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Integrability of difference Calogero-Moser systems 
J. F. van Diejen 
Department of Mathematics and Computer Science, Universiv of Amsterdam, 
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands 

(Received 24 November 1993; accepted for publication 1 February 1994) 

A general class of n-particle difference Calogero-Moser systems with elliptic po- 
tentials is introduced. Besides the step size and two periods, the Hamiltonian de- 
pends on nine coupling constants. We prove the quantum integrability of the model 
for n = 2 and present partial results for n 2 3. In degenerate cases (rational, hyper- 

bolic, or trigonometric limit), the integrability follows for arbitrary particle number 
from previous work connected with the multivariable q-polynomials of Koorn- 
winder and Macdonald. Liouville integrability of the corresponding classical sys- 
tems follows as a corollary. Limit transitions lead to various well-known models 
such as the nonrelativistic Calogero-Moser systems associated with classical root 
systems and the relativistic Calogero-Moser system. 

I. INTRODUCTION 

The well-known Calogero-Moser (CM) systems and their generalizations related to root 
systems form a rich and widely studied class of finite-dimensional models.lV2 In these systems the 
particles are one-dimensional and interact by means of inverse square potentials or (doubly) 
periodic generalizations thereof. For the root system A,, - 1 , which corresponds to an n-particle 
system with pair potentials, the Hamiltonian with elliptic potential reads 

H CM=“’ C ‘~fg” C g(Xj-Xk), 
1cj=zn lSj<kcn 

(1.1) 

where p ( a ) denotes the Weierstrass g-function. 3 It has been shown that the Hamiltonian (1.1) is 
Liouville integrable’ and that integrability is preserved after quantization.2 

A relativistic generalization of H CM (1.1) has been introduced by Ruijsenaars e. a.4S5 The 
Hamiltonian of the relativistic CM system (henceforth abbreviated RCM) reads 

H RCM= 2 n .f(xj-Xk)ChP~jv 
1GjSn k+ j 

(1.2) 

withf( . )=(l+p2 g2g( + )) . 1’2 It was shown that also the RCM system is integrable; in fact, 
in the relativistic case explicit combinatorial expressions were found for a complete set of integrals 
in involution. An appropriate quantization of the integrals gives rise to commuting difference 
operators. This type of operators is referred to in the literature as analytic difference operators 
(AAOs) or finite-difference operators (also q-difference operators). The reason AAOs emerge after 
quantization instead of PDOs [as for the quantization of H,, (l.l)], is that substituting 
ej * - ih dXj in HRCM (1.2) leads to exponentials of the form exp( -C ids,,.). The parameter p, 

which determines the step size of the differences, is proportional to the inverse of the speed of 
light. For p+ 0, which corresponds to the nonrelativistic limit, Pw2(HRCM-n) converges to 
HcM. For more information on RCM systems and interesting connections with soliton PDEs and 
integrable QFTs the reader is referred to the survey in Ref. 6. 
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The remaining classical root systems (i.e., B, , C, , D,, and BC,) also give rise to n-particle 
CM systems. The latter differ from the A,,- i model in the sense that translational invariance is 
traded for symmetry under the reflections Xj H - Xi, and by the presence of various types of 
external fields. The precise nature of the external field depends on the type of root system. A 
Hamiltonian that contains the latter models as special cases was studied by Inozemtsev e. a.:778 

+ 2 (8: @(Xj)+gT @(Wl+Xj)+gi B(w2+xj)+gi P(01+02+xj))~ (1.3) 
1sjsn 

where 2w, and 2w2 are the primitive periods of the ~-function. A Lax pair for the flow generated 
by H (1.3) was presented in Ref. 8. It follows from the Lax pair that the system has n independent 
conserved quantities, but it has not been shown yet that these are in involution. Nevertheless, it is 
very plausible that this is indeed the case and, therefore, that the Hamiltonian (1.3) is integrable. 

The main purpose of this paper is to present a difference CM Hamiltonian generalizing the 
quantum version of H (1.3), and study its integrability. The generalized Hamiltonian is given by an 
AA0 with meromorphic coefficients. These coefficients govern the interaction felt by the par- 
ticles. The model depends on nine coupling constants. (Actually we shall impose one linear 
constraint reducing the number of independent coupling constants by one.) By sending the step 
size to zero one obtains a PDO that is the quantization of H (1.3). It will turn out that also the 
quantum RCM system can be seen as a special case of the difference CM model considered here. 

