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I. INTRODUCTION

One dimensional classical continuum Heisenberg ferromagnetic spin chains with different mag-
netic interactions act as an interesting class of nonlinear dynamical systems exhibiting a rich variety
of integrability

properties and soliton spin excitations. Though the dynamics of these spin systems are gov-
erned by Landau-Lifshitz(LL) equation[1], a highly nontrivial vector nonlinear partial differential
equation, the space curve mapping procedure developed by Lakshmanan [2,3] and the gauge equiv-
alence method proposed by Zakharov and Takhtajan [4] which were originally used in the case
of one dimensional classical isotropic Heisenberg ferromagnetic spin chain were considered to be
useful approaches that help to map the LL equation to nonlinear Schrédinger(NLS) family of
equations. The geometric equivalence method under space curve mapping was then used by Lak-
shmanan and his collaborators for several ferromagnetic spin systems with nontrivial and higher
order magnetic interactions as well as for some mathematical generalizations of the LL equation
and several integrable spin models identified and the underlying soliton spin excitations explored|5-
7]. The classical Heisenberg ferromagnetic spin chains with biquadratic interaction, Dzyaloshinski
- Moriya interaction and octupole-dipole interaction are some of the physically interesting spin
models, the nonlinear dynamics of which have been understood and integrable models identified in
recent years[5-10]. In this context, the study of classical isotropic Heisenberg spin chain[3] and site
dependent isotropic bilinear spin chain[11,12] are considered to be pioneering nonlinear spin models
for they were modeled by the completely integrable cubic NLS equation and an inhomogeneous
NLS equation which were considered to be important completely integrable nonlinear evolution
equations in their own respect[11-13]. In this paper, we study the nonlinear spin dynamics of a one
dimensional classical isotropic biquadratic Heisenberg spin chain by introducing varying bilinear
and biquadratic exchange interactions along the spin lattice. We try to identify the underlying
completely integrable spin models and construct soliton spin excitations. In the nonintegrable
case, we carry out a multiple scale perturbation analysis to understand the effect of nonlinear
inhomogeneity on the spin soliton and also the perturbed soliton constructed.

The plan of the paper is as follows. In Section II, we present the model and dynamical equation
for the spin system and map the continuous spin chain onto a moving helical space curve and
express the dynamics in terms of the evolution of the curvature and torsion of the space curve
which is found to be equivalent to a generalized inhomogeneous higher order NLS equation in
Section III. In order to see whether the above equation is integrable or not we carry out Painlevé
singularity structure analysis in Section IV and identify the underlying integrable spin models.
After mentioning the integrability properties we carry out a perturbation analysis to construct
perturbed soliton and to study the effect of nonlinear inhomogeneity in Section V. The results are

concluded in Section VI.



II. MODEL AND CLASSICAL EQUATION OF MOTION

The Heisenberg Hamiltonian for a one dimensional classical ferromagnetic spin chain with N
spins interacting with their nearest neighbours and characterized by site-dependent (varying) bi-

linear and biquadratic exchange interactions can be written as

H o= = [Jefi(Si-Sis1) + Jbgi(Si.8i1)7), (2.1)

i
where S; = (S7, S;y, S7) represents the classical three component spin vector and J, and Jj respec-
tively are the bilinear and biquadratic exchange parameters. f; and g; characterize the variation
of the bilinear and biquadratic exchange interactions along the spin chain. The equation of motion

corresponding to the spin Hamiltonian (2.1) can be constructed from [1]

ds;
dt

The Poisson bracket in the right-hand side of Eq.(2.2) for any two arbitrary functions F and H of

= {Si,H}pp. (2.2)

spins is defined as

OF OH
{F,H}pp = Z Z T asﬂs“ (2.3)

=1 a,f,y=1
where €,y is the complete antisymmetric Levi-Civita tensor. The above spin Poisson bracket
satisfies the same algebraic relations as the usual canonical Poisson bracket. On using our spin

Hamiltonian (2.1) in Eq.(2.2), we obtain the following discrete equation of motion for the spins.

as,

dt = Sn/\{Je(fnSn—H + fn—lsn—l) + Jb(gn(sn-sn+1)sn+1

+gn—1(sn-sn—1)sn—1)}- (24)

The structure of Eq.(2.4) demands that the length of the spin vector does not change with time
and hence all the spins are assumed to have unit length (S2 = 1).

Now, in order to understand the spin dynamics, we have to solve the discrete spin equation
(2.4). However, in the low temperature and long wavelength limit one can go to the continuum
limit by assuming that the lattice constant is very small compared to the length of the lattice.
We assume that the spins S, and the exchange coefficients f, and g, vary slowly over different
distance scales ”a” (lattice distance) and ”b” respectively. Thus, we introduce the following series
expansions for S, 11 and f,_1, gn—1 by assuming S, (t), fn and g, respectively as S(z,t), f(x) and

g(z) where z is a continuous variable.
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It may be noted that in Egs.(2.5), the spins have been expanded to O(a?) and the exchange
coefficients only upto O(b?) . In the normal cases "a” and ”b” are expected to coincide with each
other. But, nevertheless there may be situations where b # a. Using the above expansions in the

discrete equation of motion (2.4), we obtain the following continuous equation of motion written
to O(a'b™), I +m = 4.

