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Received: 5 October 2017 / Accepted: 14 May 2018 / Published online: 28 May 2018

© The Author(s) 2018

Abstract In this paper, we consider two chaotic

finance models recently studied in the literature. The

first one, introduced by Huang and Li, has a form of

three first-order nonlinear differential equations

ẋ = z + (y − a)x, ẏ = 1 − by − x2, ż = − x − cz.

The second system, called a hyperchaotic finance

model, is defined by

ẋ = z + (y − a)x + u,

ż = − x − cz,

ẏ = 1 − by − x2,

u̇ = − dxy − ku.

In both models, (a, b, c, d, k) are real positive parame-

ters. In order to present the complexity of these sys-

tems Poincaré cross sections, bifurcation diagrams,

Lyapunov exponents spectrum and the Kaplan–Yorke

dimension have been calculated. Moreover, we show

that the Huang–Li system is not integrable in a class

of functions meromorphic in variables (x, y, z), for all

real values of parameters (a, b, c), while the hyper-

chaotic system is not integrable in the case when k = c

and � := 1 + d(a + d − c) > 0. We give analytic

proofs of these facts analyzing properties of the differ-

ential Galois groups of variational equations along cer-
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tain particular solutions. On the other hand, we show

that for certain sets of the parameters (a, b, c, d, k),

when � ≤ 0, the hyperchaotic system possesses a poly-

nomial first integral, which can be used to reduce the

dimension of the system by one.

Keywords Chaotic finance model · Hyperchaotic

finance model · Non-integrability · Non-Hamiltonian

systems · Numerical analysis · Differential Galois

theory

1 Introduction

Chaos is a very interesting and common phenom-

ena in nature. Having been discovered originally by

Lorenz [1] within the context of atmospheric convec-

tion, it has found practical applications in various fields

of science, in both theoretical and practical point of

view. Therefore, for the last five decades researchers

have made a great effort for constructing new chaotic

models for chaos-needed applications. Among others,

let us mention classical ones: the logistic and the Hénon

maps [2,3], Chua’s circuits [4], the Lorenz-like systems

introduced by Chen and Lü in [5,6], and more recent

systems, studied by Qi and Li in [7–9], the 4D chaotic

Duffing system [10], the Chameleon model [11], and

many more [12–19].

Among complex dynamical systems exceptional

role play hyperchaotic ones. These systems, reported

first time by Rössler [20], possess very peculiar prop-
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erties. For instance, they have at least two positive

Lyapunov exponents and thus, the dynamics of hyper-

chaotic attractor expands in more than one direc-

tion. Since hyperchaotic systems possess usually richer

dynamics than chaotic ones, researchers have seen its

great potential for application in engineering, cryp-

tography and technology to improve the security of

communication. Over the last years, hyperchaotic gen-

erators have been a topic of active search. Except

Rössler’s system, many hyperchaotic models have been

found, both in theoretical and in practical ways; see, for

instance, recent papers [21–28], and references therein.

Early period linear models of economic cycles were

criticized for their incompatibility with complex real-

ity. Their dynamics was too regular to assume that they

are able to describe properly the complex nature of real

economic systems. It was only 1975 when May and

Beddington [29,30], as the first, suggested the appli-

cation of nonlinear and chaotic dynamical systems in

economics and financial markets. In contrary to linear

and stochastic models, nonlinear deterministic models

explain aperiodic business cycles and can give rise to

chaotic behaviors. Nowadays, in the era of comput-

ers, researchers have found chaotic behaviors in vari-

ous known models and new ones with very complex

dynamic are being proposed. For instance, let us men-

tion the forced van der Pol model [31,32], the Kaldo-

rian model [33,34], various types of the IS-LM model

developed by Hick and Hansen [35–37], Goodwin’s

accelerator model [38,39], and recently, the Keyne-

sian model [40], the Cournot–Puu system [41], the

Huang–Li model [42,43] and its generalizations to 4D

hyperchaotic systems [22,24,28], to cite just a few. We

also highly recommend this year special issue, enti-

tled Dynamics Models in Economics and Finance, pub-

lished in [44].

The presence of parameters is typical for many mod-

els of economic processes. For example, in economic

growth models, they may represent tools for influenc-

ing the economy, while the aim of the analysis is to

find such quantities that would lead to the optimal path

of growth. However, if the analyzed model has chaotic

dynamics, the matter is essentially complicated. The

high sensitivity of chaotic system to a change the ini-

tial conditions makes it impossible to predict the effects

of economic decisions in a long time scale. Therefore, it

is important to ask whether there exists any set of val-

ues of parameters for which dynamics is regular and

a considered system is integrable. It is the significant

question from the economical point of view to avoid

the chaotic behaviors and make the precise economic

prediction possible. In order to get a quick insight into

the dynamics of a considered system, we can make

a numerical analysis. Nonetheless, numerical methods

and techniques, such as Poincaré cross sections, bifur-

cations diagrams, Lyapunov exponents, power spec-

tra, can be made only for fixed values of parameters

describing a system. For other values, results can be

completely different and, for particular their sets, the

system can be even integrable. However, it is techni-

cally and theoretically impossible to make a numerical

analysis for all values of parameters. To find integrable

cases, one needs a powerful method that enables to dis-

tinguish values of parameters for a considered system

is suspected to be integrable. The aim of this paper is

to present how, in an effective way, we can perform an

integrability analysis of complex dynamical systems.

For this purpose, we will use differential Galois theory.

This approach allows, in an analytical way, to prove

the non-integrability of a considered system in a wide

class of functions and to distinguish values of parame-

ters for which it is suspected to be integrable. We focus

our attention mainly on two examples of chaotic and

hyperchaotic finance systems, recently studied in the

literature.

The rest of this paper is organized as follows. In

Sect. 2, descriptions of systems and their dynamics

analysis for specified values of parameters are given.