Let us outline the plan of the paper and describe its results in more detail. We begin in Sec. II 
with a discussion of certain n-particle difference CM systems with rational, hyperbolic, or trigo- 
nometric coefficients (potentials). Just as for the relativistic system, the integrals are given by 
explicit combinatorial formulas. Sending the step size to zero leads to a complete set of integrals 
for the quantum CM system associated with the root system BC, . The material in this section 
hinges on previous work9 
q-polynomials.‘O~” 

connected with recently discovered families of multivariable 

Section III concentrates on the special case of only two particles. By generalizing the model 
of Sec. II for n = 2, we find a difference CM system with elliptic potentials. Integrability is proved 
and it is shown that by sending the step size to zero one obtains a quantum integrable system that 
has the two-particle specialization of H (1.3) as classical version. 

In Sec. IV some partial results pertaining to the case of arbitrary particle number have been 
collected. The two commuting AAOs with elliptic potentials introduced in Sec. III (viz. the 
two-particle Hamiltonian and its additional integral) are generalized to n>2. A conjecture is 
formulated regarding the existence and structure of a complete set of integrals for the resulting 
n-particle difference CM system. The highest order terms of the conjectured integrals are related 
to the quantum integrals of the RCM system via a gauge transformation. 

The last section of the paper, Sec. V, is devoted to the classical version of our difference CM 
systems. The quantum integrability of the models of Sets. II and III implies the Liouville inte- 
grability of the corresponding classical systems. Furthermore, for special values of the coupling 
constants the classical counterpart of the n-particle difference CM Hamiltonian introduced in Sec. 
IV can be seen as a reduction of the 2n( + 1 )-particle version of HRCM (1.2). In these special 
cases, reducing the integrals of the RCM model leads to a complete set of integrals for the 
classical system; the form of these classical integrals is in agreement with the structure of the 
quantum integrals conjectured in Sec. IV. 

Some technicalities have been relegated to three short appendices. 
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II. DIFFERENCE CM SYSTEMS WITH RATIONAL, HYPERBOLIC, OR TRIGONOMETRIC 
POTENTIALS 

The Hamiltonian of the system is given by the AA0 

a= 2 W(EXj) n V(&Xj+Xk) v(Exj-xk)(e-“pej-l), 
lSj&n k+j 

with 

I. Rational case 

(Pu+Z) 
u(z)=- 

(ruofz) (&+Y+d . 

z ’ 
w(z)=y- 

(y+z) ’ 

II. Hyperbolic case 

v(z)= 
sh (u(/L+z) 

sh (CZZ) ’ 

w(z) = 

sh a(/~~+z) ch (Y(,u~+z) sh a(~.;)+ Y+Z) ch o(PL;+ Y+z) 

sh ( LYZ) ch (CYZ) sh a(y+z) ch a(r+z> ; 

III. Trigonometric case 

v(z)= 
sin a(p+z) 

sin( az) ’ 

w(z)= 
sin CU(~~+Z) cos a(pi+z) sin a(&+ Y+Z) cos 4P;+ Y+z) 

sin( (YZ) cos( crz) sin a( y+z) cos ct(y+z) ; 

where CY > 0 and 

Gj=t$* y = i@i/2. 
.I 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The exponentials exp(+PBj) act on analytic functions by a complex shift of the argument: 

(ezpijf)(xl ,...,X,)=f(X1,...,Xj_1,Xj7ip~,Xj+1,... ,X,). (2.8) 

The functions u and w are the potentials of the model; u is responsible for the interaction between 

the particles and w models an external field. The parameters ,u, ,u~, and p; (r= 0,l) are coupling 
constants; after setting them equal to zero the particles become free (u , w = 1). In a previous paper9 
we have introduced explicit expressions for the quantum integrals of the system in the case of 
trigonometric potentials: 

&= c UJc, ,-I~, W,., VEJ; JC emP’EJ, Z= l,...,n, (2.9) 
K{l,.,.,n}, 131~1 

Ej=%l, jsJ 

with 
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WC?,= l-I hjXj)9 (2.10) 
jeJ 

V U E X +Ej’Xj’)U(EjXj+EjrXjt+Zy)n U(EjXj+Xk)U(EjXj-Xk), (2.11) ( j j 
jd 

j<j' kaK 

S,=C Ejhj)j, (2.12) 
jeJ 

and 

h,p= c (-1P c 
l+TCP 

Wdq II 

O$Il,y~IqcI l<q’<q 

V~(I,A Iqt-,); n lql (2.13) 

.q=*l, iel q 

(U1,a= 1, 10=O). For 1= 1 th,e operator .5%r (2.9) coincides with the Hamiltonian 5% (2.1). 
The difference operators .L%r , . . . , 5%” with type III potentials are simultaneously diagonalized 

by Koomwinder’s multivariable generalization of the Askey-Wilson polynomials (see Remark iii. 
below), and therefore commute with each other.’ Because hyperbolic potentials are obtained from 
trigonometric ones by analytic continuation: a H ia, and the rational case follows from the limit 
a -+ 0, the commutativity of L%Yl (2.9)-(2.13) for the potentials of type I and II follows as well. 