S, = SA{A= 24y + s+ C g(S.8a)Sue + (24, — 4
t — 2;c 2:6:6 2179-:5:5 T az2azz
a? a? ab

where A(z) = Jof(z) + Jpg(z). In Eq.(2.6), the suffices t and x represent partial derivatives with

respect to t and x respectively. Eq.(2.6) describes the dynamics of spins in a one dimensional

classical continuum isotropic inhomogeneous biquadratic Heisenberg spin chain which is in the

form of the L-L[1] equation S; = S AF.s, where Forr = [A — %Am + %Am + ‘IQ—ZJ(,g(S.Sm)]Sm +
2 2 2

[gAw - g_aA:c:c + %Jbg(sszzz)]sx + %Aswwww + %bA:cSzcwzc]

III. A GENERALIZED NLS EQUATION AND SPIN DYNAMICS

In order to understand the nonlinear spin dynamics of the inhomogeneous isotropic biquadratic
Heisenberg spin chain more transparently, we map the spin chain at a given instant of time to the
moving space curve in E3[2,6]. A local coordinate system e;(i = 1,2,3) is formed on the space
curve by identifying the unit spin vector S(z,t) with the unit tangent vector e;(z,t) of the space
curve and defining the unit principal and binormal vectors ex(z,t) and es(z,t) respectively in the
usual way. The change in orientation of the trihedral e;, (i = 1,2, 3) which defines the space curve

uniquely within rigid motions is determined by the Serret-Frenet(S-F) equations[14]

€1 0 O (s3]
€9 = -k 0 7 €9 3 (3'1)
€3y 0 —70 €3

1 .
where k = (e1;.€15)? and 7 = nl—zel.(elw A e1zz) are the curvature and torsion of the space curve.

In view of the above identification and using the S-F equations (3.1), the equation of motion (2.6)
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can be rewritten as

2

~ a
€1 = {—hlﬁ:T— E

b
a—Aw(ZﬁwT + KTy)

ABKgrT + 3KyTy — K3+ KTgg — "67'3) 6

2 2
a . a
+7Jbgf$37}e2 + {hKs + ﬁA(k;mw — 6K% kg — 3Ky’ — 3KTT,)

ab =
+FAw(/<;m — K3 — k7% + hgk — 3a2Jbg/<02f-cm}e3. (3.2)
where h = (A - %Aw + %Am). The time evolution of the normals e;,7 = 1,2,3 can be evaluated
by using the S-F equations and Eq.(3.2). Thus after some lengthy algebra e;,i = 1,2,3 can be

rewritten as

e 0 w3 —ws (]
ey | = | —ws O w1 e | (3.3)
est w2 —wi 0 €3
where
2 2

1 -~ - -
wp = E{hz’% + h(Kgr — /vr?) + (hgk)z + %Jbg(n372 — Glmi — 3ﬁ2nm) + %A(ﬂmm — 12/<m§

b
—GmQﬂm — GﬁMT2 — 12K, TeT — 3&7’53 —4KT Ty + K372 + /<;'r4) + %Az (Kzzz

—4K% Ky — 3KyT? — 3KTT,) + T—zAm(mm — K — k%) — abengv2f$$}, (3.4a)
7 a’ 2 2 ab 3 2
wo = (hK)y + EA(mwm — 0Kk“Ky — BkeT® — 3KTT,) + FA;U(HM; — K> — KT?)
3
—§a2Jbgl<&2l<&w, (3.4b)
~ a2 3 3 ab
w3 = —hkT — EA(3HMT + 36,7y — KT + KTgg — KT°) — EAI(Z%T + KTy)
a2
+?Jbgﬁ37. (3.4¢)

Now, the compatibility of equations (3.1) and (3.3) namely (e;;): = (€;), lead to the following

evolution equations for the curvature and torsion of the space curve.

~ ~ 2
Kkt = —h(26,7 + K7g) — 2hgpkT — %A(llkame + 6kgpTy — AkgT> — 6KT2 Ty + 4Ky Ty

ab
— Ap(3640T + 34Ty — K3T + KTpy — I<.',T3)

4
a2
—EJbg(GH%zT + I€3Tz), (3.5)

+KTppy — O KgT — Iﬁ)sTa;) —
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-9 )]- (3.6)
The curvature and torsion of the space curve are related to the energy and current densities of
the spin system and thus the spin dynamics is equivalently represented in terms of the evolution
of the curvature and torsion of the space curve. In order to identify the set of coupled equations
(3.5) and (3.6) with more standard nonlinear partial differential equations, we make the complex

transformation [3]

K x
q = §expi/ 1(z',t) dz’, (3.7)
—o0

and obtain the following inhomogeneous generalized NLS equation.

) z a’A
1qt + (hQ)a:a: +2h | q |2 q+ 2Q/ ha | q |2 dz’ + E[szzz + K, | q |2 dzx
—00

ab
+ K q*a5, + Ky q| 6o [P +Kaq'a; + 3K20 | ¢ ']+ 5 AlGree +6 | g7 2] = 0. (3.8)
where h(z) = h+ ¥ Ay, K1 = —12(1 + 129), K, = —8(1 + 3%9), Ky = —36(1 + 859), K, =
4J
—14(1 + 2%9),

At different orders of the expansion parameters and for different A, Eq.(3.8) reduces to different
completely integrable equations of the NLS family. For example, at the lowest order, i.e. at
O(a’b%), when A is a constant, Eq.(3.8) reduces to the completely integrable cubic NLS equation

igr+qee +21q P g =0, (3.9)
and at the same order when A is a linear function of x it reduces to the following inhomogeneous

cubic NLS equation
X
m+w%ﬂw+mmﬁwmﬁww/|m%wﬂ- (3.10)
—00

At O(a?), when a = b and A = constant and for the choice % = 32, Eq.(3.8) gives the following

completely integrable fourth order NLS equation.