For this purpose, we calculate Poincaré cross sections,

bifurcation diagrams, Lyapunov exponents and fractal

dimension. The integrability analysis of investigated

models by means of the differential Galois approach

is made in Sect. 3. In Sect. 4, final conclusions are

drawn. In order to make this article self-contained, we

have added “Appendix” section with the basic defi-

nitions and facts concerning integrability, differential

Galois theory and its application to integrability inves-

tigations.

2 Description of the systems and their dynamical

behaviors

2.1 The Huang–Li financial model

Recently, the Huang–Li system, known also as a

chaotic finance model, has been investigated inten-
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Fig. 1 Poincaré cross section of system (1) with a = b = c = 0,

on the surface y = 0

sively. It is given by the following equations
⎧

⎪

⎨

⎪

⎩

ẋ = z + (y − a)x,

ẏ = 1 − by − x2,

ż = − x − cz,

(1)

where (x, y, z) are time-dependent variables and

(a, b, c) are real nonnegative parameters. Here, x rep-

resents the interest rate, y is the investment demand,

and z is the price index. Parameters (a, b, c) denote

the saving amount, the cost per investment and the

elasticity demand of commercial markets, respectively.

The complex behavior of system (1) was first noted

by Ma and Chen in 2001 [45,46]. Then many papers

were published where the dynamics of this model has

been investigated by means of various methods and

techniques, such as Lyapunov exponents and bifur-

cation diagrams [22,47]; synchronizations with lin-

ear and nonlinear feedbacks [48,49], adaptive [50],

sliding mode [51] and passive [51] control methods

[51]; control via linear, speed and time-delay feedbacks

[52–54].

2.1.1 Poincaré sections and phase portraits

To get an idea about complexity of the system dynam-

ics, we made two Poincaré cross sections, which are

shown in Figs. 1 and 3. Points creating presented pat-

terns were obtained as traces of intersections of tra-

jectories calculated numerically with suitably chosen

Fig. 2 Periodic, quasi-periodic and chaotic particular phase

curves of system (1) for parameters a = b = c = 0.

Points of intersections with Poincaré cross-sectional plane

are depicted by small black bullets. a Periodic trajectory

with (x0, y0, z0) = (0.49, 0, 0). b Quasi-periodic trajectory

with (x0, y0, z0) = (0.8, 0, 0). c Chaotic trajectory with

(x0, y0, z0) = (− 3.5, 0,− 1)
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Fig. 3 Poincaré cross section of system (1) for parameters a =
0.1, b = 0.01, c = 0.67, on the surface y = 0

plane of section y = 0. The coordinates on this plane

are (x, z). The first Poincaré section, visible in Fig. 1,

was made for zeroth values of the parameters. As we

can see, even in this simple case, the system reveals very

complex dynamics. In fact, for a = b = c = 0 sys-

tem (1) converts into the famous Nosé–Hoover oscilla-

tor [55,56]. Poincaré section visible in Fig. 1 is similar

to that for conservative systems, i.e., we can observe

the coexistence of periodic, quasi-periodic and chaotic

motions. For easier understanding particular orbits cor-

responding to these different types of motion have been

marked at the Poincaré section plane, while their cor-

responding phase curves, with depicted points of inter-

sections with Poincaré cross-sectional plane, are visible

in Fig. 2. In particular, we do not observe appearance

of an attractor, which is common in the case of sys-

tems with dissipation. This is due to the fact that for

zeroth values of the parameters, the divergence of (1)

is just y and in the considered example its mean value

is almost zero to a high precision of numerical calcu-

lations. Thus, it is natural to ask whether system (1)

has an invariant measure. However, direct calculations

have not yield any results, so let us leave this question

as the open problem.

Poincaré cross section completely changes when we

chose nonzero values of the parameters. Figure 3 cor-

responds to dynamics of system (1) with a = 0.1, b =
0.01, c = 0.67. Since the divergence is y −a −b−c �=
0, volume of the phase space is contracted, and we got

the expected shapely elegant strange attractor of the

Fig. 4 Successive magnifications of the small selected region in

Fig. 3 showing fractals structure of system (1)

fractal structure for dissipative system. Indeed, Fig. 4

shows successive magnifications of the small selected

region in Fig. 3, which displays the hidden layers pre-

serving self-similarity.

There is more detailed explanation about the differ-

ences between the Poincaré cross sections of conser-

vative and dissipative systems the interested reader can

find, for example, in the book [57].

2.2 A hyperchaotic finance model

One of generalizations of the Huang–Li system is called

a hyperchaotic finance model. This system introduced

in [22] is described by a set of four nonlinear differential

equations
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ = z + (y − a)x + u,

ẏ = 1 − by − x2,

ż = − x − cz,

u̇ = − dxy − ku,

(2)

where (a, b, c, d, k) are real nonnegative parameters.

Here, x, y, z have the same meaning as in the Huang–

Li model, while u is an additional state variable that

represents the average profit margin. Since the system

is four dimensional, it is rather difficult to interpret its

Poincaré cross sections. Therefore, in order to present

complexity of this model one can study its bifurca-

tion diagrams, Lyapunov exponents’ spectrum and the

Kaplan–Yorke dimension.

2.2.1 Bifurcation diagram

Bifurcation diagrams provide an important view to a

system dynamics by plotting the state variable as a

function of a bifurcation parameter [58]. More pre-

cisely, a bifurcation diagram of a dynamical system

ẋ = v(x, k), where k is a control parameter, illustrates

how the limit set (fixed points, periodic trajectories,

chaotic attractors) changes with a change of k. Fig-

ure 5a shows such a global bifurcation diagram. This

diagram plots the extremal values of the system vari-

able x(t) = xextr, satisfying ẋ(t) = 0, where initial

transient motions have been omitted. For fixed param-

eters b = 0.1, c = 1.45, d = 0.18, a = 2.36 and initial

condition (x0, y0, z0, u0) = (1, 2, 0.5, 0.5), we show

how the change of value of parameter k in the interval

[0, 2] affects the dynamics of the system. As we see, the

periodic motion diverges and splits as k decreases and

finally becomes chaotic. Indeed, Fig. 5b shows magnifi-

cation of the lower right area of the bifurcation diagram,

in which we can observe first successive bifurcations

that lead the system to chaotic behavior through the

period-doubling route.