Theorem 2.1 (quantum integrability): The operators L&Cl , . . . ,h,, commute. 
The operators S1, I= l,..., n, are not Hermitian (with respect to Lebesgue measure). How- 

ever, after the reparametrization 

p=iipg, i.+=iPg,, pU:=Wd, (2.14) 

P-0, &&&09 
A 

conjugation with an appropriate function transforms .%$ into a Hermitian operator: 

c uJc, l-IJI w;2 v gJc e -mJ vt’;. J,w”;J. (2.15) 
JC{l,...,n}, lJ1sl 

aj=kl, jeJ 

The transition & H Al, which can be seen as a gauge transformation, and the function A are 
detailed in Appendix A. Note how the transformation only affects the part of the coefficient 
that does not commute with the exponential exp(-@J) and leaves the commuting part ~Jc, l-151 

tmchanged. To see that the formal adjoint i?: of the resulting operator indeed coincides with 
HI, notice that for p,pu, ,p; E iR one has m= u( -Xi), m= w( -Xj), and consequently 

tJ;K= V-EJ;K, veJ= w-,J, &,p= &,p. (2.16) 

Let us now explain the relation between the above difference operators and the quantum CM 
systems associated with classical root systems. Consider nfrst the case of trigonometric potentials. 
It follows from Ref. 9 that a formal expansion in p of S?$ (2.9) with parameters (2.14) is of the 
form 

&~(p)=.%~,~p2’+o(p2~) (2.17) 
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with 

(2.18) 
JC{l,...,n} jeJ 

IJI=i 

(I.o. stands for terms of, lower o:der in the partial; ~j). Expansion formulas similar to (2.17), 
(2.18), now hold with Xr and Xl,0 replaced by H1 and the corresponding leading part fi[,u. 
Because of the analytic dependence on a, all these expansion formulas are also valid for the 
systems with hyperbolic and zational potentials. 

Explicit computation of H,,o entails (hyperbolic version) 

2 (Sh-2U’(Xj+Xk)fSh-2Q’(X~-Xk)) 

l<j + k=% 

+a2 2 
ko(io-fi> il(il-fL) 

+4a2(Fw) 
ISjGn sh2(axj) - ch2( oxj) 

(2.19) 

with &=g0+gh, il=gl+g;, and oj=(n-j)g+(gu+g”t)/2. The operator (2.19) coincides 
with the BC,-type Calogero-Moser Hamiltonian. Hence, we see that the integrability of the 

BC, Calogero-Moser system with potentials of type I-III is an immediate consequence of Theo- 
rem 2.1 and Expansion (2.17), (2.18). 

Theorem 2.2 (transition to the BC,-type CM system): The limits 

iil,o= limB-2’Ei,(j3), 1= l,..., n, 
P-0 

A n 
exist and the resulting PDOs HI,, ,. . .,H,,o comm”,t”. 

Remarks: i. The diFerence operators B -2’Hl(P) form a deformation of the BC,-type 

Calogero-Moser PDOs HI,o. The deformation parameter B determines the step size of the AAOs 
via Eq. (2.8). One can look upon /3 as a par!meter that governs the (imaginary) period of the 
Hamiltonians in the momentumlike variables 0,. The transition /3 --+ 0 then amounts to sending 
this period to infinity. 

ii. Observe that the operator ,S@ is homogeneous of degree 1 in the external field potential w. 
If, before taking a to zero, .3%J is divided by a21 and ,LL~ , ,xU; are shifted over half a period (turning 
cos(h)a(p\‘)+z) into sin(h)a(pi’)+z)), then one ends up with a more general rational system 
with w (2.2) replaced by 

w(z)=(Po+z)(/4+z) wl+Y+dbUI+Y+d 
2 (Y+z) . 