2
. a
19t + qzz + 2q ‘ q |2 +E[szzz +8 | q |2 qrx
+20°qh, +4 | ¢ g +6¢"¢+6 | q|* gl =0. (3.11)
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The above set of three completely integrable NLS family of equations were obtained from isotropic
bilinear[3], isotropic inhomogeneous[11,12] and isotropic biquadratic[5,6] Heisenberg spin chains
respectively through Lakshmanan’s space curve mapping procedure. The corresponding LL equa-
tion of motion for the completely integrable spin system can be written as follows.

(i) Isotropic bilinear Heisenberg spin chain[3].
St = S A Sz (3.12)

(ii) Isotropic inhomogeneous bilinear Heisenberg spin chain[11,12].

S; = SA[(Cz + D)Sgp + CSyl. (3.13)
(iii) Isotropic biquadratic Heisenberg spin chainl[5,6].
a® 5 5

The integrability properties of the above set of completely integrable equations have been studied
in detail and the spin excitations in the above spin models are governed by spin solitons.

An inspection of Eq.(3.8) reveals that in addition to the above, it contains at least two in-
homogeneous higher order equations which may lead to completely integrable spin models with
soliton spin excitations. For instance, in the next higher order assuming that O(ab) < O(a?) and

redefining a — 4a we have the following inhomogeneous Hirota-type equation.
. x iab
ig: + (hq)ez + 2hq | q ° +2q/ het | q | da’ + 15 Aolgers + 6] g 2] =0. (3.15)
—00

Eq.(3.15) with A(x) in the form of a linear function of x has been studied in the context of
a generalized x-dependent Hirota equation by carrying out singularity structure analysis and the
integrability properties investigated by constructing the Lax pair and soliton solutions[15]. Finally,
at O(a?), assuming that O(ab) > O(a?), Eq.(3.7) gives the following inhomogeneous fourth order
NLS-type equation.

) r a’A
1q¢ + (hQ)xw + 2hg | q |2 +2Q/ ha | q ‘2 dz’ + E[Q;c;m:;c + K, | q |2 dzx
—00
+K2q’ @y + K3q | g2 | +Kaq"q; + 3Kaq | ¢ |'] = 0. (3.16)

Now we seek whether Eq.(3.16) is also expected to be integrable only when A is a linear function
of x or otherwise. If so next we will analyse to see what would happen to the spin excitations
when A(x) and hence the inhomogeneity arises in the form of a nonlinear function. This forms the
major task to be carried out in the rest of the paper. We investigate these aspects by carrying out

Painlevé singularity structure analysis followed by multiple scale perturbation analysis.

IV. SINGULARITY STRUCTURE ANALYSIS AND SPIN SOLITON

In order to pick up completely integrable models underlying Eq.(3.16), so that the elementary

spin excitations can be expressed in terms of solitons, we carry out Painlevé singularity structure

7



analysis[16,17]. The Painlevé analysis is a useful tool to verify whether the given nonlinear par-
tial differential equation is free from movable critical manifolds so that the generalized Painlevé
property holds. This procedure ensures the single valuedness of the general solution of the given
nonlinear partial differential equation around any noncharacteristic movable singular manifold when
expressed locally as a Laurent series. The singularity structure analysis which proceeds along three
major steps namely (i) finding the leading order behaviour (ii) identifying resonances and (iii) ver-
ifying the existence of sufficient number of arbitrary functions is now an established procedure and
hence we do not present the complete details of the analysis here.
In the following, we rewrite Eq.(3.16) and its complex conjugate equation by denoting ¢ and ¢*
by E and G respectively and defining a new real function R.
1By + Egy + 2hy Ey + hy E 4+ 2RE + %A[Emm + K1EGEyy + KoE?*Gyy
+K3EE,G, + K,GE? + 3K, E*G?] = 0, (4.1a)
—iGy + Ggg + 20y Gy + hywG + 2RG + %A[Gwm + KiEGGqy + KoG?E,,,
+K3GE,Gy + K,EG? + 3K, E*G?] = 0, (4.1b)
R, — 2h, EG — h(EG), = 0. (4.1¢)

We perform Painlevé singularity structure analysis on Egs.(4.1) by expanding the functions E, G

and R locally in the form of the Laurent series

E = Eo(a:,t)¢p(a:,t)+ZEj(x,t)¢”+j, (4.2a)
G = Go(z,t)¢°(z,t) + Y _ Gj(z,t)¢", (4.2b)
R = Ry(z,t)¢" (=, 1) +ZRj(w,t)¢w+j. (4.2¢)

Now using the leading order terms of the solutions (4.2), i.e. E ~ Ey(z,t)¢P(z,t), G ~
Go(z,t)¢*(z,t), R ~ Ry(z,t)¢" (z,t) in Egs.(4.1) and on balancing the dominant terms, we obtain

the following two branches of leading order behaviour.

Branch(i)
p = 8§ = —]_,w = —2, (43&)
_ 42 —h 2
EyGy = 7(}5:‘]()!], Ry = 7%?29. (4.3b)
4(1 + T) 4(1 + T)
Branch (ii)
p=s=—-1w=-2, (4.3¢)

EyGo

—4¢2, Ry = —4he>.

