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A general class of n-particle difference Calogero—Moser systems with elliptic po-
tentials is introduced. Besides the step size and two periods, the Hamiltonian de-
pends on nine coupling constants. We prove the quantum integrability of the model
for n=2 and present partial results for n= 3. In degenerate cases (rational, hyper-
bolic, or trigonometric limit), the integrability follows for arbitrary particle number
from previous work connected with the multivariable g-polynomials of Koorn-
winder and Macdonald. Liouville integrability of the corresponding classical sys-
tems follows as a corollary. Limit transitions lead to various well-known models
such as the nonrelativistic Calogero—Moser systems associated with classical root
systems and the relativistic Calogero—Moser system.

1. INTRODUCTION

The well-known Calogero—Moser (CM) systems and their generalizations related to root
systems form a rich and widely studied class of finite-dimensional models."? In these systems the
particles are one-dimensional and interact by means of inverse square potentials or (doubly)
periodic generalizations thereof. For the root system A,_;, which corresponds to an n-particle
system with pair potentials, the Hamiltonian with elliptic potential reads

Hw=112 2 6+g* 2 p(x—x0), (1)

Isj=n I<j<ksn

where g (-) denotes the Weierstrass p-function.® It has been shown that the Hamiltonian (1.1) is
Liouville integrable’ and that integrability is preserved after quantization.2

A relativistic generalization of H¢y (1.1) has been introduced by Ruijsenaars e. a*S The
Hamiltonian of the relativistic CM system (henceforth abbreviated RCM) reads

Hrew= 2 Il f(x;—xch B9, (1.2)

I<jsnk #j

with f( - )=(1+ B2 g2p( - )2, It was shown that also the RCM system is integrable; in fact,
in the relativistic case explicit combinatorial expressions were found for a complete set of integrals
in involution. An appropriate quantization of the integrals gives rise to commuting difference
operators. This type of operators is referred to in the literature as analytic difference operators
(AAOs) or finite-difference operators (also g-difference operators). The reason AAOs emerge after
quantization instead of PDOs [as for the quantization of Hcy (1.1)], is that substituting
6, —> — it axj in Hrepm (1.2) leads to exponentials of the form exp(ii,Bﬁaxj). The parameter S,
which determines the step size of the differences, is proportional to the inverse of the speed of
light. For B— 0, which corresponds to the nonrelativistic limit, B~ %(Hgrcm—n) converges to
H . For more information on RCM systems and interesting connections with soliton PDEs and
integrable QFTs the reader is referred to the survey in Ref. 6.
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2984 J. F. van Diejen: Integrability of difference Calogero-Moser systems

The remaining classical root systems (i.e., B,, C,, D,, and BC,) also give rise to n-particle
CM systems. The latter differ from the A,_; model in the sense that translational invariance is
traded for symmetry under the reflections x; = — x;, and by the presence of various types of
external fields. The precise nature of the external field depends on the type of root system. A
Hamiltonian that contains the latter models as special cases was studied by Inozemtsev e. a.:”®

1
H=3 2 6+g" 2 (p(x;=x)+p(x+x0)

Isj=n I<j<ksn

+ 2 (8ho(x)+el plo+x)+8] plantx)+gl p(o+w,+1x)),  (13)

l<sj=n

where 2w, and 2w, are the primitive periods of the g-function. A Lax pair for the flow generated
by H (1.3) was presented in Ref. 8. It follows from the Lax pair that the system has n independent
conserved quantities, but it has not been shown yet that these are in involution. Nevertheless, it is
very plausible that this is indeed the case and, therefore, that the Hamiltonian (1.3) is integrable.

The main purpose of this paper is to present a difference CM Hamiltonian generalizing the
quantum version of H (1.3), and study its integrability. The generalized Hamiltonian is given by an
AAO with meromorphic coefficients. These coefficients govern the interaction felt by the par-
ticles. The model depends on nine coupling constants. (Actually we shall impose one linear
constraint reducing the number of independent coupling constants by one.) By sending the step
size to zero one obtains a PDO that is the quantization of A (1.3). It will turn out that also the
quantumn RCM system can be seen as a special case of the difference CM model considered here.

Let us outline the plan of the paper and describe its results in more detail. We begin in Sec. II
with a discussion of certain n-particle difference CM systems with rational, hyperbolic, or trigo-
nometric coefficients (potentials). Just as for the relativistic system, the integrals are given by
explicit combinatorial formulas. Sending the step size to zero leads to a complete set of integrals
for the quantum CM system associated with the root system BC,. The material in this section
hinges on previous work® connected with recently discovered families of multivariable
g-polynomials, '

Section III concentrates on the special case of only two particles. By generalizing the model
of Sec. Il for n=2, we find a difference CM system with elliptic potentials. Integrability is proved
and it is shown that by sending the step size to zero one obtains a quantum integrable system that
has the two-particle specialization of H (1.3) as classical version.

In Sec. IV some partial results pertaining to the case of arbitrary particle number have been
collected. The two commuting AAOs with elliptic potentials introduced in Sec. III (viz. the
two-particle Hamiltonian and its additional integral) are generalized to n>2. A conjecture is
formulated regarding the existence and structure of a complete set of integrals for the resulting
n-particle difference CM system. The highest order terms of the conjectured integrals are related
to the quantum integrals of the RCM system via a gauge transformation.

The last section of the paper, Sec. V, is devoted to the classical version of our difference CM
systems. The quantum integrability of the models of Secs. II and III implies the Liouville inte-
grability of the corresponding classical systems. Furthermore, for special values of the coupling
constants the classical counterpart of the n-particle difference CM Hamiltonian introduced in Sec.
IV can be seen as a reduction of the 2n(+ 1)-particle version of Hgcy (1.2). In these special
cases, reducing the integrals of the RCM model leads to a complete set of integrals for the
classical system; the form of these classical integrals is in agreement with the structure of the
quantum integrals conjectured in Sec. IV,

Some technicalities have been relegated to three short appendices.

