in this way. An upper bound by the right-hand side of (1.1) can be deduced,
but for most problems this bound is too weak to be useful.
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We now derive a simple, but nonetheless useful bound for y), using
a technique known as "Rankin’s method"; see Rankin (1938). It is based
on the observation that, for any &#x3E; 0, x &#x3E; 1, and y &#x3E; 2,

If we take u = 1- 1/(2log y), then the last sum may be estimated by

Substituting this into (1.3) gives the bound

where here and in the sequel we set u = log x/ log y. By using a slightly
more complicated argument one can remove the factor logy in (1.4); see
Theorem 111.5.1 in Tenenbaum (1990a).
An asymptotic formula for Bl1(x, y) was first obtained by Dickman (1930)

who proved that for any fixed u &#x3E; 0

where the function is defined as the (unique) continuous solution to
the differential-difference equation

satisfying the initial condition

(Actually Dickman stated his results in terms of the function

#{n  x : P(n)  which, however, is easily seen to be asymptotically
equal to W(z, y) when u is fixed.) A more rigorous proof, by modern stan-
dards, was later supplied by Chowla and Vijayaraghavan (1947); the first
quantitative estimates were obtained by Buchstab (1949) and Ramaswami
(1949).
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The "Dickman function" p(u) is nonnegative for u &#x3E; 0, decreasing for
u &#x3E; 1, and satisfies the asymptotic estimate

These and other properties of the Dickman function will be proved in Sec-
tion 2.

Substantial progress on the problem of estimating y) was made in
the 1950s by de Bruijn. Among other estimates, de Bruijn (1951b) proved
a uniform version of Dickman’s result; when combined with the sharpest
known form of the prime number theorem, his result states that

holds (with u = log x /log y) uniformly in the range

While the error term in (1.8) is best-possible, Hensley (1985) showed that
a lower bound of the form W(z, y) &#x3E; xp(u) holds in a much larger range,
and the range of validity for (1.8) itself has been significantly improved by
Maier (unpublished) and Hildebrand (1986a). The latter result gives the
largest range in which the asymptotic relation xp(u) is known to
hold, and we state it formally as a theorem.

THEOREM 1.1. For any fixed c &#x3E; 0 the relation (1.8) holds uniformly in
the range

The upper limit in this range is closely tied to the best known error
term in the prime number theorem, and any improvements in the error
term would lead to corresponding improvements in the range (1.10). In

fact, the correspondence is in both directions; for example, one can show
that (1.8) in the form = xp(u) exp 10(log(u + 1)/logy)} holds
uniformly in the range y &#x3E; 2, 1  u  yl/2-f., for any fixed c &#x3E; 0, if and
only if the Riemann Hypothesis is true; see Hildebrand (1984a). The proof
of Theorem 1.1 is based on the functional equation
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which holds for any x &#x3E; 1 and y &#x3E; 2. This equation is obtained by
evaluating the sum S = in two different ways. On the

one hand, partial summation shows that S is equal to the difference between
the left-hand side. and the first term on the right of (1.11). On the other
hand, writing log n log p and inverting the order of summation, we
see that S is also equal to the sum on the right of (1.11). The estimate (1.8)
is obtained by first showing that it holds in an initial range, say x  y2,
and then applying (1.11) iteratively to show that it continues to hold in
the range  x  y(~+1)/2 for n &#x3E; 4 as long as (1.10) is satisfied. The
limitation in the range comes from the fact that each iteration step involves
a small error due to possible irregularities in the distribution of primes.
These errors accumulate and after sufficiently many iterations become as
large as the main term.

The principal difference between this approach and the earlier approach
of de Bruijn lies in the use of (1.11). De Bruijn based his argument on a
different functional equation, the "Buchstab identity"

which holds for all x &#x3E; 1 and z &#x3E; y &#x3E; 0. Compared to (1.11), this equation
has the disadvantage that the second argument of T is not fixed, so that an
induction argument based on this formula is technically more complicated.
A more severe limitation of the Buchstab identity is that the right-hand
side consists of two terms having opposite signs but which can be nearly
equal in size. As a result, the error terms arising from inductive use of
the Buchstab identity are much larger than those coming from (1.11), and
exceed the main term already for relatively small values of u.

Using the functional equation (1.11), it is relatively easy to justify, at
least heuristically, the appearance of the Dickman function in (1.8) if we
suppose that a relation of the form ~Y(x, y) r·· x f (u) holds with some func-
tion f (u). Replacing w(t,y) by t f (log t/ log y) in (1.11), we obtain under
this assumption y &#x3E; 2

Since  x, we necessarily have f (u)  1, so that the first term
on the right-hand side is of order O(x). Moreover, the contribution of the
terms with pm &#x3E; y to the sum on the right is easily shown to be of the same
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order of magnitude. After dividing by x log x, both of these contributions
become o(l) and we obtain

using the prime number theorem in the form ?P(t) - t. Assuming the
error terms involved all tend to zero as x, y -~ oo, we conclude that the
function f (u) satisfies the integral equation f (u)u f (v)dv for u &#x3E; 1.

Differentiating both sides of this equation shows that f (u) is a solution
to the differential-difference equation (1.5). Since for 0  u  1 we have

trivially ~(yu, y) _ as y --&#x3E; oo, f(u) also satisfies the initial con-
dition (1.6). Therefore, f(u) must be equal to the Dickman function p(u).

The range (1.10) is the largest in which an asymptotic approximation for
’I!(x, y)/x by a smooth function is known. This range can be considerably
increased if instead of an asymptotic formula for we only ask for
an asymptotic formula for as the following result shows.

THEOREM 1.2. For any fixed c &#x3E; 0 we have

uniformly in the range 
’

Moreover, the lower bound in (1.12) is valid uniformly for all x &#x3E; y &#x3E; 2.

The upper bound in this result is implicit in de Bruijn (1966), whereas
the lower bound is due to Hildebrand (1986a). A slightly weaker result had
been given by Canfield, Erd6s &#x26; Pomerance (1983).

Combining (1.12) with the asymptotic formula (1.7) for the logarithm
of the Dickman function, we obtain the following simple, but quite useful
corollary.

COROLLARY 1.3. For any fixed c &#x3E; 0 we have

as y and u tend to infinity, uniformly in the yl-E.
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In terms of the variables x and y, the ranges (1.10) and (1.13) of Theo-
rems 1.1 and 1.2 correspond to

respectively. To give an idea of the size of y) in various parts of these
ranges, we consider the cases y = exp with 0  a  1 and

y = (log x)" with a &#x3E; 1. The corollary yields in the first case

and in the second case

The estimate (1.14) together with the monotonicity of shows
that I log ~~(x, y)jx) I is of order log x whenever y is smaller than a fixed
power of log x. In this range it is therefore more appropriate to seek an
approximation to log ~~(x, y)~ rather than to Such an
estimate has been given by de Bruijn (1966); his result, in a slightly more
precise form due to Tenenbaum (1990a, Theorem 111.5.2), is as follows.

THEOREM 1.4. Uniforrrtly for x &#x3E; y &#x3E; 2, we have

where

The proof of this result is completely elementary. The upper bound
is deduced from Rankin’s inequality (1.3) with an optimal choice of the
parameter u. The lower bound is based on the elementary inequality

together with a lower bound for the right-hand side of (1.17) obtained by
Stirling’s formula. To prove (1.17), it suffices to note that the right-hand
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side represents the number of k-tuples m2, ... , mk) with 0 and

Mi = l and that, by the definition of k and the Fundamental Theorem
of Arithmetic, the set of such tuples is in one-to-one correspondence with
the set of integers composed of exactly i (not necessarily distinct) prime
factors  y), and hence with a subset of the set of integers counted
in T(x, y). ,

The estimate (1.15) clearly shows that there is a change of behavior for
W ( x, y) at y s5 log x. If oo, then the first term in the definition
of Z dominates, whereas for y = o(log x), Z is asymptotic to the second
term in (1.16). The change in behavior is due to the fact that if y is small
compared to log x, then many prime factors of a "typical" integer counted

occur to high powers, whereas for larger values of y most prime
factors occur only to the first power. For a closer analysis of T(x, y) near
the transition point y s5 log x see Granville (1989).

In the case of very small values of y, it is useful to observe that, by
the Fundamental Theorem of Arithmetic, is equal to the number of
solutions (mp)p~y in nonnegative integ~rs to the inequality

or equivalently the linear diophantine inequality

The number of solutions to this inequality can be estimated very precisely
by elementary geometric methods as long as the number of variables (i.e.,
~r(y)) is not too large. For example, it is easy to see that if y &#x3E; 2 is fixed
and x ~ oo, then the number of solutions is asymptotically equal to the
volume of the x(y)-dimensional simplex defined by the inequalities

where k = 7r(y) and pi denotes the ith prime. By a change of variables, the
volume of (1.19) is seen to be equal to

I- L I-

General asymptotic results of this type have been given by Specht (1949),
Hornfeck (1959), Beukers (1975), Tenenbaum (1990a) - Theorem 111.5.3
- and Granville (1991a). A more careful reasoning leads to the following
quantitative result.
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THEOREM 1.5. Uniformly in the range

we have

This result is stated in Ennola (1969), who has also given a similar, but
somewhat more complicated formula for the larger range y  (log x)3~4-E;
for a detailed proof see Theorem 111.5.2 of Tenenbaum (1990a).