In the case of continuous dynamical systems, the

period-doubling route starts with limit cycle behavior

of the system. As a control parameter is changed, a

periodic solution may become unstable and gives birth

to a period two cycle. In Fig. 5b, we pointed the values

of parameter k (to 4 significant figures) at which the

subsequent bifurcations appeared.

The period-doubling mechanism, that is one of the

scenarios of transition to chaos, was intensively stud-

ied by physicist and mathematician M. J. Feigenbaum.

He found that for many systems, which exhibit bifurca-

tions, the intervals between successive thresholds can

be determined from the formula

(kn+1 − kn) ≈
1

δ
(kn − kn−1), (3)

where kn is the value for which n bifurcations appears,

and kn+1 is the value for which the next bifurcation

takes place. The number

δ = lim
n→∞

kn − kn−1

kn+1 − kn

= 4.6692016, (4)

is the universal constant called Feigenbaum’s number.

Relation (3) implies that difference between successive

bifurcations (kn+1 − kn) tends asymptotically to zero,

and hence, value of the control parameter k approaches

a finite limit. For our system, this critical value is found

to be

kc
∼= 1.6711.

This means that for k > kc the motion never repeats

itself and is chaotic.

2.2.2 Lyapunov exponents’ spectrum and the

Kaplan–Yorke dimension

Although the period-doubling route to chaos is seen

at bifurcation diagram in Fig. 5a, the hyperchaotic

nature of this system can be recognized only by their

Lyapunov exponents. According to the chaos theory,

Lyapunov exponents measure the exponential rates

of propagation of nearby trajectories (orbits) in the

phase space. For four-dimensional autonomous sys-

tems, chaos appears when at least one Lyapunov expo-

nent is positive, whereas hyperchaos is manifested by

at least two positive Lyapunov exponents.

Figure 6 presents a spectrum of the Lyapunov expo-

nents’ of system (2) versus parameter k calculated by

Wolf’s algorithm [59], over interval k ∈ [0, 2]. At

first sight, we observe that the Lyapunov exponents’

spectrum corresponds well to the bifurcation diagram.

Let λi denote the Lyapunov exponents sorted in the

decreasing order. Then, the dynamics of (2) can be sum-

marized in the following way.

1. For periodic motion: λ1,2,3 = 0, λ4 < 0.

2. For quasi-periodic motion: λ1,2 = 0, λ3,4 < 0.

3. For chaotic motion: λ1 > 0, λ2 = 0, λ3,4 < 0.

4. For hyperchaotic motion: λ1,2 > 0, λ3 = 0,

λ4 < 0.
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(a)

(b)

Fig. 5 Bifurcation diagram of system (2) versus k for parameters

a = 2.36, b = 0.1, c = 1.45, d = 0.18. a Global view for

k ∈ [0, 2]. b Magnification presenting the period-doubling route

to chaos

While the hyperchaos was not noticeable at the bifur-

cation diagram, it is clearly visible at the Lyapunov

exponents’ spectrum. Indeed, if k belongs to inter-

val [0.158, 0.209], then two values of the Lyapunov

exponents are positive and the system manifests hyper-

chaotic behaviors. They reach the largest values at

k ∼= 2.03, where

λ1
∼= 0.0481, λ2

∼= 0.0246, λ3
∼= 0, λ4

∼= −1.0804.

(5)

Fig. 6 Lyapunov exponents’ spectrum of system (2) versus

parameter k for b = 0.1, c = 1.45, d = 0.18, a = 2.36. For

a better readability, the green-color exponent has been shifted up

by 0.7. (Color figure online)

While Lyapunov exponents measure sensitivity of

a dynamical system to initial conditions, the Kaplan–

Yorke dimension (or the Lyapunov dimension) of an

attractor measures its complexity [60]. The dimension

of an attractor is defined in terms of Lyapunov expo-

nents λi , by formula DKY = L +
∑L

j=1 λi/|λL+1|,
where L is a maximum integer value of i , such that
∑L

i=1 λi ≥ 0, and
∑L+1

i=1 λi ≤ 0.

Figure 7 shows a global spectrum of the Kaplan–

Yorke dimension of system (2), versus parameter k ∈
[0, 2], and its magnification over the interval, where

the hyperchaotic behavior takes place. Using quanti-

ties (5), or directly from Fig. 7b, we can conclude

that a maximum value of the Kaplan–Yorke dimen-

sion of the system is DKY
∼= 3.067. For compari-

son, the famous hyperchaotic Rössler system has an

attractor with DKY
∼= 3.005, whereas a hyperchaotic

attractor found in [61] possesses a fractal dimension

DKY
∼= 3.198.

As we can notice, the hyperchaotic behavior of sys-

tem (2) is not so noticeable as the one studied in [61],

where the maximal Lyapunov exponent has been found

to be λmax
∼= 29.79 and DKY

∼= 3.198. However, a

model studied in the mentioned article was especially

created to exhibit very strong hyperchaotic behavior

and it has no economic interpretation.
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Fig. 7 Spectrum of the Kaplan–Yorke dimension of system (2) versus parameter k for a = 2.36, b = 0.1, c = 1.45, d = 0.18. a

Global view with k ∈ [0, 2]. b Magnification of the hyperchaotic regime

3 Integrability analysis of the models

The complex behaviors of models (1)–(2) apparent via

the Poincaré cross sections, the bifurcation diagram

and Lyapunov’s exponents spectrum, suggest their non-

integrability. But these numerical evidences of non-

integrability were obtained for chosen values of param-

eters. For other values, plots can be completely differ-

ent and, for particular their sets, these systems can be

even integrable. However, it is technically and theo-

retically impossible to make a numerical analysis for

all values of parameters. To find integrable cases, one

needs a powerful tool that enables us to select these

values of parameters for which the considered systems

are suspected to be integrable.