J. Math. Phys., Vol. 35, No. 6, June 1994
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J. F. van Diejen: Integrability of difference Calogero-Moser systems 2985

Il. DIFFERENCE CM SYSTEMS WITH RATIONAL, HYPERBOLIC, OR TRIGONOMETRIC
POTENTIALS

The Hamiltonian of the system is given by the AAO

#= 3 wiexp I1 vlex;+x) viex;— (e *Pi-1), @.1)
I<j<n k#j
g=x1
with
1. Rational case
(u+2) (o+2) (po+y+z)
= , = 5 2.2
v(2)=" w(2) z (y+2) 22)
II. Hyperbolic case
sh a(u+z2)
v(z)=—g (az) (2.3)
_sh a(po+2z) ch a(u,+z) sh a(py+y+z) ch alpi+y+2) ' (2.4)
wlz)= sh (az) ch (az) sh a(y+2z) ch a(y+z) )
1. Trigonometric case
sin a(u+z)
v(Z)— Sin(az) s (25)
_sin a(po+2z) cos a(u,+z) sin a(po+ y+z) cos a(pi+y+z) 2.6)
wiz)= sin( az) cos(az) sin a(y+2z) cos a(y+z) )
where @ > 0 and
b =" = iphl2 2.7
j_lax]’ y_lB . (‘)
The exponentials exp(* B@j) act on analytic functions by a complex shift of the argument:
(etﬁgjf)(-xl ,‘..,X") =f('x1 ’~--,xj—1 9ijiBﬁ9xj+l s~~'9xn)' (2-8)

The functions v and w are the potentials of the model; v is responsible for the interaction between
the particles and w models an external field. The parameters u, u,, and u ; (r=0,1) are coupling
constants; after setting them equal to zero the particles become free (v, w=1). In a previous paper’
we have introduced explicit expressions for the quantum integrals of the system in the case of
trigonometric potentials:

%I= 2 ch, - We.l Vs.l; Je e_ﬂaef, l=1,...,n, (29)
JC{1,...,n}, |t
g;=%1,jel

with

J. Math. Phys., Vol. 35, No. 6, June 1994
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2986 J. F. van Diejen: Integrability of difference Calogero—-Moser systems

Wo=I1 wie;x)), (2.10)

jeJ

VeJ;K= ]__I U(Sij+€j1le)v(€ij+lex]'l+2‘)’)H U(Eij'{"xk)U(Sij_‘xk), (2.11)

jij'el jel
i<j’ keK
:931=z Bjéj, (2.12)
jeJ
and
U= 2 (=1)7 2 11 Vet i in 1y (2.13)
l=g=p [%] o8 Sl eRRRY o § CI lasq =g
g;=*1, iel ¥ l§[=§-q

(Ujp=1, I4=1). For I=1 the operator %, (2.9) coincides with the Hamiltonian # (2.1).

The difference operators Wl ’e .W with type III potentials are simultaneously diagonalized
by Koornwinder’s multivariable generalization of the Askey—Wilson polynomials (see Remark iii.
below), and therefore commute with each other.” Because hyperbolic potentials are obtained from
trigonometric ones by analytic continuation: & — i, and the rational case follows from the limit
a — 0, the commutativity of % (2.9)—(2.13) for the potentials of type I and II follows as well.

Theorem 2.1 (quantum integrability): The operators Hy s, H, commute.

The operators #,;, I=1,...,n, are not Hermitian (with respect to Lebesgue measure). How-
ever, after the reparametrization

n=ipg, m,=iBg,, M, =iBg;, (2.14)

B>0, g,,.8 =0,

conjugation with an appropriate function transforms % into a Hermitian operator:

H=AV%A 2= Upe, 1-10) WV e e Bbes V2, WY (2.15)
Jc{l,...,n}, V=i
ej=il,je.l

The transition W, — H 1, which can be seen as a gauge transformation, and the function A are
detailed in Appendix A. Note how the transformation only affects the part of the coefficient
that does not commute with the exponential exp( ,39,) and leaves the commuting part Uje ;-
unchanged. To see that the formal adjoint g4 [ of the resulting operator indeed coincides with
H,, notice that for u,u,,u! € iR one has v(x;)=v(—x;), w(x;)=w(~x;), and consequently

‘_/BJ;K= V—e.l;K’ VsJ=W—sJ, 01,p=Ul,p' (216)

Let us now explain the relation between the above difference operators and the quantum CM
systems associated with classical root systems. Consider first the case of trigonometric potentials.
It follows from Ref. 9 that a formal expansion in B8 of %, (2.9) with parameters (2.14) is of the

form

HB)=F 0B+ 0 () 2.17)

J. Math. Phys., Vol. 35, No. 6, June 1994
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with
Fo= 2 Il &+10. (2.18)
Jc{1,...,n} jeJ
7=t

(l.o. stands for terms of lower order in the partlals 0) Expansion formulas similar to (2 17),
(2.18), now hold with #, and .7%, o replaced by H ! and the corresponding leading part H 1.0-
Because of the analytic dependence on «, all these expansion formulas are also valid for the
systems with hyperbolic and rational potentials.

Explicit computation of A 1,0 entails (hyperbolic version)

A, o=limB72H,(B)
B—0

= > é;-i—g(g—ﬁ)az > (sh™2a(x;+x;) +sh™2a(x;~x;))

1<jsn 1<j # k=n

80(8o—#) &1(§—Hh)

@ 15& shz(axj) chz(axj) @*(p.p) 2.19)
with go=go+g¢, £1=8:1+&;, and p;=(n— ])g+(g0+g1)/2 The operator (2.19) coincides
with the BC,-type Calogero—Moser Hamiltonian.” Hence, we see that the integrability of the
BC, Calogero—Moser system with potentials of type I-III is an immediate consequence of Theo-
rem 2.1 and Expansion (2.17), (2.18).

Theorem 2.2 (transition to the BC,-type CM system): The limits

Hjo=1im B~ 2H(B), I=1,...,n, (2.20)
B—0

exist and the resultmg PDOs H 1,04 H,l o commute.

Remarks: i. The difference operators B~ 2h (B) form a deformation of the BC,-type
Calogero— Moser PDOs H 1,0- The deformation parameter 8 determines the step size of the AAOs
via Eq. (2.8). One can look upon B as a parameter that governs the (imaginary) period of the
Hamiltonians in the momentumlike variables f9j. The transition 8 — 0 then amounts to sending
this period to infinity.

ii. Observe that the operator Jz;’, is homogeneous of degree [ in the external field potential w.
If, before takmg a to zero, J”, is divided by @* and ., w1 are shifted over half a period (turning
cos(h)er( " +z) into sin(h)a( ,ul')+z)) then one ends up with a more general rational system
with w (2.2) replaced by

(po+z)(p+z) (ot y+z)(pi+y+z)
Z (y+2)

w(z)= (2.21)
The potential w (2.2) is recovered after multiplying 5}%, by (s11) " and sending both w1, and
M1 to infinity.

iti. In the case of trigonometric potentials the system has polynomial eigenfunctions; one has’
(taking for convenience @ =1/2, A =1):

K, v=E.(\+p) py, (2.22)

where p, denotes the Koornwinder polynomial'® associated with the dominant weight vector
ANe Z" (W\i=hy= - - o= \,=0), and the eigenvalues are given by

J. Math. Phys., Vol. 35, No. 6, June 1994
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2988 J. F. van Diejen: Integrability of difference Calogero~Moser systems

En()= 2 (~D*M[Tchpy, X ch Bpi,---ch Bp;_, (223)
JC{1....,n} jeld Isij<...<ij_y<n
W=t

[with the same p as in (2.19)]. A
iv. For special values of the coupling constants H; o (2.19) reduces to the CM Hamiltonian
associated with B, (g,=0), C, (g9=g&,), or D, (g5,8,=0). For arbitrary root system the quan-

tum integrability of the corresponding CM system with type I-III potentials already follows from

a construction involving certain differential-reflection operators known as ‘Dunkl operators’.'>13

lii. GENERALIZING TO ELLIPTIC POTENTIALS FOR TWO PARTICLES

In this section it is explained how for n=2 the results of Sec. II can be generalized to the case
where the potentials are elliptic.