Theorems 1.1 and 1.5 both give an asymptotic formula for ’li(x, y); the
first result is valid for relatively large values of y and gives an approximation
by a smooth function, whereas the second result holds for small y and gives
an approximation by a quantity depending on the primes  y. Between
the two ranges (1.10) and (1.20), however, there remains a large gap in
which the results quoted above give only much weaker estimates. This gap
has been closed by the following result of Hildebrand &#x26; Tenenbaum (1986),
which gives an asymptotic formula for ’li(x, y) that is valid uniformly in x
and y, provided only that u = log x/ log y and y tend to infinity.
THEOREM 1.6. Uniformly in the range x &#x3E; y &#x3E; 2, we have

and a = a(x, y) is the unique positive solution to the equation

The formula (1.22) is similar in nature to the explicit formula in prime
number theory. It expresses in terms of the generating Dirichlet
series C(s, y) evaluated at a certain point a which plays a role analogous to
that of the zeros in the explicit formula. Note that the function (0’, y)xa
is exactly equal to the upper bound (1.3) for y) obtained by Rankin’s
method, and that a(x, y) is the unique point on the positive real line which
minimizes this function. Thus the denominator in (1.22) measures the ratio
between iY(x, y) and the upper bound given by Rankin’s method with an
optimal choice of parameters.
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A formula of this type may seem to be of little value at first sight, since
it involves the parameter a which is defined only implicitly through an
equation involving prime numbers. Nonetheless, from a sufficiently sharp
form of the prime number theorem one can derive the estimate

uniformly in x &#x3E; y &#x3E; 2 (see Hildebrand &#x26; Tenenbaum (1986)), and using
this estimate, one can show that the right-hand of (1.22) is approximated
by the right-hand sides of the formulas of Theorems 1.1 - 1.5 in their
respective ranges, except in the case of Theorem 1.1 when u  log y, say.
Thus, Theorem 1.6 implies Theorems 1.2 - 1.5 in their full strength (except
for the quality of the error term of (1.21) when y W x)2/3),
as well as the statement of Theorem 1.1 for u &#x3E; log y.
We emphasize that Theorem 1.6 does not lead to any improvements in

the ranges of validity of the above theorems. For example, it does not yield
an asymptotic approximation to by a smooth function in the range
u &#x3E; exp((log y)3/5). This is due to our limited knowledge of the distribution
of primes which prevents us from obtaining a smooth approximation to the
right-hand side of (1.22) in this range. However, even in the range where no
smooth approximation to BII(x, y) is available, one can use (1.22) to obtain
very precise information on the local behavior of y). The following is a
typical result of this type, which we quote form Hildebrand &#x26; Tenenbaum

(1986).
COROLLARY 1.7. Uniformly for x &#x3E; y &#x3E; 2 and 1 ~ c  y, we have

where a(x, y) is defined as in Theorem 1.6.

Since by (1.26), a(x, y) = 0(1) if and only if y -5 (logx)l+o(l), this
shows, for example, that iY(x, y) as x, y -+ oo holds if and only
if’

In Section 4, we shall give a complete proof of Theorem 1.6 for the range
u &#x3E; (log y)4. The method of proof is analytic; it depends on representing
T(x, y) as a complex integral over the function C(s, and evaluating
this integral by the saddle point method. The point a(x, y) is a saddle point
for ( s, y)x-1, and the expression on the right-hand side of (1.22) arises as
the contribution from this saddle point.
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The principal deficiency of Theorem 1.6 is that the error term in (1.22)
increases as u decreases and for small u becomes larger than the error term
of Theorem 1.1. Saias (1989) has shown that one can adapt the saddle
point method to deal more effectively with this range. He obtained the

following result which is valid in the same range as Theorem 1.1, but gives
a much more precise estimate for y).
THEOREM 1.8. For any fixed c &#x3E; 0, and uniformly for y &#x3E; yo(c) and
1  u  we have

and p(u) is defined by (1.5) and (1.6) for u &#x3E; 0 and p(u) = 0 for u  0.

We shall prove this result in Section 3. The function A(x, y) has been in-
troduced by de Bruijn (1951b), who obtained an estimate similar to (1.28),
but only for a much smaller range. In Lemma 3.1 we shall show that,
uniformly in y &#x3E; yo(E) and 1  u  y1-f.,

Thus the estimate of Theorem 1.8 implies that of Theorem 1.1 if y is suf-
ficiently large. In fact, one can sharpen (1.30), by giving an asymptotic
expansion of the O-term in powers of 1/ log y, resulting in a corresponding
sharpening of the estimate of Theorem 1.1; see, for. example, Saias (1989).
2. The Dickman function

In this section we investigate the behavior of the Dickman function p(u)
defined by (1.5) and (1.6). Our principal result is the following asymptotic
estimate for p(u).
THEOREM 2.1. For u &#x3E; 1 we have

where y is Euler’s constant, ~ _ ~(u) is the unique positive solution to the
equation

and E(s) is defined by
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The asymptotic formula implicit in (2.1) has been first proved by de
Bruijn (1951a) using contour integration and the saddle point method.
Canfield (1982) gave a combinatorial proof of this formula, and an arith-
metic proof via the function iY(x, y) is contained in Hildebrand &#x26; Tenen-
baum (1986). The above quantitative result is due to Alladi (1982b) who
used de Bruijn’s method. It has been sharpened by Smida (1993), who
essentially replaces the factor 1 + 0(1/u) in (2.1) by a function having an
explicit asymptotic expansion in terms of (negative) powers of u and powers
of ~(u). Another type of expansion, as a convergent series of analytic func-
tions, may be derived from a general theorem of Hildebrand &#x26; Tenenbaum

(1993) on the solutions of differential-difference equations. A different, but
quite complicated expansion has recently been given by Xuan (1993). The
proof we shall give for Theorem 2.1 here is taken from Tenenbaum (1990a).
We remark that (2.1) Call be written as

a relation which is often more convenient to work with. This follows from
the identity

which can be seen on noting that

by (2.2), and

since ~(~) -~ 0 as u - 1+.
The function ~(u) is non-elementary, but it is not hard to obtain an

expansion for this function in powers of log u and 1092 u. We shall prove a
simple result of this kind.

LEMMA 2.2. For u &#x3E; 1 we have
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Proof. Let f (x) _ (ex - 1)/x = fo The function f (x) tends to 1 as
x --3 0+, and it is strictly increasing in x since

This shows that for each u &#x3E; 1 the equation f (~) _ ~c (i.e., (2.2)) has a
unique solution ~ = ~(u) &#x3E; 0. The monotonicity of f together with the
observation that we have for any sufficiently large constant c and &#x3E; 1,
writing V = log2(u + 2)/log(u + 2),

implies the estimate (2.4).
Differentiating both sides of (2.2) with respect to u gives

and hence the first equality in (2.5). The second equality follows from the
first and the estimate (2.4), provided u is sufficiently large. To complete
the proof of (2.5), it suffices to show that 1/u holds uniformly in
u &#x3E; 1. We have

and since ~’(u) = 1//~(~), we obtain 1/u  ~’(u)  4/u as required.
Substituting the estimates of the lemma into (2.1)’ we obtain the follow-

ing corollary.
COROLLARY 2.3. F’or u &#x3E; 1 we have

The estimates (2.4) and (2.6) can be refined and one can in principle
approximate ~(u) and for any given k &#x3E; 1 by an elementary
function to within an error of order 0((IogU)-k); see, for example, de
Bruijn (1951a).

Many applications require estimates for ratios of the form p(u - v)/p(u)
rather than estimates for p(u) itself. Theorem 2.1 leads to the following
result of this kind.
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COROLLARY 2.4. For u &#x3E; 2 and Ivl  u/2 we have

Moreover, for u &#x3E; 1 and 0  v  u we have

To prove this result, we apply (2.1)’ with u and with u - v, getting

for 0  v  u - 1. If, in addition, 0  v  u/2 then 1  u - v x u and
hence

Differentiating the relation f (~) = u twice with respect to u, we obtain

By Lemma 2.2 and the inequality If"(ç)1 = f(£) = u this
implies g"(u) « 1/u2. It follows that, for u &#x3E; 2 and 0  v  ~/2,

... , , , - 

, , , , ,

Together with (2.10) and (2.9) this implies (2.7) in the case 0  v  u/2,
and a similar argument gives (2.7) when -u/2  v  0.

To prove (2.8), we may assume that 0  v  u - 1, since the right-hand
side is an increasing function of v, while the left-hand side is equal to 1 for
u - 1  v  u. We can therefore a,pply the first estimate of (2.10). By
Lemma 2.2 the integral involving ~’(t) is of order W J:-v(t - u + v)/tdt »
v2/u, whereas, for 0  v  u - 1,

Thus, for a suitable constant c &#x3E; 0, the right-hand side of (2.9) is bounded
by

and (2.8) follows.
We now proceed to prove Theorem 2.1. We begin by establishing some

elementary properties of the function p(u). It is convenient here to set

p(u) = 0 for u  0, so that p is defined on the entire real line.
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LEMMA 2.5. We have

Proof. The first relation holds for 0  u  1 since by definition p(v) = 0
for v  0 and p(v) = 1 for 0  v  1. It remains valid for u &#x3E; 1 since p(u)
is a continuous function and by (1.5) the derivatives of both sides of (2.11)
are equal in this range.

Inequality (2.12) is a consequence of (2.11), (1.5), and the continuity of
p(u). For suppose (2.12) is false, and let uo = inf~u &#x3E; 0 : p(u)  0}, so
that 1  uo  oo . By the continuity of p(u) this would imply p(uo) = 0
and u 0 p(u)dv &#x3E; 0, which contradicts (2.11).

Inequality (2.13) follows from (2.12) and (1.5). I

The last inequality of the lemma is true for 0  u  1, since p(u) = 1
and r(u + 1)  1 in this range. Assuming that it holds for k  u  k + 1
for some k &#x3E; 0, we deduce by (2.11) and the monotonicity of p(u) that for
k + 1  u  k + 2, p(u)  p(u - 1)/u  1/ur(u) = + 1). Hence,
by induction, (2.14) holds for all u &#x3E; 0, and the proof of the lemma is
complete.
We next investigate the Laplace transform of p(u), defined by

By (2.14), the integral in (2.15) is uniformly convergent in any compact
region in the complex s-plane.
LEMMA 2.6. We have

where I is Euler’s constant and E(s) is defined by (2.3).
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Proof. Using (2.11) we obtain

The solution to tills differential equation is of the form

where C is a constant. To determine the value of C, we examine the
behavior of p(s) and eE( -’) as s ~ oo along the positive real axis. On the
one hand, the definition of p(s) gives limu-o+ p(u) = 1.

On the other hand, the relation

where

(cf. Abramowitz &#x26; Stegun (1964), p. 228), implies lims-+-oo eE(-s)s = e--t.
Hence C = el, and (2.16) follows.