For Hamiltonian systems for which we have a

precise notion of integrability in the sense of Liou-

ville, there are many approaches to the integrabil-

ity studies: Hamilton–Jacobi theory and separation of

variables, perturbation theory, splitting of separatrices

and Melnikov’s method, Birkhoff’s normalization, and

recently, Morales–Ramis theory based on the differen-

tial Galois approach. In contrast, for non-Hamiltonian

systems even there is no commonly accepted defi-

nition of integrability. It seems that quite useful is

the so-called B-integrability. We say that a given n-

dimensional system

ẋ = v(x), x = (x1, . . . , xn)T ∈ R
n, (6)

is B-integrable if there exist n − k vector fields (sym-

metries) u1(x) = v(x), u2(x), . . . , un−k(x), which

pairwise commute [ui , u j ] = 0, and k functions

F1, . . . ,Fk , which are common first integrals of all vec-

tor fields u1, . . . , un−k .

It can be shown that if system (6) is B-integrable,

then it is integrable by quadrature. That is, all its solu-

tions can be obtained by means of finite sequence of

algebraic operations, superposition and inversion of

functions and by calculation of integrals. Basic facts

concerning the integrability and in particular a more

formal definition of the B-integrability can be found in

“Appendix” section.

The aim of this letter is to check whether there exist

any sets of values of the parameters for which sys-

tems (1) and (2) are B-integrable. The main results are

formulated in the following two theorems.

Theorem 1 The Huang–Li nonlinear financial model

defined by (1) is not B-integrable in a class of meromor-

phic functions of variables (x, y, z) for all real values

of parameters (a, b, c).

Theorem 2 The hyperchaotic finance system defined

by (2) is not B-integrable in a class of meromor-

phic functions of variables (x, y, z, u) for values
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of parameters (a, b, c, d), satisfying k = c and

1 + d(a + d − c) > 0.

To prove these theorems, we investigate variational

equations of the considered systems along certain non-

stationary solutions and we study their differential

Galois groups. This approach of finding necessary con-

ditions for integrability in a framework of differential

Galois theory was mostly used for Hamiltonian sys-

tems, and it is frequently called Morales–Ramis theory.

Theorem 3 (Morales–Ramis [62]) Assume that a

Hamiltonian system is meromorphically integrable in

the Liouville sense in a neighborhood of the analytic

phase curve Ŵ. Then, the identity component of the

differential Galois group of the variational equations

along Ŵ is Abelian.

Thanks to this approach, new integrable cases have

been found; see for instance [63–65].

If we restrict ourself to the B-integrability, then we

have an elegant generalization of Morales–Ramis the-

ory for non-Hamiltonian systems. Namely, with sys-

tem (6) we can associate its cotangent lift, i.e., a Hamil-

tonian system defined by the following Hamiltonian

function

H =
n

∑

i=1

pivi (x), (7)

where x = (x1, . . . , xn) and p = (p1, . . . , pn) are

canonical coordinates on a symplectic manifold M =
C

2n . In paper [66] Ayoul and Zung showed that if orig-

inal system (6) is B-integrable, then a lifted system

generated by Hamiltonian function (7) is integrable in

the Liouville sense. Hence, for both Hamiltonian and

non-Hamiltonian systems, we have the same necessary

integrability condition, i.e., the identity component of

the differential Galois group of variational equations

must be Abelian. We summarize the above facts by

the following theorem that gives necessary integrabil-

ity conditions for non-Hamiltonian systems.

Theorem 4 (Ayoul–Zung [66]) Assume that system (6)

is meromorphically B-integrable, then the identity com-

ponent of the differential Galois group of variational

equations along a particular non-equilibrium solution

ϕ(t) is Abelian.

A more detailed description of differential Galois the-

ory and its application to the integrability studies can

be found in “Appendix” section and in cited references

therein. In particular, for first applications of differen-

tial Galois theory to non-Hamiltonian systems, please

consult papers [67,68].

3.1 Proof of Theorem 1

System (1) possesses the invariant manifold

M =
{

(x, y, z) ∈ C
3

∣

∣ x = z = 0
}

. (8)

Indeed, Eq. (1) restricted to N reads as follows:

ẋ = 0, ẏ = 1 − by, ż = 0. (9)

Solving these equations, we obtain our particular

solution ϕ(t) = (0, y(t), 0). Let X = [X, Y, Z ]T be

the variations of x = [x, y, z]T ; then, the first-order

variational equations along ϕ(t) take the form

d

dt
X = M(t) · X, M(t) :=

∂v(x)

∂x
(ϕ(t)), (10)

where the explicit form of matrix M(t) is given by

M(t) =

⎡

⎣

y − a 0 1

0 − b 0

− 1 0 − c

⎤

⎦ ,

and y = y(t) satisfies (9). Since the particular solution

corresponds to a motion along y-axis, the equations

for X and Z form a subsystem of normal variational

equations
[

Ẋ

Ż

]

=
[

y − a 1

− 1 − c

] [

X

Z

]

, (11)

that can be expressed as one second-order differential

equation

Ẍ + (a − c − y)Ẋ + (ac + (b − c)y) X = 0. (12)

Next, by means of the change of the independent

variable

t −→ s =
−1 + by(t)

b2
, with b �= 0 (13)

and using the chain rule for transformation of deriva-

tives

d

dt
= ṡ

d

ds
,

d2

dt2
= ṡ2 d2

ds2
+ s̈

d

ds
,

we can rewrite Eq. (12) as

X ′′ + P(s)X ′ + Q(s)X = 0, ′≡
d

ds
. (14)
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Explicit forms of the coefficients P(s) and Q(s) are

the following

P(s) = 1 +
1 + b(b − a − c)

b2s
,

Q(s) =
b − c + abc

b3s2
+

b − c

bs
. (15)

The classical change of the dependent variable

X = w exp

⎡

⎣−
1

2

s
∫

s0

P(l)dl

⎤

⎦ , (16)

transforms (14) into its reduced form

w′′(s) −
(

1

4
−

d + b2

2b2s
+

d2 − b4 − 4b2

4b4s2

)

w(s) = 0,

(17)

where d := ab − bc − 1.