A. Preliminaries

In the elliptic case we will express our potentials in terms of the Weierstrass o-function.® In
order to keep the treatment self-contained we first recapitulate some elementary properties of
sigma functions. For more details the reader is referred to, e.g., Whittaker and Watson.’

The o-function is an entire, odd, and quasiperiodic function with two primitive quasiperiods
2wy, 2w,. It is convenient to distinguish a third (dependent) quasiperiod 2w;=—2w,;—2®,.
One has ’

o(z+2w,)=—0(z) 272 es) §=123, 3.1)

with , = {(w,), where {(z) =0’ (z)/o(z) denotes the Weierstrass {-function. By working out
the the r.h.s. of the identity o(z)=0(z+2w;+2w,+2ws) one sees that consistency implies that

M+t n3=0. (3.2)
Occasionally we will also use Legendre’s formula, which relates 7, to the half-periods w;:
MWy~ M =mil2. (3.3)
Let I' denote the half-period lattice:
I'=sw,Z+ w,Z. 3.4)

The zeros of o (z) are located at the points of the period lattice 2 T". It follows from the expansion
o(z)=z+ O(z>) and Eq. (3.1) that these zeros are simple. By introducing a shift of the argument
over the half-periods one arrives at three associated sigma functions:

o.(2)= e " g(w,+2)o(w,), r=1,2,3. (3.5)
For the associated sigma functions the quasiperiodicity relations read
olz+20,)=(—1)%r0,(z) 7 0, rs=1,2,3 (3.6)

(where 8, ; denotes the Kronecker delta).
We close this subsection with a duplication-formula for sigma functions and some relations
with the Weierstrass g-function:

0(22)=2 0(z) 0,(2) 03(z) 03(2), (3.7)

J. Math. Phys., Vol. 35, No. 6, June 1994
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o(pu+z)o(u—1z)

TR —P@ e, (3.8)
d2
p(z+w,)=~z?-1n olz), r=0,1,2,3, (3.9)

where we have introduced the convention g¢(z)=0(z) and wy=0.
Remark: In order to have o,(z) = 0,(Z) (such that the functions are real for real values of the
argument), it will be assumed most of the time that

w, eR*, w,eiR*. (3.10)
Although this assumption is important in matters concerning real-valuedness and Hermiticity of

the Hamiltonians below, it is not essential for the integrability of our models.

B. A special case: pu=w,

First let us write out the relevant operators %, (2.9)—(2.13) for n=2:

.%1= E w(ex;) v(ex;+x;) v(ex,—x,) e Pe0

ee{l,—1}
+ 2 W(EXZ) U(EXZ+XI) U(GX2_.x1) e_ﬂ852+ U{I,Z},l’ (3.11)
ee{l,—1}
.ﬁfz= 2 w(ex;) w(e'x,y) v(ex;+e'x;y) viex;+e'x,+27y) é"B(Ea‘”Iéﬁ
e,e’ e{l1,—1}

+ Uy > w(ex;) v(ex;+x,) v(ex,—x,) e Pe0

ee{l,—1}
+Uqyi E w(ex,) v(exy,+x)) viexy,—xy) e'ﬁez’2+ Uiz s (3.12)
ee{l,—-1}
with
U{J},lz_w(x])_w(_xj) (.]=1’2)a (3-13)
Upapa=— 2 (wlex)) v(ex;+x;) v(ex;—x;) + w(exy) v(ex,+x1) v(ex,—xy)),
ee{l,—1}
(3.14)
Uy 2=— 2 w(ex) w(e'xy) viex;+&'xy) v(ex;+&'x,+27)
ee’ e{l,—1}
H(w(x) tw(=x)) 2 wlex;) v(ex;+x,) v(ex;—x,)
eef{l,—1}
Hwix)+w(=x1) 2 w(exy) v(exytx;) v(sx,—xy). (3.15)
eefl,—1}

J. Math. Phys., Vol. 35, No. 6, June 1994
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2930 J. F. van Diejen: Integrability of difference Calogero—Moser systems

Requiring that the commutator [uﬁ%, %2] is zero leads to functional equations for the functions
v(z) and w(z). We know already from Theorem 2.1 that these functional equations admit non-
trivial solutions given by the potentials (2.2)—(2.6). By writing out the relevant equations one finds
that there exist also elliptic solutions (observation due to S. N. M. Ruijsenaars):

O'S(Z) _ U'(ws+Z)

v(z)= =e~ Nt , 3.16
O=5@ = " dDo(w,) (16

o (u,+2)\ [ o(pug+ y+z) op,+y+z)
wo=| TT L4 - — . (3.17)

osre3  or(2) o(y+z) os(y+z)
where the coupling constants of the external field potentials must satisfy the linear relation
(uo+pd)+ 2 m,=0, (3.18)
0=sr<3

and s=1,2, or 3. Condition (3.18) ensures that the potential w(z) is doubly periodic in z [cf. Egs.
(3.1), (3.6)). If this condition is not fulfilled, then the commutativity of #, and #, breaks down.
Thus, we have the following proposition.
Proposition 3.1: Let #,, A, be of the form (3. 11)—(3.15) with the potentials v and w given
by (3.16) and (3.17). Then the operators #, and #, commute if the coupling constants of the
external field satisfy Condition (3.18).

C. The general case

A serious drawback of the difference CM system in the previous subsection compared to the
ones in Sec. I is the absence of an independent parameter in v(z) (3.16) playing the role of
coupling constant. Furthermore, the symmetry between the primed and the unprimed coupling
constants in the external field potentials of type I-III is broken in w(z) (3.17). In trying to cure
these diseases we are led to a more general ansatz for the potentials v(z) and w(z):

IV. Elliptic case

_o(p+z)

v(z)= EOEE (3.19)

o, +2) opy+y+z)
w= 11—

(3.20)

Apart from an exponential factor in v(z) (3.16), the potentials (3.16), (3.17) correspond to setting
p=w;and ;=0 if r # 0,s. In contrast with v (3.16) [which is doubly periodic with {nonprimi-
tive) period lattice 4 I'], the potential v (3.19) is no longer periodic in general. The external field
potential w (3.20), however, is again doubly periodic provided the parameters satisfy the condition

2 (u+u))=0. 3.21)

0=sr=3

In fact, by using the defining equation for o (z) [Eq. (3.5)], and Egs. (3.1), (3.2), one readily
verifies that w(z) is covariant with respect to a shift of the argument over a half-period provided
(3.21) holds: :

e R R T N (322)

s’

J. Math. Phys., Vol. 35, No. 6, June 1994
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where we have introduced the permutations wy=id, 7;=(01}(23), m,=(02)(13), and
w3=(03)(12).