Now to find the resonances i.e. the powers at which free coefficients enter into the generalized



expansion, we expand

E = By + ...+ a1 ¢?™", (4.4)
G = Gy’ +...+ 0&2¢s+1‘, (45)
R = Ro¢™ + ... + azp¥™", (4.6)

and substitute in Egs.(4.1) containing the leading order terms alone. The result yields

M,  EM, 0 o
G2M, M, 0 ay | =0, (4.7)

hGo(2 —7) hEy(2—71) 7 —2 Qs
where My = (r —1)(r —2)(r = 3)(r —4) + [(r — 1)(K1(r — 2) — K3 —2K4) + 2K + 4K + K3)EyGp +
9K, F2G2 and My = [Kao(r — 1)(r — 2) — K3(r — 1) + K4 + 2K1] + 6K2FEyGy. On substituting

EyGy, in the resonance matrix (4.7), we obtain all real resonances only for the following set of

parametric choices (a)% = =L and (b)% = 2. In the case (a) the two branches merge into
a single branch with the leading order results EgGy = —4¢2, Ry = —4h¢? and the resonances,
r = —-1,-1,0,0,2,3,4,7,8. Analysing further, we find that the system admits a logarithmic

singularity manifold at r = 0, thereby destroying the Painlevé nature of solution and therefore we
stop treating case(a) further. For the case (b) we obtain the following two branches.
Branch(i)

EyGy = _Qﬁ;a Ry = —h(i)i, r =-1,0, 152,253,455,6' (48)
Branch(ii)
EyGo = —4¢2, Ry = —4h¢?, r = —3,-2,-1,0,2,5,6,7,8. (4.9)

In both the branches the resonances —1 and 0 correspond to the arbitrariness of the manifold and
of Ey or G respectively.

To check whether sufficient number of arbitrary functions exist without introducing movable
critical singularity manifolds, we substitute the Laurent expansion (4.2) in the full equation (4.1)
and collect coefficients of different powers of ¢ and obtain Ry = —2h; + h¢y,, Re = arbitrary and

the following compatibility conditions corresponding to different resonances.

(61,974 ¢72): 1=

EoG1 + GoEr = ¢y (4.10)
(472, 970¢71): 12,2
EyGy — GoEy = 6;% [~3(EoGosz — GoBozs) — 2(bsbas)s — 45, + 4(2G0 B1a
—E0G1z) ¢z + 4 Gox bz — Goduz) Er + 8E0z prbual, (4.11a)
- (4.11b)



From the above results, we observe that F; or G; and E3 or G2 and Ry are arbitrary in addition
to the condition that h;, = 0 implying that h is a linear function of x, say h = Cz + D where
C and D are constants. Proceeding further, we find that sufficient number of arbitrary functions
enter without introduction of movable critical manifolds at r = 3,4,5 and 6. However, as the
compatibility conditions corresponding to these resonances are unwieldy in nature we are not
presenting them here. For the branch (ii), we verify that arbitrary functions enter at r = 5,6,7
and 8. Thus Eq.(4.1) satisfies Painlevé property and is a candidate to be integrable when % = I—25
and h = Cz + D. The integrable form of Eq.(3.16) can therefore be written as

Z

2
. a
igt +2Cqy + (Cz + D)[gee +2 | g |2 q] + 20‘1/ | g |2 dz' + E[waww

—00

181 g oo + 20, +4 | gz | ¢ +6¢"¢2 +6¢ | ¢|*] = 0. (4.12)

The corresponding spin equation is written as

a’® 5 5 ]

Si = SA |[(Co+ D)Sus + CSa] + T5[Susas — 5(S:Se2)Saz — 3(88aa)Sa] |- (4.13)

The integrability properties of Egs.( 4.12) and (4.13) in the absence of inhomogeneity have been
discussed in detail in refs.[5,6]. When linear inhomogeneity is present in the system the Lax pair
and soliton solutions can be written as follows[5,6,15]. The Lax pair U, V associated with the
AKNS-type linear eigenvalue problem ¥, = U¥, ¥; = V¥, where ¥ = (U, ¥9)? corresponding
to Eq.(4.12) can be written as[18]

—i\ q

U = e (4.14a)
—q* i\

V = |ilg P +i1g"gue + 03— | 4o 12 +3 | ¢ ') + 250(ag; — qug) = 208°[1 + Cw+ D

+25 | q |?] + smﬂ 0, 4 10, Mg + A[6M2 Mo, + 0, Mg — 4i5A%0, M,

+2(Cz + D)M + 2A[M + 4( Mgy — 2M3)] — 8533 M, (4.14b)
o 24 10 0 ¢ )
where ) is the spectral parameter and ¥ = %5, 0, = , M= . Knowing the
0 -1 —q* 0

Lax pair the multisoliton solutions can be constructed using the inverse scattering transform (IST)
method[19] or using the Bicklund transformation technique[20,21]. For example, the one soliton

solution of Eq.(4.12) is found to be
q(1) = —2psech( exp(—2ie), (4.15a)
where
(=2 [p(él + x) — 329p® 4 4(8p” + 1),upt] +8D / (u? — p*)dt + by, (4.15b)

e = p(dy + z) + 2[(1? — p)t — 4y(u* + p*)t + 244 p*t] + 4D / ppdt + oy, (4.15¢)

10



where p and u correspond to the scattering parameter and 61 and §y are phase constants. The

corresponding spin components can be written as [6,22,23]

T _ —2p I .M
S* = D) [ucos(;)g - psm(;)CtanhC] sech(, (4.16a)
SY = ﬁ [usm(%)f + pcos(%)(tanh§] sech(, (4.16b)
2 2p°
S*=1- [7@2 f_ pQ)]sechQC. (4.16¢)

V. EFFECT OF NONLINEAR INHOMOGENEITY UNDER PERTURBATION

The results of the singularity structure analysis in the previous section showed that the inhomo-
geneous biquadratic spin system becomes completely integrable and the elementary spin excitations
expressed in terms of solitons only when the exchange inhomogeneity appears in the form of a lin-
ear function. Now the question arises as to what will be the effect of a nonlinear inhomogeneity
on the spin soliton. We try to find an answer for this question by carrying out a multiple scale
perturbation analysis by considering the inhomogeneous cubic NLS equation at the lower order

from the generalized NLS equation (3.8).