Here, we should underline one significant fact.

Namely, respective transformations (13) and (16)

change in general a whole differential Galois group

of variational equations (10). However, the clue is that

they do not affect the identity component of the group;

see, e.g., [62]. Thus, following Theorem 4, in order

to prove the non-integrability of our original nonlin-

ear system (1), it is sufficient to show that the identity

component of the differential Galois group G of varia-

tional equations (10), and thus, its rationalized-reduced

form (17) is not Abelian. In order to check whether it is

Abelian or not, we usually apply the so-called Kovacic

algorithm [69]. This algorithm classifies possible solu-

tion forms of second-order differential equations with

rational coefficients and their corresponding differen-

tial Galois groups.

However, in the considered case, the situation is

much simpler. In Eq. (17), we immediately recognize

the Whittaker equation

w′′(s) −
(

1

4
−

κ

s
+

4μ2 − 1

4s2

)

w(s) = 0, (18)

with parameters

κ :=
d + b2

2b2
, μ :=

√
d2 − 4b2

2b2
. (19)

This equation has one regular singularity at z = 0

and one irregular singularity at z = ∞. The differential

Galois group of the Whittaker equation is described by

the following.

Theorem 5 (Morales–Ruiz [62]) The identity compo-

nent of the Galois group of equation (18) is Abelian if

and only if numbers (p, q) defined by

p := κ + μ −
1

2
, q := κ − μ −

1

2
(20)

belong to (N × −N
∗) ∪ (−N

∗ × N).

Let us assume that the considered system is integrable.

Then, according to Theorem 5 the product p · q should

always be negative. In our case, however, for (κ, μ)

given in (19), we obtain the following equality

p · q = κ2 − κ − μ2 +
1

4
=

1

b2
. (21)

Thus, p · q > 0 for all real b > 0, and this ends the

proof.

3.2 Proof of Theorem 2

In order to simplify further calculations, let us write

z = v − u, where v is a new variable. System (2) after

this linear change of the variable is given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ = v + (y − a)x,

ẏ = 1 − by − x2,

v̇ = c(u − v) − ku − x(1 + dy),

u̇ = − dxy − ku.

(22)

We restrict further analysis to case k = c, in order to

find a particular solution in an explicit form. Indeed, in

this case system (22) has the two-dimensional invariant

manifold

M =
{

(x, y, v, u) ∈ C
4

∣

∣ x = 0, v = 0
}

, (23)

and its restriction to N is given by

ẋ = 0, ẏ = 1 − by, v̇ = 0, u̇ = − cu. (24)

Solution of (24) determines our particular solution

ϕ(t)) = (0, y(t), 0, u(t)). The variational equations

along ϕ(t) take the following form

⎡

⎢

⎢

⎣

Ẋ

Ẏ

V̇

U̇

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

y − a 0 1 0

0 − b 0 0

− 1 − dy 0 − c 0

− dy 0 0 − c

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

X

Y

V

U

⎤

⎥

⎥

⎦

, (25)
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where [X, Y, V, U ]T are the variations of [x, y, v, u]T

and y = y(t) satisfies (24). The normal part of this

system containing variables (X, V ) can be written as

follows

Ẍ + (a + c − y) Ẋ + (ac + (b − c + d)y)X = 0.

(26)

Next, we perform change of independent vari-

able (13) that transforms (26) to rational equation (14),

with coefficients

P(s) = 1 +
1 + b(b − a − c)

b2s
,

Q(s) =
b − c + abc + d

b3s2
+

b − c + d

bs
. (27)

Then, by means of change of dependent vari-

able (16), we write it in the form of the Whittaker equa-

tion (18) with parameters κ and μ defined by

κ =
b(a + c − c + 2d) − 1

2b2
,

μ =
√

1 + b(a2b − 2a(1 + bc) + b(c2 − 4) + 2(c − 2d)

2b2
.

(28)

Application of Theorem 5 gives the following equal-

ity

p · q = κ2 − κ − μ2 +
1

4
=

�

b2
, (29)

where � := 1 + d(a + d − c), has been introduced.

From this, we conclude that as long as � > 0 the

identity component of the differential Galois group of

variational equations (26) is not Abelian, and thus, the

necessary integrability condition is not satisfied. This

ends the proof.

3.3 First integrals of the hyperchaotic finance model

In the previous subsection, we have shown that the

hyperchaotic finance model is not B-integrable for

k = c and � = 1 + d(a + d − c) > 0. On the other

hand, if such inequality is not satisfied, then there is

no integrability obstacles and system (2) can possesses

first integrals at least for certain values of parameters

(a, b, c, d, k). So let us look for such first integrals.

Since the right-hand sides of (2) are polynomial in

variables (x, y, z, u), we search for a polynomial first

integral F(x, y, z, u) ∈ R[(x, y, z, u)] with undeter-

mined coefficients. Postulating the degree of F, com-

puting the Lie derivative Lv(F) that is a polynomial

of (x, y, z, u) and equaling to zero its all coefficients,

we obtain the system of equations for unknown coeffi-

cients of the requested first integral F. Its solutions give

restrictions for the values of parameters and determine

the forms of first integrals which are given below.

In the case when

a = −
1

c
, d = k, b, k, c = arbitrary, (30)

system (2) possesses a linear first integral of the form

F = k(cx + z) + cu. (31)

For the values k = c and

a = −
17

3
√

14
, c =

2
√

14

3
, b =

√
14

6
, d =

√
14,

(32)

it has the cubic first integral

F = 98x3 + 7
√

14x2(u + 29z) + 14x[18 − 6
√

14y]
+ 7y2 + 28z(u + z) + (u + z)[7y(

√
14y − 12)

+ 2
√

14(9 + 7z(u + z))]. (33)

Whereas, for k = c and

a = −
7

2
√

10
, c =

3
√

10

4
, b =

√
10

4
, d =

√
10,

(34)

it possesses the quartic first integral

F = 50x4 + 10
√

10x3(u + 11z) + 5x2[16 − 8
√

10y

+ 10y2 + (u + z)(u + 61z)]
+ 2x(u + z)[5y(

√
10y − 8)

+
√

10(8 + 15z(u + z))]
+ [5y2 − 4

√
10y + 2(4 + 5z(u + z))](u + z)2.