LEMMA 2.7. Let u &#x3E; 1, ~ = ~(u), and s = -~ + ir. Then we have

and

Proof. The second estimate follows immediately from Lemma 2.6, (2.17)
and the inequality
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The first estimate is by Lemma 2.6 equivalent to the inequality

where

A change of variables gives

For irl  7r and 0  t  1 we have 1 - cos(tT) &#x3E; 2(tr)2/7r2 and thus

The integral here is

by (2.2). This gives the first inequality in (2.20).
To prove the second inequality in (2.20), we use the estimate

For bounded values of u, (2.20) holds trivially since H(r) &#x3E; 0. On the
other hand, if u, and therefore ~, are sufficiently large and x, then
the main term in the last expression is greater than or equal to

and (2.20) follows again.
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Proof of Theorem 2.1. Since p(u) is continuously differentiable for u &#x3E; 1

and by Lemma 2.5 the Laplace transform p(s) is absolutely convergent for
any s, the Laplace inversion formula is applicable and gives

for u &#x3E; 1 and any E I(8. We choose r, = - with = (u) defined by (2.2).
This choice is suggested by the saddle point method, since the point 8 = -g
is a saddle point of the integrand in (2.21), i.e., a zero of the function

We begin by showing that the main contribution to the integral in (2.21)
comes from the range Irl  b, where 6 = 7rJ2 log(u + I) /u. To this end
we divide the remaining range into the three parts b  7r, 7r  Irl 
ulog(u + 1), and Irl I &#x3E; ulog(u + 1). Using the bounds for pes) provided by
Lemma 2.7, we obtain for the contributions of these ranges the estimates

and

respectively. Since the right-hand side of (2.1) is of order by
Lemma 2.2 and since E(~) x (et - 1)/~ = u, each of these contributions
is by a factor G 1/u smaller than the right-hand side of (2.1) and thus is
absorbed by the error term in (2.1).

It remains to deal with the range I-rl  b. Using Lemma 2.6, we write
the integrand in (2.21) as

and expand the function in the exponent in a Taylor series about T = 0.
Since E’(~) _ (e£ - 1)/~ = u, we have
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From the inequality

we see that the two last terms in (2.23) are of order o(lrl3 u) and 
respectively, and hence of order 0(1) for 17-1 :5 6 = r V2 log(u + 1)/u.
Applying the estimates

to the exponentials of these terms, we can then write (2.22) as

Integrating this function over the interval -b  T  b, we obtain

since the contribution from the term to the integral is zero

for symmetry reasons. The contribution from the error term in (2.24) is
bounded by

and extending the range of integration in the main term to (-00,00) intro-
duces an error of order

Since by Lemma 2.2
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and 2~2E"(~) _ ~r2log(u + I)) ), the coefficient of
6"~’~~/~/jE~(~) in both of these error terms is of order  1ju. Hence,
these terms are absorbed by the error term in (2.1). The main term on the
right-hand side of (2.24) with the integral taken over (201300,00) equals

which by (2.25) reduces to the main term in (2.1). This completes the proof
of Theorem 2.1.

3. iY(x, y) for small u

In this section, we will prove Theorem 1.8. We begin with two lemmas
giving estimates for the approximating function A(x, y).
LEMMA 3.1. For any fixed c &#x3E; 0 and uniformly in y &#x3E; yo(c) and
1  ~  yl-E, , we have xp(u) and

Moreover, uniformly in x &#x3E; 1 and y &#x3E; 2 we have

Proof. We may assume that x is not an integer, in which case A(x, y) is
given by

where It} = t - ~t~. Using integration by parts, we obtain

where the last integral is to be interpreted as zero if 0  u  1. By (1.5)
and Corollary 2.4 we have, for 0  v  u - 1,
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By Lemma 2.2, this is « p(u)ulog(u + 1)y"(i-E/2)~(u _ v) in the range
1  u  yl-’. Hence the last integral in (3.4) is bounded by

in this range. In the same range we have

by Corollary 2.3. Inserting these estimates in (3.3) and (3.4) gives (3.1).
From (3.3) and (3.4) we also obtain A(x, y) &#x3E; x ~p(u) - y-"~, and since,

by Corollary 2.3, y-~  for y &#x3E; yo(c) and 1  u  we see

that the lower bound A(x,y) &#x3E; xp(u) holds in this range. The bound

(3.2) follows from (3.3) and (3.4) for 0  u  1, and from (3.1) and and
Corollary 2.3 for 1  u  ~. For u &#x3E; ~ we obtain (3.2) if we estimate
the last integral in (3.4) as follows, using (1.5), the monotonicity of p and
Corollary 2.3,

LEMMA 3.2. Uniformly for any E &#x3E; 0, y &#x3E; yo(c), 1  u  yl/3-E and
T &#x3E; u5, we have

where cr = 1 - ~(u)/ log y,

and is defined by (2.15).
Proof. It suffices to prove (3.5) when x is not an integer. Set

By Lemma 3.1, Ay(u) is bounded on any finite interval in (0, oo), and
satisfies y-u/3 for large u. Hence the Laplace transform
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is absolutely convergent for Re s &#x3E; - 3 (log y)~3. By the definition of
A(y" , y) and the convolution theorem for Laplace transforms we have

Setting t = Y’ and w = 1 + s/ log y, we obtain

Hence

By the Laplace inversion formula it follows that

for any u &#x3E; 1 and Q = 1- ~(u)/ log y &#x3E; 1 such that x = y’~ is not a positive
integer. To obtain (3.5) (for z g N), it therefore remains to show that the
estimate

holds for (T = 1- and T &#x3E; u5, since by Lemma 2.2 and the given
bounds on y and u,  ) if the constant Yo (f) is large enough.
By Lemma 2.7 we have for (T = 1 - ç(u)/logy and Irl &#x3E; 

and therefore

Hence the left-hand side of (3.7) is bounded by
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Since 1(8)1 « for u &#x3E; 2 and 1, the second term here is
bounded by  x(7T-1/4, and hence by the right-hand side of (3.7). Using
the approximate functional equation for the zeta function in the form

(see, for example, Corollary 11.3.5.1 in Tenenbaum (1990a)), we obtain for
the first integral the bound

with Tn = max(T, n). The last term in this expression is of order

« x~T -2~3 and hence bounded by the right-hand side of (3.7).
In the first term we apply the estimate

which is easily proved by an integration by parts, and split the range of
summation into two parts according as T.;I/4 or not. This

yields the bound

and completes the proof of (3.7).
We next prove an analogous inversion formula for the function q, ( x, y)

in terms of the generating Dirichlet series

For later use, we state the result in a somewhat more general form than is
needed here.
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with

Proof. Expanding ( s, y) into a Dirichlet series and using the relation

where

(cf. Titchmarsh and Heath-Brown (1986), p. 61) gives (3.8) with

The contribution of the terms with I &#x3E; 1/v~T- to the series in
(3.10) is bounded by « x(7((a,y)/VT, and hence by the right-hand side of
(3.9). It therefore suffices to estimate the expression

We have trivially

On the other hand, setting w(t) = (1 /27r) ( sin(t /2) /(t/2))~ and noting that
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we obtain

since by (3.11), = 0 for Ui. The required estimate now fol-
lows. The next lemma shows tha.t the function F(s, y) closely approximates
the function ((s, y).
LEMMA 3.4. For any given 6 &#x3E; 0 the estimate

holds uniformly in the range

where L, = = exp 

Proof. We first note that, in the range (3.13),

since

The sum on the right of (3.14) is essentially a prime number sum which can
be evaluated using complex integration and Vinogradov’s zero-free region
in the same way as in the analytic proof of the prime number theorem,
giving the estimate
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for the range (3.13) - cf. Tenenbaum (1990a), p. 419. From (3.14), (3.15),
Lemma 2.6, and the definition of F(s, y), it follows that

Integrating this relation over the straight line path from s to 1 (which is
contained in the range (3.13) if s is in this range), we obtain

The result now follows, since

by Lemma 2.6 and the estimate

which itself follows from a strong form of Wertens’ theorem.

Proof of Theorem 1.8. Let E &#x3E; 0 and x &#x3E; y with I  u  Le be given. We
may assume that y is sufhciently large in terms of E and that u is strictly
greater than 1. Set 

-1 1

By Lemma 2.2 we then have in the range y &#x3E; yo(c), 1  u  Le,

and T &#x3E; us. The hypotheses of Lemmas 3.2 and 3.3, and those of Lem-
ma 3.4 with s = T, a,nd c/2 in place of c, are therefore satisfied,
and we obtain 

’A3
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with

To prove the desired estimate (1.28), it thus remains to show that each of
the terms Ri satisfies

Since by Theorem 2.1, Lemma 2.2, and Lemma 3.1,

(3.16) is equivalent to

To prove (3.17), we first observe that

Since T1/4 = » L, and 1  x3/4 « the term .R1 and the,E/2 -

first term in the definition of R2 satisfy the bound in (3.17). Moreover, by
Lemma 3.4, Lemma 2.6, and the definition of (1 and T we have

which implies (3.17) for the second term in the definition of R2 in view of
the bound
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Since I(u+ir, y) I  (u, y), the same estimates show that the contributions
to R2 and R3 arising from the range u 5 of the integrals in these terms
also satisfy (3.17). The remaining pa,rts of R2 and R3 are bounded by

respectively, where

To estimate the quantity M, we note that, by Lemmas 3.4 and 2.6, we
have in the T

The definition of Q and T implies that (1 - 0’) » (10gT)-2/3-11 with a
suitable 17 = 77(c) &#x3E; 0. By standard bounds for the zeta function in Vino-
gradov’s zero-free region we therefore have log(T+1) log y
for 1  IT I  T. It follows that (log y)2. This implies the bound
(3.17) for R’. By (3.18) the same bound holds for R’ if u &#x3E; 3log LE. For
1  ~  3logL, we have

so that (3.17) holds in this case as well. This completes the proof of Theo-
rem 1.8.