Unfortunately it turns out that the operators . %), %, (3.11)—(3.15) with potentials given by
(3.19) and (3.20) do not commute if # # 0. (For & =0 commutativity is trivial because in that
case the two particles become independent.) However, as will be demonstrated next, it is possible
to replace Uy, 2},1 (3.14) and Uy, 232 (3.15) by functions such that the resulting operators
}”, (3.11) and %2 {(3.12) with potentials v(z) (3.19) and w(z) (3.20) do commute if
(3.21) holds. Specifically, these functions read

o (u— ')'+Xj) o (u— 'y——xj)
Viaa= “r 3.23
than OSE;-SS jl'—-[l'z Ur(_'y+Xj) U,(—'y—xj) ( )
where
2
= II ouno=7) oipr,,) (3.24)

o(pm)o(n—279) 2 s

[with 7, as in Eq. (3.22)], and

Ug1.2),2= > w(exy) w(e'xy) v(ex;+e'xy) v(—ex;—e'xy—27). (3.25)
e’ e{l,—1}

Our proof of commutativity exploits a small variation on a standard technique used to dem-
onstrate functional identities between elliptic functions: we compute the commutator of %1 and
Z’z and show that the coefficients of the resulting AAO are given by entire functions, i.e., poles
introduced by the denominators of v (3.19) and w (3.20) cancel each other in the commutator.
Using this property, and some additional information involving the quasiperiodicity of the coeffi-
cients, it follows (Appendix B) that these functions vanish identically.

First we need a lemma; it basically says that a one-particle version of (3.23) differs from
(3.13) only by an (irrelevant) additive constant.

Lemma 3.2: If the coupling constants satisfy (3.21), then the expression

w(@)+w(—2)+ 2 ¢, v(—ytw,+2) v(—y—w,~2) (3.26)

0<sr<3

is constant in z [with v(z), w(z) given by (3.19), (3.20), and c, defined by (3.24)].

Proof: Condition (3.21) implies that Expression (3.26) is doubly periodic in z. Recall that the
o-function is entire and that its zeros are simple and located at the points of the period lattice
2 T'(=2w;Z+2w,Z). For 7y generic the zeros of the sigma functions induce simple poles in the
terms of (3.26) by means of the denominators of v and w. These poles are congruent to one of

=w,, z=*xytw,, O0sr<3 (3.27)

(with the convention w=0). We want to show that the total residue of (3.26) at the above poles
vanishes. Because (3.26) is covariant with respect to shifts z—z+ w,, i.e., such shifts amount to
a permutation of the coupling constants u, and u, [cf. (3.22)], it suffices to verify the cases z=0
and z==* 7. Since (3.26) is even in z the vanishing of the residue at z=0 is immediate and either
Z=—y or z=y remains to be checked. Using o/(z)=z+ O(z>) [and the duplication-formula for
sigma functions (3.7)], one infers that the latter residue vanishes too.
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2992 J. F. van Digjen: Integrability of difference Calogero—Moser systems

The upshot is that (3.26) is entire and bounded (because doubly periodic) in z. By Liouville’s
theorem it must then be a function independent of z.

g

We are now ready to prove that [#,, #,]=0.

Theorem 3.3: Let #,, #, be of the form (3.11), (3.12) with the functions U, , defined by
(3.13) and (3.23)—(3.25), and the potentials v and w given by (3.19) and (3.20). Then the opera-
tors K, and #, commute if the coupling constants of the external field satisfy Condition (3.21).

Proof: A straightforward calculation entails

% 20 | — ' —B(eb,+¢'B
[%lv %2]_ 2 K1(8X1,8 x277) Wel Wer2 Ugl+g’2 Ugl+a’242y € Bleby 2)
e,e'e{l,—1}

~Bed
+ 2 Ky(8X),%3,7) Wey Ug14g Ugy—g € P20
ee{l,~-1}

+ D Ko(8X3,X1,7) We2 Uggs) Ugamy € P22 (3.28)
ee{l,—1}
with
Ki(x),x;3,7)= 2 <r H Veytw+jV-y-0,—j" H Vyto, +j V-3y-w —j
0sr<3  \j=12 j=12
F(Witw_ ) Uimaay Uoisa—(WisaytWoi2)) Ui_2 Uo142-2,

F(Watw_3) Vo224 Vi—2=(WasaytWo3-2)) U142 U122,
(3.29)

and
Ko(xX1,X2,Y)=Wihy Wa Ulhat2y Umim2-4y~ W1 W U2 Uojono2y
tWo 1oy Wa U429 V12~ W Wa U142 U224y
FTWitay Woa U142y Um42-4y~ WIW_2 U2 U—142-2y
tWo oy W U iogo2y Ute2 ™ Wo1 W U3 Ulha-2y
+(W2+W__2)

x 2 Cr(v'y+a)r+l V-3y-w,~1"V—ytau +1 v-—y—-wr—-l)v—'y+mr+2 Voy—w, -2

0=r=3
TWaay Woy (U142-2y Umi—27Uo142-4y Ul—2+27)
TWogo2y Wy (U1-2-24 V1427V jm2-4y U1+2+29) (3.30)

where we have introduced the short-hand notation w,;=w(ex;) and V.j+er2+29+0,
=v(ex;+e'x,+2y+w,),etc.

By considering (3.29) and (3.30) as function of v and u we will see that K, and K, are
identically zero.

It follows from (3.1), (3.6) and Condition (3.21) that X, and X, are quasiperiodic in y

Ki(xy,x2,y+2w,) =e—2”3(2“+20‘r‘3“r)K1(x1 X3.Y), (3.31)
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Ko(x),x5, v+ 2w)= 3_4”’(“+20SrS3#’)K2(X1 X2,Y). (3.32)

The idea is now to show that X; and X, are entire in 7y, u, and then apply Lemma B.1 of
Appendix B.

If x;, x, and u, p,, u, are fixed in general position, then the zeros of the sigma functions
induce simple poles in the terms of (3.29) and (3.30) via the denominators of v, w, and ¢,. For
K () these poles are located at

'y=i(x1—x2)/2 mod 1", (333)
y=%x; mod I', y=—x;/2 mod I/2, y=-x;/3 mod I'/3, (3.34)
y=u/2 mod T (3.35)

[with the lattice ' given by (3.4)]. Using the double periodicity of the function w (period lattice
2 T'), one sees that the poles at (3.33) in (3.29) cancel manifestly. As regards the poles at (3.34),
it suffices to consider only the cases that 7 is actually equal to *x;, —x;/2, or —x;/3, because
K, is covariant with respect to simultaneous translation of the positions over the half-periods
[cf. (3.22)]. At y=—x;/2 the residues in (3.29) cancel again manifestly. Using Lemma 3.2
one infers that the total residue at y=*x; and at y= —x;/3 vanishes, too. Finally, the poles
(3.35), which are caused by the denominator of ¢, (3.24), are compensated by zeros in the
part between brackets in the first line of (3.29) [the latter zeros stem from the identity
v(—p/2+2) v(—ul2—2)=1]

Consequently, K, is an entire function of . A similar analysis of the residues reveals that also
K, is entire in y. Furthermore, both expressions are entire in u too [poles caused by ¢, (3.24) are
again compensated by zeros in the parts between brackets].