(35)

It is easy to verify that for all sets of the parame-

ters (30), (32) and (34) with k = c the value of � is

equal to zero. Thus, the necessary integrability condi-

tion is satisfied, as it should be.

3.4 Reduction of the hyperchaotic finance model

In the previous subsection, we have shown that for cer-

tain sets of parameters (a, b, c, d, k), the hyperchaotic

system possesses polynomial first integral. Thus, for

prescribed values of the parameters we can use it to

reduce the dimension of the system by one. So, let us

123



Integrability analysis of chaotic 453

Fig. 8 Bifurcation diagram of reduced model (36) versus k for

b = 0.01, c = 0.71, f = 0

put the values of parameters a = − 1/c, d = k, for

which system (2) has linear first integral (31). Then,

determining variable u from integral F = f , where f

denotes a constant level of it, we reduce model (2) to

the following one
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋ = z +
(

y +
1

c

)

x +
f − k(cx + z)

c
,

ẏ = 1 − by − x2,

ż = − x − cz.

(36)

In order to get a quick insight into the dynamics of

this three-dimensional system, we make the bifurca-

tion diagram and the Poincaré cross section, which are

shown in Figs. 8 and 9. As we can notice, for parameters

b = 0.01, c = 0.71, k = 0.02, f = 0, system (36) still

reaches very complex dynamics. Like in the Huang–

Li system, we obtain shapely elegant strange attractor

of the fractal structure; see especially Fig. 9b showing

hidden layers. Indeed, if we put a = − 1/c in (1), and

f = k = 0 in (36), then the reduced hyperchaotic

model (36) coincides with chaotic one (1). Similar

reductions can be made for other sets of the param-

eters for which there exist cubic (33) and quartic (35)

first integrals, respectively. However, its final form will

be more complicated because of nonlinear dependence

of all variables in first integrals.

It is worth mentioning that system (36) on level

f = 0 carries particular solution (9). Making the ana-

logues calculations as in Sects. 3.1–3.2, we conclude

that as long as 1 − k/c > 0, system (36) is not B-

Fig. 9 Poincaré cross section of reduced model (36) for b =
0.01, c = 0.71, k = 0.02, f = 0, on the surface y = 0. a Global

portrait. b Magnification of the selected region

integrable. Thus, if such inequality is not satisfied,

then (36) may possesses an additional first integral.

However, direct search for a polynomial one up to the

fourth degree in variables x did not yield any results.

4 Conclusions

It seems that analysis of a differential Galois group of

variational equations gives one of the strongest known

obstructions to integrability. This method only requires
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knowledge of a particular solution that is not an equi-

librium position. Indeed, in order to find such a solution

for the hyperchaotic finance model we put k = c. Even

though it has some limitation, it is weaker than many of

assumptions required in other methods and the result

of application of this method is the non-integrability

proof of a considered system in a wide class of func-

tions meromorphic in variables. Furthermore, if a sys-

tem depends on certain parameters (e.g., as the models

investigated in this paper), then we can usually prove

its non-integrability for almost all values of parame-

ters except some finite set of values. In this way, new

integrable cases can be found.

We showed the application of this approach as exem-

plified by intensively studied nonlinear models. We

proved that the Huang–Li finance model is not inte-

grable in a class of functions meromorphic in variables

(x, y, z) for all real values of parameters (a, b, c). In the

case of its generalization, called hyperchaotic finance

model (2), we proved its non-integrability for k = c

and � = 1 + d(a + d − c) > 0. Moreover, for � ≤ 0,

we found linear, cubic and quartic polynomial first inte-

grals for certain sets of parameters (a, b, c, d, k).

Although some values of the parameters have no

direct economic interpretation (a < 0), it is very sur-

prising that the four-dimensional hyperchaotic finan-

cial model possesses certain first integrals, which allow

to reduce it to a three-dimensional chaotic system.

Since in the direct search method we restricted our-

selves to the polynomial first integrals, it is natural

to ask about the existence of Darboux’s polynomials,

which can be very useful to construct rational first inte-

grals, and thus to further reduction of the hyperchaotic

finance model. Let us leave this question as the open

problem.
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5 Appendix: Integrability and basics facts from

general theory

In this section, we give basic facts concerning the

notion of integrability, differential Galois theory and

its application to investigations of integrability. A more

detailed introduction to this theory can be found, e.g.,

in [62,70,71].

5.1 Integrability

Let us consider a system of differential equations

d

dt
x = v(x), x = (x1, . . . , xn) ∈ U ⊂ R

m, (37)

where v(x) = (v1(x), . . . , vn(x)) is a smooth vec-

tor field in the considered domain U . Evolution of a

dynamical system is given by solutions of these equa-

tions with certain initial conditions x(t0) = x0 that can

be chosen arbitrarily. However, general solutions are

explicitly known only for few systems, such as simple

mathematical pendulum, damped harmonic oscillator

or standard Kepler problem. As it was observed a long

time ago, a significant role in the study of dynamical

systems is played by first integrals or other invariant

quantities remaining constant on all solutions, which

help to find their explicit solutions. Let us recall that a

non-constant function F(x) : R
n → R is called a first

integral of (37) if F(x(t)) = const for all solutions

x(t). In other words, F(x) is a conservation law for

system (37). The invariance of F(x) with respect to the

evolution described by (37) (or, mathematically, with

respect to the flow of system (37)) can be expressed for

differentiable function in the form

Lv(F) :=
n

∑

i

vi

∂F

∂xi

= 0, (38)

where Lv is the Lie derivative along vector field v(x).