4. w(x, y) for large u

In this section we will prove Theorem 1.6 for the range u &#x3E; (log y)4.
In the complementary range u  (log y)4, the result can be deduced from
Theorem 1.8, but the argument is somewhat technical and we shall not
present it here. Given x &#x3E; y &#x3E; 2, we let a = a(x, y) be defined as in the
theorem, we write as usual u = log x/ log y and set
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LEMMA 4.1. We have

where the expression on the left of (4.3) is to be interpreted as 1 if a = 1.

Proof. By the definition of a we have

For u &#x3E; y/ log y this implies 0  I / log y, so that pl - 1 ~ a log p for
p  y. The two middle terms in (4.4) are therefore of the same order of
magnitude in the range u &#x3E; y/ log y. This proves (4.1).

The lower bound in (4.2) follows from the fact that a = y) is a non-
increasing function of u and by (4.1) satisfies a » 1/log y for u = y/log y.
The upper bound follows from the inequality

which is valid for all y &#x3E; 2 and u &#x3E; 1 with a sufficiently large constant c.
It remains to prove (4.3). For u &#x3E; y/ log y, the right-hand side of (4.3)

equals y/ log y, and by (4.1) the left-hand side is of the same order of
magnitude. Thus (4.3) holds in this case. To deal with the remaining
range 1  u  y/ log y, we use the estimate

which follows by partial summation and Chebyshev’s prime number bounds.
In the range 1  u  y/ log y, we have a » 1/ log y by (4.2), and it is easily
checked that in this case
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Hence (4.3) remains valid for 1  u  y/ log y. We remark that the above
arguments can be refined to show that the estimate

holds uniformly y &#x3E; 2; see Theorem 2 of Hildebrand &#x26; Tenenbaum

(1986).
The next lemma gives estimates for the functions y) defined in

Theorem 1.6.

LEMMA 4.2. For any fixed positive integer k and x &#x3E; y &#x3E; 2 we have

Proof. Setting f (t) = 1/(et - 1), we have

Since for any integer £  0 and real t &#x3E; 0,

it follows that (-1)k~k(a, y) is positive and satisfies

Using partial summation, the prime number theorem, and the bounds
0  a  1 + from Lemma 4.1, it is straightforward to replace
the sum over p by an integral, so that

If u &#x3E; y/ log y, then a « 1/ log y by Lemma 4.1, and therefore t’ x 1
and 1 - t-’ x a log t for 1  t  y. The right-hand side of (4.8) then
becomes
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by another application of Lemma 4.1, and (4.6) follows for the range
u &#x3E; y/ log y. In the remaining range 1  ~  y/ log y we have a y 1/ log y
and therefore 

- ,

for q§  t  y. Using the bound a  1 + 0(1/ log y) from Lemma 4.1, it
is easily seen that we may replace the range of integration in (4.8) by the
interval ~~, y] without changing the order of magnitude of the right-hand
side of (4.8). We thus obtain

i

using the last part of Lemma 4.1. This proves (4.6) for 1  u  y/ log y.
LEMMA 4.3. For any fixed c &#x3E; 0 and uniformly for y &#x3E; 2 and u &#x3E; (log y)4,
we have 

’

(4.9) .

where TE(y) = exp and c is a positive constant.

Proof. A simple computation gives

with

Thus, to prove (4.9) it suffices to show that in the ranges lr 1  1/log y and
I/log y  Irl 1  TE(y) we have, respectively,
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Suppose first that Using the elementary inequality
1 - 4x2 1), we obtain

If (and then we have

for p  y, and hence

which proves (4.10) in this case. In the remaining case a  ITI  1/ log y,
we have pcx x 1 and

for p  y, which again implies (4.10).
Assume now tha,t 1 / log y TE(y). For bounded values of y, (4.11)

holds trivially, and we may therefore suppose that y is sufficiently large in
terms of c. Our starting point is the estimate
(4.12)
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A routine argument using complex integration and Vinogradov’s zero
free region yields that

holds uniformly in y &#x3E; yo(e), 0  Q  1 and for any fixed
constant A &#x3E; 0. If follows that

(4.13)

where

Now note that q &#x3E; for IT-1 &#x3E; 1/ log y and, by Lemma 4.1 and our
assumption u &#x3E; (log y~4, 1 - a » 1/ log y and

Hence the right-hand side of (4.13) is bounded by » log3 y for sufficiently
large y, and (4.11) follows.

Proof of Theorerrc 1.6. Let x &#x3E; y &#x3E; 2 be given, and suppose that
u = log x/ log y &#x3E; (log y)4. By Lemmas 4.1 and 4.2, we have

Hence, if

denotes the main term in the estimate of Theorem 1.6, then
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We now apply Lemma 3.3 with (1 = a and T = exp {(log y)5~4 }, getting

with

Using the trivial bound ~~’(a + ((a, y) for 1/ log y and the
estimate of Lemma 4.3 with 6 = 1/4 for I  T, we see that the
expression in parentheses is bounded by

In view of (4.14), this shows that the contribution of the second term on the
right of (4.16) is of order G M/y « M/u. The same bound holds for the
first term since ~’(a, y) &#x3E; 1 and, by Lemma 4.2 and the bound u &#x3E; (log y~4,

Furthermore, another application of Lemma 4.3 shows that the contribution
of the range T to the integral in (4.15) is also of order
K Thus we have

and it remains to estimate the last integral. Let 6 = 112/3/(ulogy). Apply-
ing Lemma 4.3, we see that the contribution of the range 6 I / log y
to the integral in (4.17) is bounded by
(4.18)

The first of the two integrals here is of order
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Since, by Lemma 4.2,

the contribution of this integral to (4.18) is of order « 
for some constant CI &#x3E; 0 and hence acceptable as error term. The second
integral in (4.18) is at most

with a suitable constant c2 &#x3E; 0. Since

by Lemma 4.1, this integral is of order « e-Vy- and the corresponding term
is again negligible.

In the remaining range ~T~ I  b, we expand the logarithm of the integrand
in (4.17) into a Taylor series about T = 0. Since by Lemma 4.1

we have in this range

Setting ak = Ok (a, y) and using the relation al = - log x and the estimates

from Lemmas 4.1 and 4.2, we can write the integrand in (4.17) for lrl  6
as
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Integrating this expression over the interval (2013~, b), we obtain as main term

since The integrals involving the linear and cubic terms in T
vanish, and the contribution of the error terms to the integral is by a factor
« 1/u smaller than the main term. Thus we have

which completes the proof of Theorem 1.6.

5. Distribution in short intervals

The results discussed in the preceding sections give a fairly complete
picture of the global distribution of integers without large prime factors. As
one might expect, the local distribution of such integers, i.e. the distribution
of integers free of prime factors &#x3E; y in an interval of the form (x, x + z],
is much less understood, and non-trivial results are known only for very
limited ranges of the parameters x, y, and z. In this section, we shall
survey the principal results, outline some of the methods of proof, and give
a complete proof of one such result. As in the preceding sections we set,
for gi ven x and y, u = log x / log y.
We first consider the case when the parameter u is small. The Dickman-

de Bruijn relation xp(u) suggests that in this case a relation of
the form + z, y) - zp(u) should hold, at least when z is not
too small. Such a result is given in the following theorem.

THEOREM 5.1. For any fixed c &#x3E; 0, uniformly in the range

and for xy-5/12  z  x, we have
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This result is proved in Hildebrand (1986a), using the same method as
for the proof of Theorem 1.1. Note that the range (5.1) coincides with
the range (1.10) of Theorem 1.1, which is the largest range in which the
asymptotic relation BII(x,y) ro..J xp(u) is known to hold. The exponent 5/12
in the lower bound z &#x3E; stems from an application of the sharpest
known form of the prime number theorem for short intervals. Recent work
of Granville (1993b) indicates that, by using "almost all" type estimates for
primes and almost-primes in short intervals, this exponent can be increased,
possibly to 1 - E.

Since the global asymptotic relation xp(u) is not known to
hold beyond the range (5.1), an improvement of this range in Theorem 5.1
does not seem to be possible at present. However, one can obtain non-trivial
results for large u if, instead of trying to approximate T(x + z, y) - T(x, y)
by a smooth function, one seeks an estimate for this quantity in terms of

The following theorem, due to Hildebrand &#x26; Tenenbaum (1986),
gives such an estimate.

THEOREM 5.2. For any fixed c &#x3E; 0 and uniformly for x &#x3E; y &#x3E; 2 and
1zx we have

I I

where a = a(x, y) is defined as in Theorem 1.6, and

with a suitable positive constant c.

Using the estimate (1.26) for a(x, y), it is easy to see that the second
error term in (5.3) is absorbed by the first error term if

(log y)3/2  u  exp {(log y)3/2-E } and z &#x3E; x exp { - (log y)3/2-E}.
In this range, (5.3) gives an asymptotic formula for T(x + z, y) - y),
if y and xlz tend to infinity.

The proof of Theorem 5.2 is very similar to that of Theorem 1.6 given in
the preceding section. One writes the left-hand side of (5.3) as a complex
integral over the function ( s, y)((x + Z)8 - where C(s, y) is defined as
in Theorem 1.6, and evaluates the integral using the saddle point method in
the same way as in the proof of Theorem 1.6. This leads to an asymptotic
estimate with main term which by Theorem
1.6 is equal to the main term on the right-hand side of (5.3), apart from a
negligible error term.
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The above theorems give very precise estimates for the quantity
y)- ’l1(x, y), but only when z is relatively close to x. The range for z

can be increased, if one is only interested in obtaining upper or lower bounds
of the expected order of magnitude. Upper bounds for + z, y) - ’l1 ( x, y)
were given by Wolke (1971) and Hildebrand (1985a). The more difficult
problem of obtaining non-trivial lower bounds was considered by Turk
(1982), Friedlander (1985), and Friedlander &#x26; Lagarias (1987). In the
last-mentioned paper the following result is proved.

THEOREM 5.3. There exists a positive constant c such that, for any fixed
a E (0,1) and Q &#x3E; 1 - a - ca(l - a) and for all sufficiently large x,

Note that Theorem 5.1 yields (5.4) only for the smaller range (3 &#x3E; 1-152 Ct.
Even with the exponent 12 replaced by 1- f (cf. the remarks following the
statement of the theorem), this result would not be sufficient to imply
Theorem 5.3.