It now follows from Lemma B.1 that the functions K; and K, are zero.

d

D. Further properties of the system

In the elliptic case %1 and 57?2 are transformed into Hermitian operators H 1 and ﬁz in the
same way as the operators of Sec. II. Using parameters as in (2.14) and conjugating with the
appropriate function from Appendix A entails

o V2 12 12 —Bed, . 1/2 12 12
Hl— E Wei Ugl42 Ve1—2 € ! U 142 Vg1—-2 Wepi
eefl,—1}

w2 12 U2 —Beb, 172 112 12
+ 2w vl vt e Pl Wl Wt Uy, (336)
ee{l,—1}

g — w2 12 12 112 —Blsby +e' b))
Hy= 2 (W w50 en Ver+er2+2y € 2
ee'efl,-1}
172 12 2 172
XU g1—gr242¥ —ci—-e2 Woe1l W_pra

12 172 172 —Bed, 172 172 172
+Ugy,1 2 Wel Ver+2 Ve1-2 € P TV _g1+2V—g1-2 W51

ee{l,—1}

172 . 1/2 172 —Bsé 172 1/2 1/2
+U{1},1 2 Wer Ugng) Ugn—1 € 2 U go4+1 Vga— W—82+ U{I,Z},Z’ (3.37)
ee{l,—1}
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2994 J. F. van Diejen: Integrability of difference Calogero-Moser systems

with v, w, and U, , as in Sec. Il B. [Egs. (3.16), (3.17), and (3. 13)-(3. 15)] or as in Sec. III C.
[Egs. (3.19), (3. 20) and (3.13), (3.23)—(3.25)]. The Hermiticity of A, and H, hinges on Assump-
tion (3.10) and Condition (2.14) [verification as in Sec. II: v(x,) v(—x;), w(x,) w(—x;) and
UI P UI p]

By comparing the Hermitian counterpans of the operators in Sec. III B and III C it follows
that the former model is a special case of the latter. More precisely, setting u=w; and u, =0,
r # 0,s, in the operators H; (3.36) and H, (3.37) with potentials from Sec. III C leads, up to
multiplicative and additive constants, to the corresponding operators with potentials from Sec.
Il B. To verify this, notice that t exponential factors in v L’fﬂ, if v(z) is given by (3.16), give rise
to multiplicative constants in H , and H o after commuting them through the difference operators
exp(x86), expﬁ(+01+02) Furthermore, the respective formulas for U129}, p in Sec. II B and
I C can be compared by an analysis of residues and by invoking the Liouville theorem similar to
the proof of Lemma 3.2.

Let us now clarify the connection between our two-particle difference CM system and a
quantization of the Inozemtsev Hamiltonian (1.3). By expanding in 8 [and using Eq. (3.9)] one
infers that [cf. (2.17)-(2.19)]

H,(B)=const+H, oB*+0(B82), (3.38)

Hy(B)=H,08*+0(8*), (3.39)

with const=4+3,g,(2g,~%)/g(g—#) and

Hyg=81+83+28(g—4)(p(x; +x,) +9(x;—x5))

+ X (R p(w,+x)+p(0,+x3)), (3.40)

0=r<3
~ Y
H2,0—91 02+l.0. (341)

Just as in Sec. II a confluence of the parameters g, and g, into a single coupling constant
g,= g-+g ; occurs for B — 0. It follows from Theorem 3.3 and the above asymptotics that the
PDOs H 1,0 and H2 o commute, which proves the (quantum) integrability of the Hamiltonian
H 1,0 Gf Z,g, 0). For the corresponding classical two-particle Hamiltonian of the type (1.3) the
Liouville integrability follows of course already from Ref. 8 (without any restrictions on g,).

Another point of interest is the question whether Condition (3.21) is really essential for
integrability. It is not difficult to deduce from the quasiperiodicity of the sigma functions that
(3.21) guarantees that U, p is doubly periodic in the positions. The part of the coefficient that does
not commute with the translator is quasiperiodic but double periodicity is restored after gauging to
Hermitian form (3.36), (3.37). It can be seen from the proofs that the double periodicity of the
relevant functions U, ,, and thus Condition (3.21), is essential for the commutativity of %, and
#,. However, notice that Uti,2),1 (3.23) remains doubly periodic even if (3.21) is not fulfilled,
and that, because of Lemma 3.2, also Uy, (3.13) can be rewritten in a form that is doubly
periodic for arbitrary values of the parameters. Probably there also exists a doubly periodic version
of Uy 53,2 [Which coincides with (3.25) if (3.21) holds] such that the operator .#, (3.12) com-
mutes with Wl (3.11) without further restrictions on the coupling constants.

IV. PARTIAL RESULTS FOR ARBITRARY PARTICLE NUMBER

It seems plausible that one can generalize the difference CM systems of Sec. III to arbitrary
particle number. We have checked by computer that with the potentials of Sec. III B the operators
% (2.9)-(2.13) commute for n=3,4, and expect this result to be true for any n.
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Conjecture 4.1: The operators J‘%, (2.9)—(2.13) with potentials given by (3.16)—(3.18) com-
mute,

As regards the generalization of the system in Sec. III C, the situation séen}s less straightfor-
ward. Probably there again exist functions U; , such that the operators #, ..., #, commute if the
potentials v, w are given by (3.19), (3.20). Furthermore, it is expected that these functions U Lp
have similar properties as those in Secs. II and IIL

Conjecture 4.2: Let ) be of the form (2.9)~(2.12) with potentials v and w given by (3.19)
and (3.20). Then there exist functions U, , with U; o= 1 such that #,,...,.#, commute. Further-
more, the functions U; , have the following properties:

i Up, does not depend on x;, i &1, and is invariant under permutations of x;, i€ I;
ii. Uy, is even, meromorphic, and doubly periodic in x; (with primitive periods 2w, and
2w2);
iii. Uy, is holomorphic in # at i =0;
iv. Uy, is real for x; real and parameters given by (2.14) [with half-periods as in (3.10)].

Unfortunately we have not yet succeeded in producing general formulas for U, ,,, nor have we
proved the existence of such functions by any other means. Having said this, let us continue by
outlining some partial results that support Conjecture 4.2.