The existence of a first integral implies the relation

between coordinates

F(x1, . . . , xn) = F(x1(0), . . . , xn(0)) = const,

which, in principle, allows to eliminate one variable,

e.g., xn = ψ(x1, . . . , xn−1) to reduce a dimension of

a considered system by one. If we have F1, . . . ,Fk

first integrals, which are functionally independent, then

solutions of system (37) lie on n−k-dimensional hyper-
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surface in R
n given by a common level of constant val-

ues

M f1,..., fk
:=

{

x ∈ R
n | F1(x) = f1, . . . ,Fk(x)= fk

}

.

Assuming, without loss of generality, that we can use

x̃ = (x1, . . . , xn−k−1) as coordinates on the manifold

M f1,..., fk
, we reduce system (37) to the following one

˙̃x = ṽ(x̃, f ), f = ( f1, . . . , fk),

ṽi (x1, . . . , xn−k−1, f1, . . . , fk) = vi (x1, . . . xn),
(39)

where i = 1, . . . , n−k−1, and thus x j = x j (x, f ), for

j = n − k, . . . , n. In particular, if for n-dimensional

vector field we know n − 1 first integrals, which are

functionally independent, then we can reduce sys-

tem (37) to only one first-order equation

d

dt
x1 = ṽ1(x1), (40)

that can be easily solved by one quadrature

∫

dx1

ṽ1(x1, f )
= t, (41)

and it gives a solution in an implicit form t = γ (x1).

If we assume that a function γ is invertible, then we

can determine x1 = γ −1(t), and other variables can be

determined from the algebraic operations such as addi-

tion, subtractions or calculations of roots. In this situ-

ation, we say that the considered system is integrable

by quadratures.

Suppose that system (37) is a Hamiltonian one.

Then, n = 2m and v = vH is a Hamiltonian vec-

tor field generated by a smooth scalar function H :
R

2m → R, called Hamiltonian. In this context, we con-

sider R
2m as a linear symplectic manifold parametrized

by means of canonical coordinates x = (q, p), where

q = (q1, . . . , qn) and p = (p1, . . . , pn). It is equipped

with the standard symplectic form

ω = dq ∧ d p =
m

∑

i=1

dqi ∧ d pi , (42)

and the equations of motion vH generated by H are

given by

vH =
m

∑

i=1

(

∂H

∂pi

∂

∂qi

−
∂H

∂qi

∂

∂pi

)

. (43)

For Hamiltonian systems, we have the well-known

notion of integrability in the sense of Liouville.

Definition 1 (Liouville) A Hamiltonian system with m

degrees of freedom is completely integrable iff it has

m first integrals F1, . . . , Fm , whose Poisson’s brackets

vanish {Fi , F j } = 0, for every i, j = 1, . . . , m, and

are functionally independent.

In the case of non-Hamiltonian systems, there is no

commonly accepted definition of integrability. Below

we give two of them.

Definition 2 (Jacobi) We say that system (37) is inte-

grable in the Jacobi sense iff it admits n−2 functionally

independent first integrals and differential m-form

ω = h(x)dx1 ∧ · · · ∧ dxn, (44)

such that

Lv(ω) =
(

n
∑

i=1

∂(hvi )

∂xi

)

dx1 ∧ · · · ∧ dxn = 0. (45)

Equation (45) expresses the fact that ω is an invariant

quantity with respect to system (37). In the old litera-

ture, the invariant m-form is called the Jacobi last mul-

tiplier. This integrability definition is frequently used in

non-holonomic mechanics; see, e.g., [68]. Other defi-

nition of integrability was proposed by Bogoyavlensky

[72,73].

Definition 3 (Bogoyavlensky) We say that a given n-

dimensional system (37) is B-integrable if there exist

1 ≤ k ≤ n functionally independent first integrals

F1, . . . ,Fk , and n − k symmetries, i.e., vector fields

u1(x) = v(x), u2(x), . . . , un−k(x) such that

[ui , u j ] = 0, and Lu j
(Fi ) = 0, (46)

for 1 ≤ i ≤ k, 1 ≤ j ≤ n − k.

In this definition, the second condition means that

functions F1, . . . ,Fk are common first integrals of all

vector fields u1, . . . , un−k . It can be shown that B-

integrability for non-Hamiltonian systems is similar to

the integrability in the Liouville sense for Hamiltonian

mechanics; see, e.g., [71].

5.2 Differential Galois approach to integrability

In order to connect the integrability with properties of

differential Galois theory, we have to assume that sys-

tem (37) is considered over the field of complex func-

tions. More precisely, we assume that the phase space is
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a complex manifold M = C
n and the time is a complex

variable, i.e.,

d

dt
x = v(x), x ∈ C

n, t ∈ C. (47)

Most of differential equations describing evolution

of physical systems are nonlinear, and thus, it is very

difficult to analyze them. However, suppose that we

know a particular solution t → ϕ(t), then we can make

a lineralization of system (47) around this solution. In

other words, we calculate variational equations along

ϕ(t), which read as follows:

d

dt
X = M(t) · X, where M(t) =

∂v

∂x
(ϕ(t)). (48)

By means of the variational equations, we investi-

gate the behavior of solutions of nonlinear system (37)

around the phase curve Ŵ corresponding to a particular

solution ϕ(t). Since the times of Henri Poincaré, it has

been well known that if an original system has an ana-

lytic first integral, then variational equations possess a

first integral that is a polynomial in variables X .

Lemma 1 If F(x) is a first integral of system (37),

then the first non-vanishing term of its Taylor expansion

F(ϕ(t) + X) = fm(X) + · · · , where fm(X) �= 0 is a

homogeneous polynomial in X of degree m ≥ 0, is a

first integral of variational equations (48).

Furthermore, it is not difficult to prove that if F(x)

is a meromorphic first integral of (47), then the vari-

ational equations have a rational and homogeneous in

variables X first integral. Moreover, Ziglin’s lemma

(see [74]) guaranties that if system (47) has k function-

ally independent and commuting first integrals, then

also variational equations (48) have the same number

of functionally independent and commuting first inte-

grals. These observations show that integrability of lin-

earized system is related to integrability of an original,

nonlinear model. It means that in order to formulate

necessary integrability conditions for system (47), we

can use its lineralization (48). With linear system (48),

we can connect a group. Invariants of this group are

related to first integrals of (48). We describe just main

ingredients of this relation and its application to integra-

bility study; for more details, see, e.g., books [62,75]

and papers [71,76].