The proof of Theorem 5.3 is based on the identity

together with an analysis of the expression on the right-hand side using
Fourier techniques and estimates for exponential sums over primes. As-

suming that + z, y) - is small compared to z, it can be shown
that the contribution of the primes p  y to the right-hand side of the
identity must be smaller than expected, which under the hypotheses of the
theorem leads to a contradiction.

Friedlander &#x26; Lagarias also showed, by a different argument, that for
any integer r &#x3E; 2 and any fixed real number 0 &#x3E; 1 - (2/r) + ( 1 /r2’~~ ~ ) , the
inequality + x,13, xl/T) - W(x, &#x3E; 0 holds for all sufficiently large x.
Thus, for example, for any c &#x3E; 0 and x &#x3E; zo (e) the interval (x, x + xl/4+~] ]
contains an integer free of prime factors exceeding y’X. For intervals of

length &#x3E; xl/2+~, Balog (1987) obtained the following stronger result.

THEOREM 5.4. For any fixed c &#x3E; 0 and all real x &#x3E; XO ( f), the interval

(x, x + contains an integer free of prime factors exceeding xE.
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To prove this result, Balog considers the weighted sum

where an - 1 if N  n  2N and n has no prime factors &#x3E; x’, and
an = 0 otherwise, with N = xl/2-r¡ for a sufficiently small 17 = q(e). Using
analytic methods, this sum can be asymptotically evaluated and shown to
be positive. If 77 is sufficiently small then a positive contribution from a
term to this sum implies that has no prime factors &#x3E; x’, and
this yields the desired conclusion. Very recently, Harman (1991) obtained
a quantitative refinement of this result, showing that the bound xE on the
size of the prime factors can be replaced by 

The results mentioned so far require that either the interval length z or
the bound y on the size of the prime factors is at least as large as a fixed
power of x. If one only asks for estimates that hold for "almost all" x, then
the ranges for y and z can be substantially improved. The first result in
this direction is due to Friedlander (1984a) who proved that for any E &#x3E; 0,
any function z = z(X) tending to infinity with X, and all x E ~1, X~ with
the exception of a set of measure o(X ) the interval (x, x + z] contains an
integer n with P(n)  n1~2+E. Friedlander &#x26; Lagarias (1987) later proved
the following results.

THEOREM 5.5. For any fixed c &#x3E; 0, 0  ~3  a  1, and for all sufficiently
large X, the estimate 

.

holds for all x E [1, X] with tlae exception of a set of measure bounded by
«..e,a,{3 X exp { - 
THEOREM 5.6. For any fixed c &#x3E; 0, for all sufficiently large X, and for y
and z satisfying

the estimate

holds for all x E ~1, X~ with the exception of a set of measure bounded by
&#x3E;&#x3E;
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The range (5.6) is a consequence of Vinogradov’s zero-free region for
the zeta function and can be extended if one assumes a larger zero-free
region. A result of this type has recently been given by Hafner (1993). In
particular, Hafner shows that under the Riemann Hypothesis the conclusion
of Theorem 5.6 holds for L(X )  y  x and L(X )  z  X, where
L(x) = 

Results of this type are of interest since the running times of certain
factoring algorithms depend on the distribution of integers without large
prime factors in short intervals. In particular, the elliptic curve factoring
method (ECM) of Lenstra (1987) factors a large integer N in expected time
~ exp {(1 + N I under the assumption that the estimate

holds when z x fl and logy x 009 X 1092 x, as x -&#x3E; oo. While we are
still very far from being able to prove such a result (or even showing that

+ z, y) - y) is positive under the same conditions), Pomerance
(1987) showed that the above "almost all" type results can be used in
Lenstra’s analysis to obtain rigorous, though weaker, bounds for the ex-
pected running time of ECM. Specifically, Theorem 5.5 leads to an uncon-
ditional bound of the form 0(exp and Theorem 5.6 gives
on the Riemann Hypothesis the bound 0 ( exp( ...¡ clog N 1092 N)) for some
constant c.

While the results of Friedlander &#x26; Lagarias and of Hafner give only lower
bounds for ’l1 (x + z, y) - of the expected order of magnitude, their
method is in fact capable of yielding an asymptotic estimate of the same
quality as that of Theorem 5.1. We conclude this section by proving a result
of this type which refines Theorem 5.6, except for a slightly weaker bound
on the measure of the exceptional set. Theorem 5.5 can also be sharpened
to an asymptotic formula, but this would require a somewhat different
approach which gives only rather poor estimates for the exceptional set.

THEOREM 5.7. For any fixed E &#x3E; 0, for all sufficiently large X, and for
y, z satisfying (5.6), the estimate (5.2), i.e.

holds for all x E (1, X~ with the exception of a set of measure bounded by
GCE Xexp 
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As in Hafner’s result, the range (5.6) can be extended if one assumes a
larger zero-free region for the zeta function. Moreover, the estimate (5.2)
can be sharpened to

if one assumes, in addition, that 0  E  2 and z  X exp { - (log 
and relaxes the bound on the measure of the exceptional set to a quantity

The main step in the proof of the above theorems is contained in the
following lemma, which is a slight generalization of similar results in Fried-
lander &#x26; Lagarias (1987) and Hafner (1993).
LEMMA 5.8. Let c &#x3E; 0 be fixed. Let X &#x3E; 2, 1  X, and let a(m)
(M  m  2M) be complex numbers with 1. Set

Then we have

where A(s) _ 
Proof. We may assume that X is sufficiently large in terms of c, for oth-
erwise the result holds trivially. The generating Dirichlet series for w(n) is
given by 

..

where A(s) is defined as in the lemma and

Since log n, we have, by a standard application of
Perron’s formula (cf. Lemma 3.19 in Titchmarsh (1986)), for any non-
integral value of x E X, 2X,
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where = 1 + 1/jC and

We put q = 1 - (log X)-2/1-’ and shift the path of integration to the line
Re s = q. If X is sufficiently large in terms of c, then Vinogradov’s zero-free
region for the zeta function implies that the integrand in (5.9) is analytic
in the rectangle with vertices q + iM, with the exception of a pole
at s = 1 with residue = Moreover, on the horizontal
segments [q f iM, rc f iM] we have the bounds

and hence

By Cauchy’s theorem it follows that, for any non-integral x E ~X, 2X ~,

where

From (5.10) we deduce

The last term here is bounded by the right-hand side of (5.8), so it suffices
to estimate the first term. We have I(x) = with

Hence
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by Plancherel’s theorem. Using the elementary estimate k(q + it) « 1/V
together with the bound

which follows from the definition and Vinogradov’s zero-free region 
I

(see, e.g., Titchmarsh (1986), p. 135) and implies in turn

we obtain

By a classical mean value theorem (cf. Theorem 6.1 in Montgomery (1971))
the last integral is

It follows that

This completes the proof of (5.8), since 2q - 2 = -2£-2/3-e.

Proof of Theorem 5.7. We begin by reducing the assertion of the theorem
to a form that will be more convenient to prove. We may assume that X
is sufficiently large in terms of c, for otherwise the assertion holds trivially.
Given c &#x3E; 0 and X &#x3E; Xo(c), set

By splitting up the interval [1,X] into intervals of the type IX, (1 + b)x], we
see that it suffices to prove that (5.2) holds for all x in [X, (1 + 6)X] with
the exception of a set of measure « Since, for x E (X, (1 + 6)X],
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this will follow, if the estimate

holds for V = X/z and V = (1 + b)X/z, for almost all x E ~X, (1 + b)XI,
with the same bound on the measure of the exceptional set. Theorem 5.1
shows that this is the case if either y &#x3E; X3~4 or 1  V  In view

of the conditions (5.6) on z and y, we may therefore restrict ourselves to
considering the range

Next, set U = By (5.13) and Corollary 2.3 we £1/6-e
and

Moreover, if x E (X, (1+6)X~, then x = ~1-~O(b)~X and u = logx~logy =
(1 + O(6)~ U = U + O(1/,C2), so that by Corollary 2.4,

Thus, x and u may be replaced by X and U in (5.12) without introducing
a,dditional error terms.

Having made these reductions, we now relate the quantity on the left of
(5.12) to the sums S(x). Set r = + 6)], define

and set

If X is sufficiently la.rge, then these definitions together with (5.13) imply
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Now note that any integer ?1 &#x3E; 2 ca.n be written uniquely in the form mp
with p &#x3E; 2 and P(m)  p. If 71 is counted in the expression on the left-hand
side of (5.12), then we have 2  p  y in this representation and

by (5.13) and our assumptions that V &#x3E; 1/6 a,nd -X is sufficiently large.
Hence X/y  so that by (5.15) each m falls into one of the disjoint
intervals ,(1 + (  i  r). Moreover, if m E M2,(1 + 6)Mi]
then we have P~  p~  Pt with P2~ defined as a.bove. Replacing for
such m the condition P(m)  p by the stronger (resp. weaker) condition

Py (resp. P~), we then obtain the inequalities

Setting

and defining the associated functions and as in Lemma

5.8, we deduce that

We now apply the lemma with c replaced by c/2 and At _ Afj to each of
the functions 0  i  r. Since P~ ~ Pi = and, by (1.4),
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the expression on the right of (5.8) is bounded by

TT A4 ! -- 1 ~ I T I /1 N

with

By (5.13) we have Vy/X ~ Ao, so that 
Moreover, since

we also have Ri  £Óe/4. Hence the right-hand side of (5.8) is bounded
by

where we have used (5.14) in the last estimate. It follows that for any fixed
choice of (i, f), the set of those values E [X, (1 + 6)X] for which the
inequality

fails, has measure

Since r « = ,C4, the set of such values for which (5.18) fails for some
choice of (i, ±), has measure « ~E/2X. To complete the
proof of the theorem, it now suffices to show that (5.12) holds (with x and
u replaced by X and U on the right-hand side) for any x E [X, (1 + 
for which (5.18) is satisfied for all choices of (i, f). By (5.16)-(5.18) and
the bound r K £4 , this will follow if we can show that
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To prove (5.19), we first note that

where

To estimate the quantities we define TI by

and consider separately the ranges 0  i  ri and TI  i  r. In the second

range a trivial estimate using (1.4) gives

The contribution of these terms to the sum in (5.19) is therefore C 
p(U)/,C and thus negligible. In the remaining range 0  i  ri, we have

log Pi:i: » JZ, and applying Theorem 5.1 in the case P=~  Mi and the
trivial estimate 

-

together with the bound Mi &#x3E; X/y &#x3E; X1~4 (see (5.15)) otherwise, we
obtain in either case

where

Since P~ _ (1 + 0(~))P, and log Mi in the range
under consideration, we have
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and therefore

By Corollary 2.4, it follows that

The contribution of the terms i :5 TI to the left-hand side of (5.19) therefore
becomes

and it remains to show that this expression is equal to the right-hand side
of (5.19).
We first note that u(t) is monotonically increasing for 0  t  (log y)lb

and that, by the definition of rl,

It follows that

and, by Corollary 2.3,

Moreover, since for 0  t  T1 + 1

we have, by another application of Corollary 2.4,

whence
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Thus the sum in (5.21) is, apart from a factor 1 + O(1/G), equal to the
integral

The change of variables v = u(t), dv = u’(t)dt = (v2b/.C)dt (see (5.23))
shows that this integral is equal to

where Ul = u(rl + 1). Since p(v - 1)/v = -p’(v~, the main term in the last
integral equals

by (5.22) and (5.14), and the error term is bounded by

- .......