T

iqt + (hq)zz +2h | q |2 q+ 2q/ hy | q |2 dz' = 0. (5.1)

—0
We have considered the equation at the lower order for the perturbation analysis because the
inhomogeneity does not enter into the terms at O(a?) and hence it is sufficient to analyse Eq.(5.1)
to understand the effect of inhomogeneity on the spin soliton. The effect of higher order terms i.e.
terms at O(a?) (discreteness effect)(without inhomogeneity) on the NLS soliton as perturbation
is studied in refs.[5,6]. When h = hy = constant, Eq.(5.1) reduces to the completely integrable
cubic NLS equation (3.9) and when h is a linear function of x say h(z) = Cz + D, where C and
D are constants, it reduces to the completely integrable inhomogeneous NLS equation. We now

substitute
h(z) = ho+ Ahi1(z), (5.2)

where A is a small parameter and hy is a nonlinear function of x, in Eq.(5.1) and after suitable

rescaling of t and redefinition of A we get,

T

igt+ gz + 21 q1? g+ A[(h1@)ax + 201 | g | g+ 2q/ hiy | q | dz'] = 0. (5.3)

—0o0
A. Perturbation Method

We now carry out the multiple scale perturbation analysis laid down by Kodama and

Ablowitz[24] by treating terms proportional to A in Eq.(5.3) as perturbation. Considering g

11



as the exact solution corresponding to the unperturbed part (A = 0), we introduce certain fast
variables ©;(i = 1,2,3,..., M) and a slow variable T' = At and parameters P;(i = 1,2,3,..., M)
which depend on the slow variables[24,25]. The unperturbed solution gy in terms of these new

variables then take the form
qo0 :(}0(@1,@2,...,®M;T;P1,P2,...,PM). (5.4)

However, for one soliton solution, it is enough to introduce only one fast variable. Now we expand
q in terms of a power series in \.

g=qo+ Mg +.... (5.5)

Using Eq.(5.5) in the perturbed equation (5.3) and collecting the coefficients of different powers of
A, we obtain a system of linear differential equations with variable coefficients. By solving these
equations recursively we obtain the perturbed solution upon taking care of the secularity problem
appropriately and using the boundary conditions. In what follows we make use of this multiple
scaling analysis to Eq.(5.3).

When A = 0, Eq.(5.3) reduces to the completely integrable cubic NLS equation (3.9) which

possesses N-soliton solutions. The envelope one soliton solution of Eq.(3.9) can be written as

q = nsechn(0 — 6y)expli&(0 — by) + i(oc — 09)], (5.6a)
where

0, =2, O,=1, o, =n>+¢€% o0,=0. (5.6b)

We write n,£,0,0p and oy as functions of the new time scale T = At now. Hence, the soliton

solution of Eq.(5.3) can be written as
q = 4(0,T; N)exp[i£ (6 — Op) +i(o — 00)]. (5.7)
Under the assumption of quasi-stationarity, Eq.(5.3) can be written as
—1°G+ oo + 24°G" = AF(q), (5.8)
where

F(q) = i[—qr + 2h16&q + 2h1£Gp) — [£7(0 — O0) — £6or] + (R1Q)g0
[’

g +om [aP a+2 [ b |df do. (5.9)
—0oQ
Expanding § in terms of X\ as

where gy = nsechn(0 — 6y). Substituting Eq.(5.10) in Eq.(5.8) at O(\) we get
—nG1 + Giog + 24547 + 44561 = F1(o)- (5.11a)
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The right-hand side of Eq.(5.11a) is of the form

Fi(qo) = i[—qor + 2h16&Go + 2h1&Gos] — [§1(0 — Oo) — EOor] + (R1do)se
9
—h1&%Go +2h1 | o |* o + 2@0/ hig | Go |* d6'. (5.11b)

—0o0

Substituting §; = b1 + i (qAﬁl and 1 are real) in Eq.(5.11), we obtain

Lig1 = —n°¢1 + d1go + 6d5¢1 = RF1(do), (5.12a)
Lop1 = —nh1 + Y199 + 26591 = SF1(do), (5.12b)

where RF1(Go) and SF1(go) are the real and imaginary parts of Fi(go) given by

RF1(Q) = —[r(0 — 0o) — &bOor] + (h1do)as
0
—h1&%Go + 2h1 | Go > Go + 2@0/ hig | Go |* d', (5.12c)
—00
SFi(Go) = [—dor + 2h19€do + 2h1€dog), (5.12d)

and £; and L, are self-adjoint operators. On solving Egs.(5.12) for specific form of inhomogeneity

h1, we obtain the perturbed soliton solution.

B. Evolution of Amplitude and Velocity of the Soliton

It may be noted that gog and go are solutions of the homogeneous part of Egs.(5.12a) and (5.12b)

respectively and hence the secularity conditions yield

o0
/ QopMF1dO =0, (5.13)
— 00
and
o0
/ GoSF1df = 0. (5.14)
—0o0

Now, in order to carry out the integration in Eqs.(5.13) and (5.14), we have to supply the explicit
form of the inhomogeneity h; in Eqgs.(5.12¢) and (5.12d). As the results of the Painlevé singularity
structure analysis show that the inhomogeneous biquadratic spin chain model becomes integrable
when the inhomogeneity appears in the form of a linear function of x, we are interested in inoho-
mogeneities other than the linear function and here we consider a simple nonlinear inhomogeneity
in the form hi(z) = Bz? + Cz + D, where B, C and D are constants. Using the above form of h;
in Egs.(5.12c) and (5.12d) and making use of them and §opy and Gy in Egs. (5.13) and (5.14) and
integrating (for details, see Appendix A), we obtain

nr = 2K&(n - 2), (5.15)

and
&r = 2K(p” — £%), (5.16)
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where K = (C+N) and N = Bn[(6—6o)tanhn(0—00)]>°,, which is assumed to be finite by choosing
0y appropriately. Egs.(5.15) and (5.16) describe the evolution of the amplitude and velocity of the
soliton respectively. It should be noted that when the inhomogeneity is absent the amplitude and
velocity of the soliton do not change as time passes on.