We assume that entries of matrix M(t) in equa-

tion (48) are elements of a differential field F, e.g.,

of rational functions F = C(t), or meromorphic func-

tions F = M(t). It is obvious that solutions of (47) are

not necessarily elements of F. If we add to the field F,

n linearly independent solutions of (48), then the new

differential field L is called the Picard–Vessiot exten-

sion of F. The differential Galois group G = G(L/F)

of linear system (48) is the group of all automorphisms

of the Picard–Vessiot extension that leave elements of

F fixed and commute with differentiation. It can be

shown that G is a linear algebraic subgroup of the group

GL(n, C). As a set group G consists of a certain num-

ber of separated parts, one of them contains the iden-

tity matrix and it is called the identity component G0.

If f (g(X)) = f (X) for every element g of the differ-

ential Galois group of linear system (48), then we say

that f is an invariant of G. The reason why properties

of the differential Galois group of variational equations

are connected with the integrability is as follows.

Lemma 2 If system (47) has k functionally indepen-

dent meromorphic first integrals in a neighborhood of

phase curve Ŵ, then the differential Galois group G of

variational equations (48) along Ŵ has k functionally

independent rational invariants.

The relation between the presence of first integrals of

a nonlinear system and invariants of a certain group

related to variational equations was first noticed by

Ziglin for monodromy group, see [74]. Later, Morales

and Ramis extended this observation to the differential

Galois group that contains the monodromy group. For

Hamiltonian systems and integrability in the Liouville

sense, this relation is particularly elegant. For these

systems, G is an algebraic subgroup of the symplectic

group Sp(2n, C) and the abelianity of the Lie algebra

of first integrals implies abelianity of the Lie algebra

of the differential Galois group. This is more precisely

stated in the following theorem.

Theorem 6 (Morales–Ramis) Assume that a Hamilto-

nian system is meromorphically integrable in the Liou-

ville sense in a neighborhood of an analytic phase

curve Ŵ. Then, the identity component of the differ-

ential Galois group of the variational equations along

Ŵ is Abelian.

In order to apply this theorem, it is necessary to use

effective methods which allow to determine properties

of the differential Galois group of linear equations. In

most of the investigated systems, variational equations

contain a closed smaller s-th dimensional subsystem

called normal variational equations and analysis of its
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differential Galois group is sufficient. Moreover, fre-

quently normal variational equations can be rational-

ized, i.e., transformed by means of change of indepen-

dent variable t → f (x(t)), into s-th order differential

equation with rational coefficients. In the case when

s = 2, the abelianity of the identity component of the

differential Galois group can be investigated by means

of the Kovacic algorithm [69].

After successful applications of Morales–Ramis the-

ory to various Hamiltonian systems, it was natural to

extend its application for non-Hamiltonian systems. As

we already mentioned, for such systems, there is no

commonly accepted definition of integrability. How-

ever, if we restrict ourselves to the B-integrability,

then we have an elegant generalization of this theory.

Namely, with system (6) we can associate its cotan-

gent lift, i.e., a Hamiltonian system with the following

Hamiltonian function

H =
n

∑

i=1

pivi (x), (49)

where x = (x1, . . . , xn) and p = (p1, . . . , pn) are

canonical coordinates defined in a symplectic manifold

M = C
2n . Hence, Hamiltonian vector field is given by

d

dt
xi =

∂H

∂pi

= vi (x),

d

dt
pi = −

∂H

∂xi

= −
n

∑

j=1

p j

∂v j

∂xi

(x), 1 ≤ i ≤ n. (50)

In paper [66], Ayoul and Zung showed that if

system (47) is B-integrable with k first integrals

F1, . . . ,Fk and commuting n −k symmetries u1(x) =
v(x), u2(x), . . . , un−k(x), then a lifted system gen-

erated by function (49) is integrable in the Liouville

sense. The above observation was nicely sketched in

[71]. Namely, we start with defining the following func-

tions

F j+k(x, p) := 〈 p, u j (x)〉 :=
n

∑

i=1

pi u
j

i (x),

1 ≤ j ≤ n − k.

Calculation of the Poisson bracket of these functions

with Hamiltonian (49) gives

{F j+k,H} =
n

∑

i=1

(

∂F j+k

∂xi

∂H

∂pi

−
∂F j+k

∂pi

∂H

∂xi

)

= 〈 p, [u j , v]〉 = 0, (51)

where we used assumption [u j , v] = 0 for 1 ≤
j ≤ n − k. Hence, F j+k are first integrals of sys-

tem (49). Using the fact that [u j , ui ] = 0, one can

also show that F1, . . . ,Fn pairwise commute. Let

ϕ(t) = (ϕ1(t), . . . , ϕn(t)) be a particular solution of

equations (47). Then

t −→ ψ(t) := (ϕ(t), 0) ∈ C
2n (52)

is a particular solution of Hamiltonian system (50). The

variational equations along this particular solution are

given by

Ẋ = M(t)X, Ẏ = −M(t)T Y ,

where M(t) =
∂v

∂x
(ϕ(t)).

(53)

Notice that first system of (53) is simply variational

equations (48), and the second one is just its adjoint.

Hence, if � is a fundamental matrix of the system

Ẋ = M(t)X , then � := (�−1)T is a fundamental

matrix of the equations Ẏ = −M(t)T Y . It implies that

the differential Galois group of whole system (53) coin-

cides with the differential Galois group of variational

equations (48). Based on this observation, Ayoul and

Zung proved the following theorem that gives neces-

sary integrability condition for non-Hamiltonian sys-

tems.

Theorem 7 (Ayoul–Zung [66]) Assume that system

(47) is meromorphically B-integrable, then the iden-

tity component of the differential Galois group of vari-

ational equations (48) along a particular solution ϕ(t)

is Abelian.

This theorem is the main tool to integrability study of

the non-Hamiltonian systems considered in this work.
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