Splitting the range in the last integral into the parts U  v  2U and
2U  v  U1, estimating the contribution of the first part by

and that of the second part using the bounds of Corollary 2.4 for p(v - 1),
it is easily seen that the contribution of the error term is by a factor
log(U + smaller than the main term. Combining these estimates
gives (5.19) and thus completes the proof of Theorem 5.7.

6. Distribution in arithmetic progressions
A natural problem is to investigate the distribution of integers without

large prime factors in various arithmetically interesting sequences. The sim-
plest example for such a sequence is an arithmetic progression. In analogy
to the function IQ (x, y) one defines, for positive integers a and q, y; a, q)
as the number of positive integers  x, free of prime factors &#x3E; y, and satisfy-
ing n - a mod q. Since Q(x, y; a, q) = w(x/d, y; ajd, q/d) for any common
divisor d of a and q with P(d)  y and = 0 if P ~(a, q)~ &#x3E; y, it
suffices to consider the case when a and q are coprime. The goal then is to
show that numbers without large prime factors are uniformly distributed
over the O(q) residue classes a mod q, (a, q) = 1, in as large a range for the

, parameters x, y, and q, as possible.



461

The first result of this type is due to Buchstab (1949) who showed that
for fixed ~c = log x/ log y and fixed positive integers q and a, (a, q) = 1, one
has

r - . - "

Ramaswami (1951) gave a uniform estimate which shows that the asymp-
totic relation in (6.1) remains valid in the range u K (1092 x)1-E, al-

though his proof was incomplete; for a rigorous proof and discussion of
Ramaswami’s result see Norton (1971). A substantial improvement over
these results is contained in the work of Levin &#x26; Fainleib (1967). However,
as had been pointed out by Norton (1971) and others, the argument of
Levin &#x26; Fainleib lacks in clarity and is marred by numerous inaccuracies
and misprints. Their principal result, as quoted in Norton (1971), states
that for any fixed positive integer k and positive real numbers c and A, and
uniformly in the range

the estimate

holds, where ai(q) is the ith Taylor coefficient at the origin of the func-
tion 8(8 + 1)(s + l)-l Hplq (1 - P-3-1)’ Friedlander (1984b) considered
the problem of bounding from below for most residue classes
a mod q and a given modulus q. He showed in particular that T (x, y; a, q)
is positive for all but o(q) residue classes a mod q, provided q = o(x) and
q  Y2 -,E.

Significant progress on the problem of estimating T(x, y; a, q) has been
made very recently by Fouvry &#x26; Tenenbaum (1991) and Granville (1993a,
1993b), and we shall devote most of the remainder of this section to a
survey of this important work.
We begin with a result of Fouvry &#x26; Tenenbaum (1991) which represents

an analogue of Saias’ estimate for w(x, y) (Theorem 1.8). Let
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THEOREM 6.1. Let A be a fixed positive number. Then, with a suitable
constant c = c(A) &#x3E; 0, the estimate

holds uniformly in the range

Fouvry &#x26; Tenenbaum have also given an estimate similar to (6.4), but
with a weaker error term, for the range q  exp (cy’log y) .

The function Aq(x, y) generalizes the function A(x, y) defined in (1.29).
It can be shown that, for any fixed integer k &#x3E; 0 and real c &#x3E; 0, and
uniformly in x &#x3E; 2, (log x)2  y  x, q &#x3E; 1 and u &#x3E; k + c the estimate

holds; see Fouvry &#x26; Tenenbaum (1991). When combined with (6.6), the
estimate (6.4) sharpens the Levin-Fainleib estimate (6.3), while at the same
time the range (6.5) is considerably larger than the range (6.2) of Levin &#x26;
Fainleib.

To prove (6.4), Fouvry &#x26; Tenenbaum first establish, in the range (6.5),
the estimate

and then show that in the range

(which contains (6.5) for large x) one has
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The proof of (6.7) depends on bounds for the character sums

which are obtained by analytic techniques similar to those used in the proof
of the Siegel-Walfisz theorem for primes in arithmetic progressions.

The estimation of the function is an interesting and non-trivial
problem by itself, especially if one is interested in estimates that are uniform
with respect to q. For other results on this subject, see Norton (1971) and
Hazlewood (1975b), who obtained uniform estimates for in terms

of p(u), with error terms depending on the number of prime factors of q.
Tenenbaum (1993) gave an optimal range of validity and a sharp error term
for the approximation of qiq(x,y) by The estimate (6.8)
is proved using the identity

and estimating the terms on the right-hand side by means of Theorem 1.8
and Corollary 1.7. The same identity was also at the basis of the work of
Norton referred to above. An alternative approach to such estimates is to
mimic the proofs of the corresponding estimates for y).

Granville (1993a, 1993b) used a completely different, elementary method
to obtain estimates for T(x, y; a, q) which are valid for q as large as a fixed
power of y, though in general do not give as good an error term as (6.4).
The method is an extension of the argument used in Hildebrand (1986a) to
prove Theorem 1.1. It is based on the identities

which are valid uniformly in x &#x3E; 1, y &#x3E; 2, and positive integers a and q, and
where, in (6.9), a/pm denotes division in the multiplicative group (Z /qZ)* .
These identities generalize the identity (1.11) for y) and can be proved
in the same way. By using (6.9) and (6.10) iteratively, Granville (1993a)
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showed that, if the ratio y; a, y) is close to 1 in an initial
range for x of the form yA  x  yB with some constants A and B, then
it remains close to 1 for y. The proof of an asymptotic estimate
valid for all x &#x3E; y is thus reduced to the proof of the same estimate in
a small initial range. Starting from a trivial estimate in the initial range,
Granville (1993a) proved in this way that, for any fixed positive number A
and uniformly for x &#x3E; y &#x3E; 2, q  min(x,yA), and (a, q) = 1 the estimate

holds. By a more delicate argument, which is also based on the identities
(6.9) and (6.10), Granville (1993b) gave the following stronger result.
THEOREM 6.2. For any fixed c &#x3E; 0 and uniformly 2,
1  q  yl-e, and (a, q) = 1, we have

where c is a positive constant.

Granville also shows that the factor u-c in the error term can be re-

placed by e-UC if there are no exceptional characters modulo q, and he
remarks that in the range (6.5) the error term may be further reduced to
e-cu+) + c0 + 

Theorem 6.2 implies the lower bound

provided q is less than a sufficiently small power of y, while (6.11) shows that
the corresponding upper bound holds whenever q does not exceed x and is
bounded by a fixed, but arbitrarily large power of y. Previously, Friedlander
(1973b) had obtained a non-trivial lower bound for q  y«-1~~~+E, and
in a later paper (1981) gave the upper bound

for the range 1  ~  q  x 1 / 2 y - 5 / 2 . More recently, Ba-
log &#x26; Pomerance (1992) have obtained non-trivial bounds which allow
the modulus q to be as large as y4/3-f.. . In particular, they showed that
W(x, y; a, q) has order of magnitude x/q when y is a fixed power of x and
q C ~n(y4/3-E ~ (~/y)4/3-E), For large u, their bounds become weaker,
but, by using the iteration method sketched above, Granville (1993a) was
able to extend the estimates of Balog &#x26; Pomerance to the full range x &#x3E; y
without any loss in precision. The resulting estimate is as follows.
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THEOREM 6.3. For any fixed E &#x3E; 0 and uniformly in the range

we have

The admissible ra,nge for the modulus q can be further extended, if
one asks only for estimates that hold for "almost all" moduli q as in the
Bombieri-Vinogradov theorem. Fouvry &#x26; Tenenbaum (1991) proved the
following result of this type.
THEOREM 6.4. Let A be a given positive number. There exists a constant
B = B(A) such that uniformly for x &#x3E; y &#x3E; 2 and Q = we

have

The proof of this result is based on an idea of Motohashi (1976) according
to which a Bombieri-Vinogradov type theorem holds for any arithmetic
function which can be represented as a convolution a * /3, where a and
{3 are arithmetic functions supported on intervals of the form (M/2, M]
and (N /2, N] with MN = x and satisfying some mild hypotheses. The
theorem is obtained from this via an approximate identity which expresses
the characteristic function of integers  x free of prime factors &#x3E; y as a
linear combination of such convolutions.

The estimate (6.15) is non-trivial only for relatively small values of u.
However, by using this estimate as the initial step of an iteration argument,
Granville (1993a) showed that it can be extended to all x &#x3E; y at the cost
of decreasing the value of Q, and obtained the following result.