To understand the nature of evolution of the amplitude and velocity of the soliton, we solve the
set of coupled eqautions (5.15) and (5.16). On differentiating Eq.(5.15) with respect to T once and

using Eq.(5.16) in the resultant equation and after rescaling T suitably, we obtain

nrr — (n — 2)n? = 0. (5.17)
Integrating Eq.(5.17) once, we get
dny, 14 43
Ity Z C 5.18
(dT) 277 377 0, ( )

where () is the constant of integration. The left-hand side of (5.18) corresponds to the energy of
the soliton which oscillates under the quartic potential. Now, we analyse Eq.(5.18) in two different
cases namely when Cy = 0 and Cj # 0 separately.

Case (i): Cop =0

Choosing the integration constant Cy = 0, Eq.(5.18) can be easily integrated to give

4
9

where (] is the second integration constant. C; can be evaluated by assuming that the initial

7= Sl 5T +C)), (5.19)

amplitude of the soliton 7(0) as ny. Now, after finding C; and transforming 7' — (T — %), Eq.(5.19)

can be written as

6
= ——, 5.20a
U 0 (5.20a)
where
1 8 |1 1 6
=[(T—-2)*+301—--—)2(T—-=)——] 5.20b
Q = (-5 +30 - 3 T - 3) - 2 (5.200)
Knowing 7, the velocity £ of the soliton can be straightaway calculated by substituting Eq.(5.20)
in the expression £ = % Thus, the velocity of the soliton can be expressed as
3 8 .1
= ——[1-3(1—--—)2 —2T. 5.21

In Fig.1 and Fig.2, we have plotted the amplitude () and velocity (£) of the soliton as given
in Egs.(5.20) and (5.21) by assuming that the soliton is initially(7" = 0) at rest (£ = 0) and has
an initial amplitude of 79 = 3.0. As time passes, the amplitude and velocity of the soliton slowly
increase and reach a maximum value. At this point the soliton suddenly flips and starts moving
in the opposite direction and slowly dies out(damps) due to the inhomogeneity along the chain.
As the velocity of the soliton is found to be inversely proportional to the inhomogeneity, in highly

inhomogeneous magnetic media, the velocity of the soliton decreases very rapidly and also the

14



Amplitude
201

FIG. 1: Evolution of amplitude () of the soliton when Cy = 0 (Eq.(5.20)) under quadratic

inhomogeneity when the initial amplitude is ng = 3.0.

40-

Velocity
20+

FIG. 2: Evolution of velocity (£) of the soliton when Cy = 0 (Eq.(5.21)) under quadratic inhomo-

geneity when the initial amplitude is ny = 3.0.

soliton dies out very quickly. It should be noted that if the soliton does not flip when it moves
with very high speed it may explode suddenly.

Case (ii): Co #0

When Cj # 0, Eq.(5.18) can be integrated to give n and hence also ¢ which can be written in terms

of Jacobian elliptic functions [26]. For example (when Cj is chosen as 811 for convenient plotting
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—300-

FIG. 3: Evolution of amplitude (n) of the soliton when Cy = % (Eq.(5.22)) under quadratic

inhomogeneity when the initial amplitude is ny = 3.0.

of n and &) 7 can be explicitly written in the form

(e~ — Coey) —epen(L)
M) = a5 s on(T)’ (5.22)
(0- 204) +Cn(g)
_ _ —_ 2(m—mo0)b2 _ 1 2 _ —(ns—m3)? _
where €1 = moaz £ mbe, 01 = ag £ by, Cy = nodr—er 9T Jahy Y1 T 1 , b=
M, a2 = (n —b)?+a2, b= (2 — b))%+ a2 Here 1y = n(0) as before and 7; and 7, are

the two real roots of the polynomial 7* — %773 + 811 = 0 and 73 is the complex root of the same.

Using 71, £ can be written as

) (28 = o Jon(D)dn(D)

" K{l(6_ — Cady) — dren(Dl(e — Coes) — exen(D)] — 2[5 — Cods) — dzen(DPY’
(5.23)

£

where sn(%), cn(%) and dn(%) are Jacobian elliptic functions.

In Figs.(3) and (4), we have plotted the amplitude (n) and velocity (£) of the soliton from
Eqs.(5.22) and (5.23). In this case also, the amplitude of the soliton grows rapidly and suddenly
flips. However, unlike the previous case this occurs periodically. Since 7 is expressed in terms of
Jacobian elliptic functions, in fact, it happens doubly periodically. As in the previous case, here
also the velocity of the soliton grows rapidly and when it is at its highest speed and when it flips it
suddenly moves in the opposite direction. Once again the velocity increases and the soliton turns
back in the next flip. Interestingly, unlike the previous case here the soliton flip and its turn around
happen doubly periodically. From Eq.(5.18) one can observe that Cj represents the energy of the
soliton and the soliton now oscillates doubly periodically under the potential (_77’4 + %773) (forced
oscillations) in the inhomogeneous magnetic medium. Thus Cj acts as a source of energy for the

soliton to flip doubly periodically without dying and of course dies out when Cy = 0.
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FIG. 4: Evolution of velocity (£) of the soliton when Cy = &5 (Eq.(5.23)) under quadratic inhomo-

geneity when the initial amplitude is ny = 3.0.