Generalization of the two-particle Hamiltonian #) in Sec. Il C leads to a Hamiltonian of the

form
F= 3 V, et 4.1)
1<jsn
g=x1
with
Vsj=w(8xj)]-—-[ v(ng+xk)v(sxj—xk), (42)
k+#j

o(pu—y+x;) o (u—y—x;)
U= 2 C, H Or'(— " ; r (_ a ; ,
0=sr<3 Isj<n r YTX; o, Y—X;

4.3)

where ¢, is again given by (3.24). Furthermore, as generalization of the integral %2 we have
found an operator .#,, that commutes with the n-particle Hamiltonian (4.1) if Condition (3.21)

holds:
H= D Uy Wey Ve e e B0, @.4)
Jc{t,...,n}
e;=%1,jeJ

with W,, and V. ¢ given by (2.10), (2.11), and

Ug= 2 DRTT wieex) TI vlewxitepn)v(—epxi—epxp—27).
g=x1, kek kek kk'ek

k<k’
4.5)

Although in the present case the combinatorics involved in computing the commutator is much
more laborious, the commutativity of ﬁfl and %,, can be verified with the same techniques used
already in Sec. III C (i.e., by an analysis of the residues at poles occurring in the coefficients of the
commutator, and by invoking Lemma B.1).
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2996 J. F. van Diejen: Integrability of difference Calogero—-Moser systems

Theorem 4.3: The operators .}‘% and .‘;’%,, (4.1)—(4.5), with potentials v, w given by (3.19),
(3.20), commute if the coupling constants of the external field satisfy Condition (3.21).

When all coupling constants of the external fields are zero (so w=1 and U=0), then a
straightforward calculation shows that

Hy = (H—F) = B+ H ~ F, H_—-F_H,, 4.6)
with
%e= 2 H v(ijj-i-skxk)e_ﬁ(slél*'"'”"é")/z, e==*1. 4.7

£1vngpe{l,—1} 1Sj<k=n
£ g€

The operators 774 are an elliptic generalization of certain trigonometric difference operators
introduced by Macdonald that are associated with the half-spin weights of the root system
D, .>!"! The commutativity of #,. , #_, and S#, amounts to functional equations for v(z) that
can again be verified with the techniques from Sec. ITl. Thus, in this special case we have three
independent integrals, which implies the integrability of the model for n=3. (In fact, for n=3
integrability follows already from Ref. 5 because in that case our system coincides up to coordi-
nate transformation with the four-particle RCM model in center of mass coordinates; indeed, the
root systems D4 and A; are isomorphic.) The structure of the integrals .#. is not of the form
apticipazed in Conjecture 4.2. However, the combinations (.%+ F_ +£‘A€_%+)/ 2 and
H° + H* are of the correct form corresponding to I=n—1 and I=n, respectively.

Let us return to the situation with a nontrivial external field. Assuming parameters as in Eq.
(2.14) and transforming %, to the Hermitian gauge leads to the operator

Hi= 3 Vi2e o yi2 4y 48)
I<j=n
g=*1
Expanding (4.8) in 3 entails the following generalization of corresponding formuias in Sec. III D:

H(B)=const+H, o B2+0(B?), (4.9)

with

= 2 B+Hglg-h) 2 (90xFrx)+elx—x)

1<j<n I<j#k<n

+ 2 §8,—h) plo+x), (4.10)

Isj=n

0=<r<3

const=2n+ 2 g,(2g,— k). 4.11)
ﬁ)0<r<3

Clearly H 1,0 (4.10) amounts (up to a factor 2) to a quantization of the Inozemisev Hamiltonian
(1.3).

Remarks: i. Consider the operators # |e,q, Which consist of those terms in # that are of
highest order in the exponentials exp(—36)):
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H), 1ead™= > w Vyge e PO, 4.12)

It is clear that if the operators %, (2.9) commute, then their leading parts %“ead must also
commute. A similarity (gauge) transformation, resembling the ones we have seen before, turns
). 1eaq D0 the integrals of the quantum RCM system:

3 — Al 1 172
H) rem= A6 C7' ), 10adC Brng

=AR | 2 II vix—x) e P ARME

Jc{1,...,n} jeJ

|J|=I kel
= 2 H l/z(xj—xk) e Bb H v”z(xk~xj), (4.13)
Jc{1,...,n} jeJ jed
W=t jeye keJ®
where
Arev= 11 dy(x;—xx), C= II cp{x;+xp) II cw(x;)s (4.14)
I=<j<k=n 1Sj<ksn Isj=<n

with d,, ¢,, and c,, defined in Appendix A. The commutativity of H I, RCM and thus also of
.W, eag folows from Ref. 5. Notice that % lead=liMg o exp(—IBHR) AR" H, Ap with
Ag=exp(—iR(x;+ - - -+ x,)), so the RCM system can be seen as a limiting case of the system
studied here.

ii. It is not difficult to see that operators %, of the form (2.9)—(2.13) annihilate constant
functions [for =1 this is immediate from (2.1)]. This implies that, at least formally, the function
AY2 of Appendix A is a joint eigenfunction with eigenvalue zero of the corresponding Hermitian
operators H, (2.15) [we assume parameters according to (2.14)]. In the trigonometric case this
eigenfunction corresponds to the ground state of H (2.1) (cf. Remark iii. of Sec. I with A =0). In
other words: the system has a factorized (or Jastrow-like) wave function representing the ground
state.

A similar picture holds for the systems with potentials of type L, II, and for the special system
with elliptic potentials of Conjecture 4.1. However, in the latter cases it has not been demonstrated
yet that H (2.1) is positive, and for type I or II potentials the wave function A'/? does not
correspond to a true bound state because it is not normalizable.

It is most unlikely that the ground state wave function of the Hamiltonian (4.8) with elliptic
potentials (3.19), (3 20) factorizes for general parameters. Indeed, the function A 12 is no longer an
eigenfunction of H, (4.8).

_ iii. Sending periods to infinity in the special system of Conjecture 4.1 leads to operators
% (2.9)—(2.13) with type I-1II potentials corresponding to a special value for the parameter u.
Recall that in a similar transition from hyperbolic/trigonometric potentials to rational ones, a more
general external field is obtained if first certain coupling constants are shifted over a half-period
(Remark #i. of Sec. II). The same phenomenon occurs here; after introducing the appropriate shifts
we obtain operators (2.9)—(2.13) with the following potentials. (For convenience we have chosen
s=1.)
=%, wy=im/(2a) (U= p— w1, H3—p3t o))

v(z)=1/sh (az2), (4.15)
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sh a(uo+2z)sh a(u;+z)ch a(u,+z)ch a(us+z) sh a(pg+y+z)

w(z)= sh (az)ch (az) sh a(y+z) ;o 410)
0 =7/(2a), wy—i® (Uy— py— wy, L3— 3+ wy)
v(z)=cot{az), 4.17
_sin a(ug+z)cos a(u;+2z)sin a(us+z)cos a(us+z)
w(z)= sin(az) cos(az)
sin a(pg+ y+z)cos a(u;+y+z) 418
sin a(y+z) cos a(y+z) ’ (“.18)
WP, Wy— {0 (:u’r—');u‘r_wr)
v(z)=1/z, 4.19)
+2)(p+z +2)(p3+z)(po+ +z)
(D)= (po+z)(py+2)(ma+2) (13 Bot Y (4.20)

z(y+2)

The above transitions can be verified with the aid of the product representation of the o-function.’
Using this representation one derives the asymptotics of the potentials v (3.16) and w (3.17). The
potential w gives rise to a multiplicative constant converging to zero. Because the operator %,
(2.9)-(2.13) is homogeneous in w, it is possible to collect such multiplicative constants into an
overall factor. In order to get the above results, one should divide by this factor before sending the
periods to infinity. This type of renormalization is to be compared with the division by a2/ in the
before-mentioned transition II/III—I (see Remark ii., Sec. II).