THEOREM 6.5. Let A be a fixed positive number. Then there exist positive
constants B = B(A) and C = C(A) such that uniformly in the range

we have
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7. Other results

The problems described in the previous sections - the global distribution
of integers without large prime factors, the distribution in short intervals,
and the distribution in arithmetic progressions - are the most natural prob-
lems in this subject and therefore have received the greatest attention in
the literature. In this section we survey other results on the distribution of

integers without large prime factors, discuss various generalizations of these
problems and applications of the results, and we give references to related
work in the literature. Norton’s memoir (1971) contains a comprehensive
survey and bibliography of results obtained before 1970. The bibliography
at the end of the paper is intended to complement that of Norton and con-
tains every paper written on the subject since Norton’s memoir that we
are aware of. For a similarly comprehensive bibliography see Moree’s thesis
(1993).
Local distribution of integers composed of small prime factors. Let y ~ 2
be fixed, and let 1 = n1  n2  ... denote the sequence of positive integers
free of prime factors &#x3E; y. The asymptotic behavior of log ni, as i --~ 00,
can easily be derived from Ennola’s theorem (Theorem 1.5). However this
result gives no information on the local behavior of the sequence 
and more specifically the size of the differences between consecutive terms.
This problem has been studied by Tijdeman (1973, 1974) who showed, us-
ing methods from transcendence theory, that there exist positive constants
ci .~ and C2 = c2 (y) such that for all i &#x3E; 1,

In another direction, a number of authors have obtained upper bounds for
the maximal length of a string of consecutive integers &#x3E; y belonging to
the sequence f nil, i.e., the maximal gap f(y) in the sequence of positive
integers having a prime factor &#x3E; y. The first result of this type is due
to Erd6s (1955) who proved that f (y) « y/ log y. This estimate has sub-
sequently been improved by Ramachandra (1969, 1970, 1971), Tijdeman
(1972), Ramachandra &#x26; Shorey (1973), Shorey (1973), and Jutila (1974),
the strongest result being Shorey’s bound ylog3 y/(log y log2 y).
Some of these results have been obtained using an elementary method of
Halberstam &#x26; Roth (1951) for bounding gaps between consecutive k-free
numbers, while others rely on deep estimates for linear forms in logarithms
obtained by Baker’s method. The above results may also be phrased in
terms of the function P(n, k) = + i) : 0  i  k - 1}; for
example, Shorey’s bound for f(y) is essentially equivalent to the bound
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P(n, k) » for n &#x3E; ~;3~~ . A stronger bound for large
n was given by Langevin (1975) who showed that for any E &#x3E; 0, all suffi-
ciently large k and n &#x3E; one has P ( n, ~ ) &#x3E; ( 1 - Turk

(1980) gave similar results for the greatest prime factor of values of polyno-
mials at consecutive integers. For other results on P(n, k) see, for example,
Eggleton &#x26; Selfridge (1976).
Distribution in special sequences. The study of the distribution of integers
without large prime factors in various "natural" arithmetical sequences
is an interesting and difficult problem. The distribution in short intervals
and in arithmetic progressions has been discussed in the preceding sections.
Other sequences of interest which have been investigated in the literature
are polynomial sequences and sequences of "shifted primes".

The case of polynomial sequences ha,s been studied by Hmyrova (1964,
1966), Wolke (1971), and Timofeev (1977), who gave upper bounds for the
function w(f;x,y) = ~~n  x : P( f (n))  y~, where f is a polynomial
mapping the positive integers into themselves. (As observed by Friedlander,
the proof of the main result in Wolke (1971) is defective, and the result as
stated therefore remains unproven.) The problem of obtaining lower bounds
for seems to be much more difficult, and non-trivial results are
known only for linear polynomials in which case the problem reduces to
that of the distribution in arithmetic progressions.

Another interesting question related to the distribution of integers with-
out large prime factors in polynomial sequences is the estimation of

where F is an irreducible polynomial wit,h integer coefficients a,nd degree
g &#x3E; 1. Equivalently, Px is the smallest y such that .- [x]. The
standard conjectures in prime number theory imply that F(n) is prime for
at least one n E (x/2, x], and therefore xg, if x is sufficiently large.
Improving on a result of Nagell (1921), Erd8s (1952) showed that

for some positive constant co(F). Using estimates for Kloosterman sums,
Hooley (1967) and Deshouillers &#x26; Iwaniec (1982) improved tlus bound in
the case of a quadratic polynomial F to with p = 1- and
p = 0 ~ 202, respectively. However their method does not seem to be appli-
cable to higher degree polynomials; see Hooley (1978). For general poly-
nomials, Erd6s’ bound has been improved only recently, first by Erd6s &#x26;
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Schinzel (1990), and subsequently by Tenenbaum (1990c), who showed that
one has for any fixed a  2 - log 4 = 0 .61370 ...

The distribution of integers without large prime factors among integers
of the form p - 1 (and more generally p + a) is of interest because of its
connection to the distribution of values of the Euler Phi function. An

argument of Erd6s (1935) shows that if c &#x3E; 0 is such that P(p - 1)  p’
holds for a positive proportion of all primes, then for infinitely many n the
equation 0(m) = n has ~E solutions m. Erd6s proved that there
exists a constant c  1 for which tlus holds, and Pomerance (1980) showed
that one may take c = 0~44 .... Balog (1984) proved that P(p - 1)  
holds for infinitely many primes p. The exponent 0.35 was subsequently
improved by Fouvry &#x26; Grupp (1986) to 0.317 ... , and later by Friedlander
(1989) to = 0~303 ... , which represents the current record. In both
cases the corresponding bound was shown to hold for a positive proportion
of all primes. Alford, Granville, &#x26; Pomerance (1993) have applied the last
result in their recent proof of the infinitude of Carmichael numbers and
also showed that further improvements in the exponent can be obtained if
one assumes certain conjectures on the distribution of prime numbers in
arithmetic progressions.

Additive problems involving integers without large prime factors. In analogy
to the twin prime and Goldbach problems one can ask whether there are
infinitely many pairs (and, more generally, k-tuples ) of consecutive integers
without large prime factors, and whether every sufficiently large integer is
a sum of two such integers. Specifically, we consider positive integers n
satisfying for some a (possibly depending on n), and the goal
is to prove such results with a as small as possible.

In contrast to the situation in the case of primes, the first of these prob-
lems turns out to be easier than the second. In fact, it follows a general
result of Hildebrand (1985b) asserting the existence of pairs of consecutive
integers in certain sets that for every c &#x3E; 0 there exist infinitely many pairs
(n, n + 1) of consecutive integers having no prime factors &#x3E; n’. Balog,
Erd6s, &#x26; Tenenbaum (1990), using an argument of Heath-Brown (1987),
gave a quantitative version of this result which shows that the exponent
may be taken as e(n) = C’093 n/ log2 n with a suitable constant c.

Comparable results for k-tuples of integers without large prime factors
are not known 3. However, it follows from simple density consid-
erations together with the relation xp(u) that for any k &#x3E; 2 and
any E &#x3E; 0 there exist infinitely ma,ny k-tuples (n, n + 1, ... , n + k - 1) of
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consecutive integers all of whose prime factors are  where ak  1

is defined by the equation = 1 - llk. A recent result of Hildebrand
(1989) yields a slight improvement over this trivial bound, showing that ak
ma.y be replaced by the smaller quantity 

Goldbach type problems for integers without large prime factors seem to
be more difficult. Balog &#x26; Sirk6zy (1984b) proved that every sufficiently
large integer N can be written as a sum N = n1 + n2 with P(ni)  2N2/5,
and Balog (1989) improved the exponent 5 to 0 . 2695 .... However, it is
not known whether such a representation exists with P(nZ )  NE, for any
fixed E &#x3E; 0. The corresponding ternary problem is much better understood;
Balog and Sarkozy (1984a) showed that every sufficiently large integer N
has a representa.tion N = ni + n2 + n3 with P(ni )  exp 13,,/Iog N 1092 N } .

Representations of integers as sums of powers of numbers without large
prime factors have played an important role in recent work on Waring’s
problem (see, for example, Vaughan (1986) and Wooley (1992)). This is
due to the fact that, in certain circumstances, the number of representations
of an integer as a sum of powers of integers with restrictions on the size of its
prime factors is easier to estimate asymptotically by the Hardy-Littlewood
method than the number of unrestricted representations.

Sums over integers without large prime factors. Let S(x, y) denote the set
of positive integers  x free of prime factors &#x3E; y. A number of authors have
studied the asymptotic behavior of sums of the forxn ¿:nES(x,y) f (n), which
are sometimes referred to as "incomplete sums" . The case when f (n) is
equal to (or some similar multiplicative function) occurs in sieve
theory and has been first investigated by van Lint &#x26; Richert (1964). De
Bruijn &#x26; van Lint (1964) considered other special classes of multiplicative
functions. Halberstam &#x26; Richert (1971) later gave a much more general
result which contained most of previous estimates. Results of this type
are also implicit in the papers of Levin h Fainleib (1967), which, however,
has been criticized (cf. Norton (1971)) as being inaccurate at many places.
More recently, Levin &#x26; Chariev (1986) have given rather general estimates
for sums of mulitplicative functions over integers with constraints on the
size of the prime factors.

Of particular interest is the case f (n) = where Q(n) denotes the
total number of prime factors of n. The behavior of the sums

is closely related to the distribution of the function S2(n) among the el-
ements of S(x, y) and thus can give some insight into the multiplicative
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structure of these elements. This case has been investigated by De Koninck
&#x26; Hensley (1978), Alladi (1987), Hensley (1987), and Hildebrand (1987).

Another interesting case is that of f (n) _ p(n). In view of the relation
= o(x) one might expect that = o(’l1(x,y))

holds under suitable conditions on x and y. Answering a question of Erd6s,
Alladi (1982) and Hildebrand (1987) showed that this relation is indeed
valid, provided that y --~ oo and x &#x3E; y; more precisely, the bound

holds uniformly in x &#x3E; y &#x3E; 2. Alladi showed that this bound is best-

possible as it stands. However, sharper estimates for the sum on the left-
hand side can be obtained if u = log x/log y 2013~ oo ; see Tenenbaum (1990b).