C. Perturbed Solution

The perturbed solution of Eq.(5.3) can be constructed by solving Egs.(5.12) for ¢; and 1; using
the form of the inhomogeneity as hy = B(0 — 6y)?> + C(0 — 6y) + D. The homogeneous part of

Eq.(5.12a) admits the following two particular solutions.

11 = sechn(0 — O)tanhn(0 — 6y), (5.24)
12 = = lsechn(6 = 6u) = 30(6 — Gu)sechn(0 — 60)tanhn(6 — 6o
1
—Etanhn(ﬁ — 0p)sinhn(6 — 6y)]. (5.25)

Knowing two particular solutions, the general solution can then be written in the form

0 0
¢1 = 01011 + dad12 — ¢11/ 12 RF1dO + ¢12/ $11RF1db, (5.26)
—00 —00

where §; and d9 are arbitrary constants of integration and RF} is as given in Eq.(5.12c). Substi-

tuting ¢11, ¢12 and RF; in (5.26) and evaluating the integrals and after lengthy calculations we
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obtain the solution as

5 15B 9 1 \
¢1 = [— P + P E(WOT +oor +2B) = SABB(0 — 6h)" — C(0 — o)
9 K 5B DA
-I-%D] - ;(9 —0o) + [F + F]choshn(ﬁ — 69)]sechn(0 — 6y)
—15B 7 1 ) AB
+[W + %(fQOT-l-OOT-f—QB) + ZA[15B(9—90) +7D] — ?
Xln coshn(0 — 90)] sech°n(0 — 6p) + [(51 + —77(9 6o) + (0 —6)
1 3K 5D
X (&6or + oot + 2B) + EA(—H—Q +5Bn*(0 — 60)* — [Cn® - 57

—l—%(@ 00)])] sechn(0 — 6p)tanhn(6 — 6y) — [;BA(Q - 00)] sechn(6 — 0y)

Xtanhn(0 — 0y)lncoshn(0 — 0y) + ! [—2KA — 9% — £2)(2B(6 — 6,) — 20)]

i
Xsinhn(6 — 6y) — [%Atanhn(& — 00)] sinhn(6 — 6o)Incoshn(0 — 6p)

5 1
n [ﬁ + 4 (€007 + 00 + 2B + DA)] tanhn(6 — 6o)sinhn(6 — 6o)

3BAZ 221c 22k BQk;( (0 00))2k+1

(2k + 1)2k! sechn(0 — 0o)tanhn(0 — 0o), (5.27)

where A = (n? — ¢2) and By is the Bernoulli number. Before writing the final form of ¢;, we
remove the secular terms which make the solution unbounded by choosing the arbitrary constant

do as
-1
52 = 7(5007‘ + oor + 2B + DA) (528)

Using the boundary conditions ¢1(0) |g,=0 = ¢19(0) |g,=0= 0, we obtain

3
2n?

and once again the same value of d5 as given in Eq.(5.28). Using these results in the solution given

& = —— KA, (5.29)

in Eq.(5.26) the final form of the general solution ¢; can be written as

3 3 15B 1
= | 2B)((0 — 6y) — = - e

b1 [4(g90T + oo + 2B) ((6 — 6o) n) +DAW0—00) + 55 — 50

9 1 5B DA

— 2 — p— —_ _ = — RE— —_

X[5B(6 —60)° — OO —60) + 5D — K (6 —60)] + (n2 o )
~15B 7 1

Xlncoshn(6 — 90)] sechn(6 — 0y) + [W + %(59@ + oor +2B) + ZA

4B 1
X[15B(6 — 6y)? + 7D] — n—ln coshn(f — 00)] sech®n(6 — 6) + [iA(H —6)

11D B B
X(5Bn*(0 — 6y) — Cn® + — - 67 — 3—lncoshn(9 00))]
Xsechn(0 — 6y)tanhn(0 — 0y). (5.30)

18



Following the same procedure 1 can also be obtained by solving Eq.(5.12b). The solutions of
the homogeneous part of Eq.(5.12b) read

Y = sechn(d — ), (5.31)
P12 = %[n(@ — 6)sechn(0 — 0y) + sinhn(0 — 6y)]. (5.32)

As before, the general solution of Eq.(5.12b) can be written in the form

0 9
Y1 = 03911 + 0ath12 — ¢11/ P19 F1dl + ¢12/ P11 SF1do’, (5.33)
—00 —0oQ

where d3 and J, are arbitrary constants. Substituting the solutions 117 and 19 from Eqs.(5.31)
and (5.32) in Eq.(5.33) and putting SF) after evaluating the value of it for the above quadratic
inhomogeneity and after finding out the value of the integrals in Eq.(5.33), the general solution for
11 after making lengthy calculations can be written as

(0 — 90)

o = [oar E5P% (0 - 00) + 30— o)+ (6P (0 - 00 + 5 (6 - )

(0_ 00) [
2

~2(0 — o) — EnlB(O — 60)? — C(6 — 80) + DI] + 51(6 — o) + D —

S 22k 22lc _ 1 BZk( (9 _ 90))2k+1
(2k + 1)2k!

+D - Dévﬂ]] sechn (0 — 0) + | — (6 — 6)

¢B
7

]

]sech?’n(ﬁ —60o) + [%[%(0 —0o)

l\')lb—l._.