It should be stressed that the cases (4.15), (4.16), and (4.17), (4.18), are different in the sense
that they are not connected via analytic continuation. Notice also that for the potentials (4.16) and
(4.20) Condition (3.18) (s=1) may be omitted because the dependence on x| has dropped out in
the limit.

By studying similar limiting cases of the Hamiltonian (4.8) we have found,'* besides further
generalizations of the models in Sec. II, certain difference Toda chains with boundary conditions
generalizing the (free-end) relativistic Toda system.'> For n=2 the integrability of these novel
models is an immediate consequence of Theorem 3.3.

V. THE CLASSICAL SYSTEM: LIOUVILLE INTEGRABILITY

We conclude this paper with some results regarding the classical counterpart of our difference
CM models. Let us first restrict to the case of type I-III potentials. The classical counterpart
H#, of the operator % (2.9)-(2.13) is obtained by substituting real variables 6; for the partials
0 and settmg v =0 [cf. Eq. (2.7)]. It is explained in Appendix C that the P01sson commutativity
of Ty ,...,H, is an immediate consequence of the quantum integrability of the difference system.
Thus, we arrive at the following corollary of Theorem 2.1:

Corollary 5.1 (Liouville integrability): The classical versions #,,...,. %, of the commuting
Hamiltonians in Theorem 2.1 are in involution (with respect to the Poisson bracket induced by the
standard symplectic form w=32; dx; /\ d6;).

_ Similar substitutions in Eq. (2.15) lead to the classical version H, of the Hermitian operator
H,. The integrals .#,; and H, are connected by means of the canonical gauge transformation in
Egs. (A4), (A5) (Appendix A). The classical counterpart of Theorem 2.2 becomes:
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Corollary 5.2 (transition to the BC ,-type CM system): The limits

Hio=UimB Y H(B), [=1,...,n, (5.1)
B—0

exist and the resulting functions H, o,...,H, ¢ Poisson commute.

For I=1 we recover the classical BC,-type CM Hamiltonian, which is given by the classical
version of (2.19) (obtained by substituting 6; — 6; and & =0).

Next, we turn to the case of elliptic potentials. Up to a factor two the classical Hamiltonian
associated with A, (4.8) reads

=2 I fr,L,(XJ)fr,u(x)H f=x)f(x+x) chpo+ 2 e, IT 2,0,

1=sj=sn 0=r<3 0=r<3 lsj<sn
(5.2)
with
_(o(ptz)o(u—2)\'2 (o (v+2)o(v—2)\'?
e e )
and
c=o(w)? Il opnmodun, ). (5.4)

0=ss=s3

For 8 — 0 we now recover the Inozemtsev Hamiltonian (1.3) [cf. Expansion (4.9)—(4.11) with
9 ~> 8 and A=0].

In the case of two particles the Liouville integrability of H, (5.2) [with Condition (3.21)] is a
consequence of Theorem 3.3 and Appendix C. The n=2 specialization of the Hamiltonian (5.2)
unifies various two-particle models for which the Liouville integrability was already demonstrated
in Ref. 16. In particular, the situation that all parameters u, are equal to zero (so ¢,=0) corre-
sponds to a model studied there.

For some special values of the coupling constants H; (5.2)~(5.4) can be seen as a reduction
of the RCM Hamiltonian (1.2). More precisely, by setting x,,+ ;= —x; and 8,,+,;= — §; in the
m-particle version of Hgcym (1.2) one obtains {up to a factor 2)

Heo= 2 f2x) 1 flx;+x)f(x;—x) chBé; (5.5)

1<j=<n k#j

if m=2n, and

Hea= 2 fpfQx) I fo+x)f(x;—x) chBo, +12 TI Fx)  (5.6)

1sj=n k#j Isj<sn

if m=2n+1. [Because of Eq. (3.8), the function f(z) used here is essentially the same as the one
used in the introduction.] With the aid of the duplication formula for o-functions (3.7) one verifies
that H, (5.2) reduces to (5.5) for u,=u/2, u;=0, and to (5.6) if instead of taking u( equal to
ZEro one sets py= .

A complete set of (parlty invariant) integrals for the (m-particle) RCM model is given by the
classical versxon of (H 1, Rem+ H,_ 1, RCM H,,, rem ) [cf. Eq. (4.13) with the convention

Ho rem=11""
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Ho~ 2 Il fx;=xp) chBo;, I1=1,..m. (5.7)
Jc{i,...m} jel
VI=t  kese

The Hamiltonian Hgcy (1.2) corresponds to /=1. If the initial particle-configuration is chosen
invariant with respect to reflection of the particles in the origin, then the commuting H; r-flows
preserve this symmetry. By computing the Hamiltonians that generate the reduced motion (i.e.,
setting as above X1 -;=—x; and O, _;=— 6;), one finds a complete set of integrals for
H,eq (5.5), (5.6); the structure of the resulting integrals is compatible with Conjecture 4.2:

Hj oa= > Uje—is| Ferue chBy, 1=1,...,n (5.8)
JC{1,....n}, [JIsi
ej=t1,jEJ
with
Fox= 11 Plex+epn) 1T flax+x0f(x;—xi)
j’jlej jeld
j<ij’ kekK
I1 r2xp, m=2n
jeld
X (5.9)
Il rex)f(x), m=2n+1
jeld
and

Uy p= > II PG+ fixe—x)
r'ct el
|P'|{=[p/2] ien I

0 (podd), 1 (peven), m=2n
X (5.10)
IT A& @ odd), II f2(xi) (peven), m=2n+1

ien I' i'el

(here [p/2] denotes the integer part of p/2). Unfortunately, it does not seem straightforward to
generalize the integrals H, .4 to the situation where the coupling constants of the external field are
not related to u.