The estimation of the sums d(n), where d(n) is the divisor
function, is of some interest since this problem can be regarded as the ana-
log of the classical divisor problem. Xuan (1990, 1991) and Smida (1993)
gave estimates for these sums, and for the corresponding sums over the gen-
eralized divisor functions dk(n,). Fouvry &#x26; Tenenba,um (1990) considered
the problem of estimating the sum ¿nES(x,y) d(n - 1) which is the a.nalog
of the "Titchmarsh divisor problem", i.e., the problem of estimating sums
of the divisor function over the sequence (p - 1} of shifted primes. They
obtained an asymptotic formula for this sum, which is valid uniformly in
the range exp {flogxlog3 x/ log2 x  y  x, for any fixed E &#x3E; 0.

Exponential sums over integers without large prime factors have been
first studied by Vaughan (1989) in connection with %iTaring’s problem. Fou-
vry &#x26; Tenenbaum (1991) have given rather sharp bounds for the exponen-
tial sums E(x, y, 8) = ¿nES(x,y) e21ri8n; ; in pa,rticula.r, . they showed that,
uniformly for 3  y  qE, and all positive integers a and q with (a, q) = 1,

This bound may be regarded as the analog of Vinogradov’s bound for ex-
ponential sums over primes.

Distribution of arithmetic functions on integers without large prime factors.
The problem of estimating sums of arithmetic functions over integers with-
out large prime factors leads na.turally to the question of the distribution of
values of arithmetic functions among such integers. Perha,ps the simplest
example is given by the function ¡t2(n) which describes the distribution of
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squarefree integers. This problem has been investigated by Ivi6 (1985b),
Ivi6 &#x26; Tenenbaum (1986), Naimi (1988), and Granville (1989). Their re-
sults show, for example, that if u = logx/log y &#x3E; yl/2+o(1) then the num-
ber of squarefree integers in S(x, y) is o(T(x, y)), as y -~ oo. On the other
hand, for u  this number is asymptotic to (6/~2)~Y(x, y), so that in
this case the proportion of squarefree numbers among elements of S(x, y)
is equal to the (global) density of squarefree numbers. The corresponding
problem for k-free integers has been studied by Hazlewood (1975a).

Several authors have investigated the distribution of the function O( n),
the total number of prime factors of n, on the set S(x, y) and obtained var-
ious analogs of classical limit theorems; see Alladi (1987), Hensley (1987),
and Hildebrand (1987). Roughly speaking, the results state that 9(n) is
approximately normally distributed on the set S(x, y) with mean M and
variance V, where M = M(x, y) and V = V(x, y) are suitable functions
satisfying, for example, M N V - loglog x if u = log a?/logy = o(log2 x)
and M x u and V X u/ log" if (log y)z°  u  y/ log y; see Alladi (1987)
and Hildebrand (1987).

As in the classical case, results of this type can be extended to more
general classes of additive functions. For example, Alladi (1982b) obtained
a Turan-Kubilius inequality for S(x, y), i.e., a Chebyshev type inequality
for additive functions on S(x, y). This inequality can be used to show that,
for a fairly general class of additive functions f (n), the values f (n) are for
"most" n E sex, y) close to the average value of f over the set S(x, y).
Sums involving the largest prime factor of an ircteger. Various authors
have studied sums of the form where f is some arithmetic
function. Such sums can be evaluated using the identity

together with sufficiently sharp estimates for the function T(x, y).
The case f (n) = log n was considered by de Bruijn (1951b); his argu-

ment, combined with Theorem 1.8, leads to the estimate

where A = + u)-2du = O~G24... (see Exercise 111.5.3 in Tenen-
baum (1990a)). The constant A is known as Golomb’s constant, and may
be interpreted as the expected proportion between the number of digits of
the largest prime factor of an integer and that of the integer itself; see
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Knuth &#x26; Trabb Pardo (1976). Wheeler (1990) gave a similar formula
for the more general sums where the summation is

restricted to integers n whose second largest prime factor P2(n) satisfies
P2(n)  for some fixed u. Scourfield (1991) obtained asymptotic
formulae for the counting functions Sq(z) = #{n &#x3E; 1 : nP( n)’)’  x} and
T.,(x) = #{n &#x3E; 1 : n’~(logP(n))~  x}. De Koninck &#x26; Mercier (1989)
have given asymptotic formulae for for strongly additive
functions f satisfying f (p) = p"L(p) where a is any given real number and
L is a slowly oscillating function.

Perhaps the most interesting case is that of the function f (n) = 1/n
which has been studied by Erd6s &#x26; Ivi6 (1980), Ivi6 &#x26; Pomerance (1984),
Me (1981,1987), and Xuan (1988). Erd6s, Ivi6 &#x26; Pomerance showed that,

oo,

where 6(x) = Sums such as can

be asymptotically evaluated in a similar way; see Ivi6 &#x26; Pomerance (1984)
and Xuan (1989a, 1989b). Brouwer (1974), Alladi &#x26; Erd6s (1977, 1979)
and De Koninck &#x26; Ivi6 (1984a, 1984b) have investigated the asymptotic
behavior of the sums Pk(n) and ~~~~ Pk(n)/P(n) and similar sums
involving the kth largest prime factor Pk(n) of n.

Van de Lune (1974) and van Rongen (1975) considered the asymptotic
behavior of sums of the form f (log n/ log P(n)) and showed that
for a wide class of functions f, including all continuous bounded functions
and all polynomials, the limit

. 

exists and equals - f °° f(x)dp(x).
Bounds for the least kth power non-residue. An important application of
estimates for y), which goes back to Vinogradov (1926), is an up-
per bound for the least kth power non-residue modulo a prime p sat-
isfying p - 1 mod k. The connection is based on the observation that if
91 is the least positive kth power non-residue modulo a prime
p = 1 mod k then, for any y  gl and x &#x3E; 1, every integer counted in

is a product of kth power residues, and hence is itself a kth power
residue. We therefore have the inequality
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for any y  gl. It follows from Burgess’ character sum estimates that the
right-hand side is asymptotic to x/k, as p ~ oo, uniformly in x &#x3E; pl/4+E,
for any fixed E &#x3E; 0. On the other hand, the left-hand side is xp(u) + o(x)
by the Dickman-de Bruijn formula. Taking x = pl/4+E and y = gl - 1, it
follows that for any given c &#x3E; 0 and any sufficiently large prime p - 1 mod k
we have 91(P,k) ~E with ak defined by the equation = 1/k.
The asymptotic formula (1.7) shows that ak = (1 + o(l))(1092 k)/(4log k)
as k - oo. This result is due to Y. Wang (1964) and improves on earlier
bounds of Vinogradov (1926) and Buchstab (1949). Norton (1968, 1971)
generalized these results to bounds for the lea.st kth power non-residue with
respect to arbitrary (not necessarily prime) moduli, and to bounds for the
least positive representatives of arbitrary cosets of the set of kth power
residues.

The bound for 91(P, k) could be improved if sufficiently uniform upper
bounds for integers without large prime factors in arithmetic progressions
were available. For example, if the bound y; a, q)  (1-f- 0(1)) xp(u)/q
holds whenever y and q are fixed but sufficiently small powers of x, then
it would follow that ~E p" for every sufficiently large prime p with
(p - 1, k) &#x3E; 1; see Friedlander (1973a.). Unfortunately, the known bounds
for W (x, y; a, q) are not sufficient to yield any improvements over the above
bound gi [~E 

Generalizations to algebraic number fields. Given an algebraic number field
K, let y) be the number of integral ideals with norm  x, all of whose

prime divisors have norm  y. The problem of estimating has
been studied by Jordan (1965), Gillet (1970), Friedlander (1972), Hazle-
wood (1975a, 1977), Krause (1990), Moree &#x26; Stewart (1990), and Moree
(1992). The results obtained, and the methods of proof, are to a large
extent analogous to those in the classical case of W(x,y). For example,
Krause (1990) showed that Theorem 1.1 and Theorem 1.4 both hold with

in place of q¡(x,y) with the same uniformity (but with the im-
plied constants depending on the number field K), provided the right-hand
side of (1.8) is multiplied by an appropriate constant P = equal to the
residue of the Dedekind zeta function ~I~(s) at s = 1.

Other generalizations. The function

has been first studied by Friedlander (1976), who showed, in particular, that
for fixed u and v one has as z - oo,
where 0’( U, v) is defined by a system of differential-difference equations.
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More precise estimates of this kind have recently been given by Saias (1992),
Fouvry &#x26; Tenenbaum (1991), and Granville (1991a). Goldston &#x26; McCurley
(1988) and Warlimont (1990) considered the problem of estimating the
function ~(x, y; Q) _ #{n  x : pin, p &#x3E; y ~ p 0 Q}, where Q is
a sufficiently well distributed set of primes of density b. This function
reduces to y) in the case Q is the set of all primes. However, it turns
out that the behavior of ~Y(x, y, Q) is rather different from that of ~Y(x, y) if
the set Q has density 6  1 among the primes; namely, has then
order of magnitude rather than as in the case of 
An analog of the function y) for polynomials over a finite field is the
number Nq (n, m) of monic polynomials of degree n over the field IF9 all of
whose irreducible factors have degrees at most m. This function arises in
connection with the discrete logarithm problem and was studied by Odlyzko
(1985,1993), Car (1987), and Lovorn (1992). Analogs of y) for general
arithmetic semigroups have been considered by Warlimont (1991).
Distribution of the k largest prime factors of an integer. For fixed x, the
function describes the distribution of the largest prime factor of
an integer selected at random from f 1,... , ~x~~. This point of view sug-
gests a natural generalization, namely to consider the joint distribution of
(Pl(n), ... , Pk(n)), where Pie n) denotes the ith largest prime factor of n.
Result of this type can be deduced from general theorems of Levin &#x26; Fainleb
(1967). A more specific result was given by Billingsley (1972), who showed
that for any k-tuple (ai, ... , ak) E (0,1~~ the limit

exists and gave an explicit representation for the associated density func-
tion. For other results in this direction see Galambos (1976), Knuth &#x26;
Trabb Pardo (1976), Lloyd (1984), Vershik (1987), and Wheeler (1990).
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