20— 00)r — ?Bg(e — 00)? + D] | sechn(8 — bo)tanhn(6 — 60) + [%53(0 — )]
sechn(0 — 6y)incoshn(6 — 0y) + [ng(@ — 0p)sinhn(0 — 00)] Incoshn(6 — 6y)
+i [p 2BEn(0 — 6p) — an] sinhn(0 — 6o)tanhn(0 — 6;)
+ [%[254 — (6 — 60)r — 2D] | sinhi(6 — o), (5.34)
where p = K&(n — 2). The secular terms can be removed by choosing
Sy = g(e — 60)r + 2DE. (5.35)

The boundary conditions %1 (0) |g,=0 = %16(0) |g,=0= 0, give

63 = D¢, (5.36a)
6, = —Dén. (5.36b)
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Using these results, the final form of the general solution ; is written as

C

v1 = [Den [-5D€n+ p(0 — 00) + TEn* (0~ 00)* + 50~ 00) + D

_3D§772]]L _200)]sech77(0 — 6o) + [[ — (0 — 60) — &n[B(6 — 6,)*

0—6 B
—C (0 — 6y) + D] ( 5 O)] —2D¢én? + &nD — 577—2] sech®n(6 — 6y)
1.1 11 )
- [5[59(0 —6y) —2D¢n — 553(0 —60p)° + fD]] sechn (0 — 0y)tanhn(6 — 6y)
1
+ [536(9 - 00)] sechn(6 — 6y)lncoshn(6 — y). (5.37)
Thus, the first order perturbed soliton solution §¢; is obtained as
. 3 3 5B 1
G = [Z(geoT + oor + 2B)((6 — 6o) — 5) + DA(6 — 6,) + P 5 ABB(0 - 6o)’
9 1 5B DA
—-C(0—6y) + %D - EK(G —600)] + (77_2 + F)lncoshn(ﬁ - 90)]

—15B

Xsechn(0 — 6p) + [W

7 1
+ %(S%T +oor +2B) + JA[L5B(0 — 60)” + 7D]

_[;_?ln coshn(f — 90)] sech®n(6 — 6p) + [%A(e — 00)(5Bn*(6 — 6p) — Cn’

+ 1121)77 _$B _ ﬁlncoshﬁ(e - 00))] sechn(6 — 0y)tanhn(0 — 6y)
n n

+i[[Den + [~ Den + p(0 — 00) + %W(e 00 + (0 00) + D

G

—3D£772]]_THO)] sechn(6 — 0y) + [[ — (0 — 0y) — En[B(6 — 6p)?

—C(6—6y) + D]@] —2Dén* +¢énD — fn—f]sech?’nw —6p)

+ [%[%@(9 —6y) —2D¢n — %53(0 —00)% + {D]] sechn(6 — By)tanhn(0 — 6y)
+ [%35(0 - 00)] sechn(0 — 6y)incoshn(6 — 00)]. (5.38)

Knowing §; the general perturbed solution can be written down. Using these results the spin

components can be constructed using the known differential geometric considerations.

VI. CONCLUSIONS

In this paper, we have investigated the integrability of the classical one dimensional Heisenberg
inhomogeneous ferromagnetic spin chain and also the effect of inhomogeneity on the soliton of the
associated completely integrable spin model. The spin dynamics of the system has been studied by
mapping the spin chain onto a moving space curve. The resultant invariant equations are expressed
in the form of an inhomogeneous higher order generalized NLS equation. By carrying out Painlevé

singularity structure analysis we found that the system is in general not integrable and becomes
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integrable for linear inhomogeneity and for specific choice of biquadratic exchange interaction. Af-
ter mentioning the Lax pair and soliton solutions of the integrable equation, we investigate the
effect of nonlinear(quadratic) inhomogeneity on the soliton of an underlying integrable model of
the inhomogeneous spin system at lower order. For this, we carried out a mulitple scale perturba-
tion analysis and constructed the perturbed soliton. More interestingly we found that under the
influence of the nonlinear inhomogeneity, the amplitude and velocity of the soliton undergo curious
changes. As time passes on the amplitude and velocity of the soliton increase and when it moves
with very high speed it flips suddenly and turns back and slows down, once again flips and this

happens doubly periodically.

APPENDIX A: EVALUATING THE SECULARITY CONDITIONS

Using the value of RF; form Eq.(5.12¢) in the secularity condition

o0 o0
/ GogRF1dO = / dooldo(h1ge + 2h1 | Go |* —h1&? + EBor + oor

—Q —o0

0
—&r(0 —6p) + 2/ hig | qo |* d6' + 2h19Gog + R1qogs] = O, (A1)

where hi(0) = B(6 —6y)% 4+ C(6 — 6y) + D and using §o and their derivatives in the above equation,
we obtain

[ [er0=00) - ¢00r = 0wz — (47 - )50 00) + D) ~ 25

—00
0/
—2n? / (2B(0 — 6y) + C)sech?n(0' — 6)d0'}sech?n(6 — 6p)tanhn(6 — 6y)

+21(2B(6 — 6y) + C)sech’n(6 — 6y) — 2n(2B(6 — 6y) + C)
X sechin(0 — 00)] df = 0. (A2)

Evaluating the above integrals, Eq.(A2) gives

ér = 2K(n° - €°). (A3)
Similarly, substituting the value of SF; from Eq.(5.12d) we obtain
o0
| 03P = doldor + 2o + 2ol de = 0. (a4)
—0o0

Making use of Go we get

| [+ 20ghualsectingo - 00) ~ afat — 6o))r + 2]

sechn(0 — 6o)tanhn(0 — 00)] d = 0. (A5)
Evaluating Eq.(A4) we obtain

nr = 2K¢(n - 2). (A6)
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