Remarks: i. For type I/II potentials the above reduction of the classical relativistic Calogero—
Moser system has been studied in Ref. 17 (Sec. 5B); it is shown that the action-angie transforma-
tion for the reduced system is obtained by restricting the action-angle map for the relativistic
system.

ii. Recently it has been observed that similar reductions of the nonrelativistic CM system’ may
be viewed as real cases of more general ‘duplication’ procedures in the complex plane;18 these
duplication methods give rise to new types of integrable n-particle models on the line.
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APPENDIX A: A GAUGE TRANSFORMATION

If the functions ¢,(z) , ¢,(z) (#0) satisfy the difference equations

cy(z+iBh)y=c,(2)/v(z), cu (z+iBh)=c,(2)/w(z), (A1)

then it is not difficult to see that conjugation with A2, where

A= JI  dyatxd,(—x) IT du(x)), (A2)
Isj<k<n I<jsn
and
du(2)=1/(Cv(Z) Cv(—‘z))’ dW(Z)ZI/(CW(Z) Cw(_z)), (A3)

transforms operators ﬁ/l of the form (2.9) into operators H ; of the form (2.15). The transition
A, — H, for the corresponding classical systems (Sec. V) boils down to a canonical gauge
transformation:

Xj > Xj. (AS)

1
8; — 8,+>—In w(x; )+ 2 (nv(x;+x)+1In v(x;—x)

28 2B (5
: — 1 > +x,)+1 —x),
2,3 n w(~x;) 2:3k¢,(nv( x;tx)tInv(—x;—x)

(A4)

It follows from classical results that the first-order difference equations (A1) have nontrivial
solutions,'? which are unique up to periodic multiplicative factors. In general, the solutions of
(A1) may be badly singular. It turns out, however, that for all potentials of interest there exist
solutions ¢,(z), c¢,(z) that are meromorphic in z.

The potentials v(z) and w(z) are of the form

s(iBg+z) wo=II s (iBg,+2) s,(iBg, +y+2z)

v(z)= 5@ 5,(2) s.(y+2)

(A6)

with It s(2),s0(2)=z; I s(2),50(z)=sh (az), s;(z)=ch (az); LI s(z),5¢(z)=sin(az),
s1(z)=cos(az); IV: s(2),5¢(2)=0(z), s(z)=0,(2) (1< r=< 3). For convenience, i will be
taken equal to one from now on. For g,g,e N it is now straightforward to write down meromor-
phic solutions of (Al):

eo()= I1 s~ 'iBk+2), (A7)
O<k<g
co@=IT TI s7'GBk,+2) T1 s7'iBKk.+y+z). (A8)
r 0sk,.<g, Osk;<g;

In the rational and the trigonometric case one can generalize (A7) and (A8) to (meromorphic)
solutions valid for arbitrary g,g,=0 by rewriting in terms of gamma functions or g-shifted fac-
torials, respectively (recall v = i /2):
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L Rational case

)= I'(z/iB) - T'(z/ip)I'(1/2+2z/iB) . (A9)
D= Fraip)’ D T (et diBT(ge+ 112+ 2iB)
III. Trigonometric case
i (e—ZaBgeZIaZ; e—2¢:¢,:3)Oc
c,(z)=e' "¢ (A10)

(e2iaz; e—20¢,8)m ’

cw(2) = eie2(80*81+80+81)

. N 7 . 14 N
(e_2a,8g0621az, —e 2&Bgle2mz’ e—2a3(30+ 1/2)e2taz, —e 2a,8(g1+1/2)e21a2;e 2a.8)mj
X

(e4mz; e—ZaB)m
(A11)

In the case of hyperbolic and elliptic potentials meromorphic solutions c¢,(z) valid for all
g>= 0 have been obtained by Ruijsenaars;?° in the latter situations c,(z) is given by an integral
formula (hyperbolic case) or in terms of a product expansion (elliptic case). Appropriate shifts
over half-periods and over vy lead to the corresponding ¢, (z).

Remark: In the hyperbolic case the system is periodic in the parameters g , g,, with period
27 /(aB ). Thus, if this period is not a rational number, then the parameter values for which
¢, and c,, can be written in terms of the elementary hyperbolic functions (A7), (A8), form a dense
subset.

APPENDIX B: A LEMMA

In this appendix it is shown that certain quasiperiodic functions are identically zero. The result
was used in Sec. III to prove the integrability of the two-particle difference model with elliptic
potentials. As usual 2w,, r = 1,2,3, denote the periods of the Weierstrass functions and
7,={(w,).

Lemma B.1: Let K ,(z) be a complex function such that

i. K,(z) is entire in both z and p;
ii. K,(z) is quasiperiodic in z: K,(z+2w,)=e*"PWK (2), r=1,2, with p(u ) a certain
polynomial of degree =1 in .
Then K, (z) must be the zero function.
Proof: Consider

G(w) = e lmp(w/min WK”(% In w). (B1)

Because of i. and ii., G(w) is holomorphic and univalent in w on C\{0}; therefore, G(w) has a
Laurent expansion around zero, which converges for all w # 0

G(w)= 2, kn(p)w". (B2)

nel

Substituting w = el™/*1)2 yields a series expansion for K ,(z), which is valid for all zeC
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KM(Z)=8[7’1P('“)/“’1]22 k,,(/.l,)e("”i/“’l)z. (B3)

nel

It follows from the quasiperiodicity relation ii. for =2 [using Legendre (3.3)] that the coefficients
k,(u) satisfy the relation

kn(ﬂ):e('rrilwl)(p(,u.)+2nw2)kn(“).

Thus, k,(u) must be zero.

APPENDIX C: THE CLASSICAL LIMIT
In this appendix we consider n-particle difference Hamiltonians of the form (finite summa-
tion)

A=, V,(x,h) e C1)
L2

with k, € R" and 8= (tA91, é ). It will be assumed that the coefficients V,(x, i) are holomorphic
in # at # =0, and holomorphic in x on %+i R", where % is an open dense subset of R” (these
assumptions correspond to our applications). The classical Hamiltonian associated with H reads

H=2, V,(x, 0)e™*® (g=R"). (€2)
P

Our aim is to show that the classical version of [H,,H,]/i% coincides with {H,H,}, i.e., the

assignment H— Hisalie algebra homomorphism. ([ - , -] denotes the commutator product and

{ -, } is the Poisson bracket induced by the standard symplectic form w=2; dx; /\ d6;.)
Clearly, it is sufficient to consider monomials (bilinearity of the brackets):

=V, (x,k) e_"P'E’, H, =V, (x,0) e %% p=1,2. (C3)
p p- Vp
The relevant brackets are of the form:
[fll, [}2]=V[1y2](x,ﬁ) e_("1+"2)'9, (C4)
{Hl’ H2}=V{1,2}(x) e—(K1+K2)‘0. : (CS)

Proposition C.1: One has

hn}) ;L Via(xh)=Vy, 2}(x) (C6)

Proof: Working out the commutator product/Poisson bracket of (C3) yields for the r.h.s. of
(C4), (C3):

Viia(xh)=Vi(x,h) Volx+ihi,h) — Vo(x,h) Vi(x+ifikg,h), n

Vi1.2§(x)=V1(x,0) (x;-VV3)(x,0) = Va(x,0) (k2 VV1)(x,0). (C8)

Taylor expansion of (C7) around £ =0 entails
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Vir2i(xR) =ik Vi 5y (x) + O(h?). (C9)
O

Corollary C.2: One has
(A, H,]=0 = {H,, Hy}=0. (C10)
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