(2.21) 

The potential w (2.2) is recovered after multiplying $$ by ( /.L~/.L~) -’ and sending both /.~t and 
j~i to infinity. 

iii. In the case of trigonometric potentials the system has polynomial eigenfunctions; one has’ 
(taking for convenience a = l/2, h = 1): 

& Px=EI,n(~+P) PA 7 (2.22) 

where ph denotes the Koomwinder polynomial” associated with the dominant weight vector 
A E Z” (h,ah$ . * 13 X,>O), and the eigenvalues are given by 
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El”(e)= c (-l)‘+‘Jlrz. ch /?tJ, I c ch PPi, * . * ch PPi,-pI (2.23) 
JC{l,...,n} j=J l=ZilS~~.Sil-lJISn 

IJb[ 

[with the same p as in (2.19)]. 
iv. For special values of the coupling constants I? l,. (2.19) reduces to the CM Hamiltonian 

associated with B, (Sl =0), C, (go=gl), or D, (jo,g”l =O). For arbitrary root system the quan- 
tum integrability of the corresponding CM system with type I-III potentials already follows from 
a construction involving certain differential-reflection operators known as ‘Dunkl operators’.‘2V13 

III. GENERALIZING TO ELLIPTIC POTENTIALS FOR TWO PARTICLES 

In this section it is explained how for n = 2 the results of Sec. II can be generalized to the case 
where the potentials are elliptic. 

A. Preliminaries 

In the elliptic case we will express our potentials in terms of the Weierstrass a-function.3 In 
order to keep the treatment self-contained we first recapitulate some elementary properties of 
sigma functions. For more details the reader is referred to, e.g., Whittaker and Watson.3 

The o-function is an entire, odd, and quasiperiodic function with two primitive quasiperiods 
2w,, 20~. It is convenient to distinguish a third (dependent) quasiperiod 2 w3 = - 21.0, - 2w2. 
One has 

c(z+2ws)= -a(z) e2Q(z+ws), s= 1,2,3, (3.1) 

with 7, = l( ws), where l(z) = cr’(z)/a(z) denotes the Weierstrass [-function. By working out 
the the r.h.s. of the identity a(z) = a(z + 2w, + 20~ + 2w3) one sees that consistency implies that 

VI+ 72+ 73=O- (3.2) 

Occasionally we will also use Legendre’s formula, which relates 77~ to the half-periods w,: 

7,71w2- v201 = 7rii2. (3.3) 

Let l? denote the half-period lattice: 

r=o*z+w2z. (3.4) 

The zeros of u (z) are located at the points of the period lattice 2 r . It follows from the expansion 
a(z) = z + O(z3) and Eq. (3.1) that these zeros are simple. By introducing a shift of the argument 
over the half-periods one arrives at three associated sigma functions: 

u,(z)= em76 u(w,+z)/a(~,), r= 1,2,3. (3.5) 

For the associated sigma functions the quasiperiodicity relations read 

o,(z+20,)=( - 1)6r~~o,(z) e2’rs(zfUs), r,s= 1,2,3 (3.6) 

(where S,,, denotes the Kronecker delta). 
We close this subsection with a duplication-formula for sigma functions and some relations 

with the Weierstrass p-function: 

a(2z)=2 a(z) a,(z) (Tz(z) a,(z), (3.7) 
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d2 
@(z+w,)=-z In c+,(z), r=0,1,2,3, 

where we have introduced the convention go(z) = a(z) and oo=O. 
Remark: In order to have a,(z)= CT,(?) (such that the functions are real for real values of the 

argument), it will be assumed most of the time that 

01 El%+, 02Ei R+. (3.10) 

Although this assumption is important in matters concerning real-valuedness and Hermiticity of 
the Hamiltonians below, it is not essential for the integrability of our models. 

B. A special case: ,u= o, 

First let us write out the relevant operators .%1 (2.9)-(2.13) for n=2: 

AT,= c W(&X*) U(&XI+XZ) U(EXl-XZ) e-Psi1 
EE{l,-l} 

+ c w(ex2) u(ex2+x1) u(.m2-x1) empEeZ+ U{I,~),I, (3.11) 
&E{l,-l} 

.&= c W(EX1) W(E’X2) U(EX~‘CE’X2) U(EX~+E’X*+2y) e-P(4+4 
&,E’ ={I,- 1) 

(3.12) 

with 

U{j},l=-W(Xj)-W(-Xj) (j=1,2), (3.13) 

~{l.2).*=-eE~~1) (W(EX1) ( u =,+x2) U(EX1-X2) + W(EX2) U(EX2fXI) U(&Xz-XI)), 

(3.14) 

u&2),2= - c W(EXJ W(E’X2) U(&X1+&‘XJ U(EX1+&‘X2+2y) 
&.E’ E{l,- 1) 

+(wb2)+w(-xP)) c W(&Xl) u(ex, +X2) U(EX1 -x2) 
ee{l,-1) 

+(w(xl)+w(-xl)) c W(EXJ u(&X2+X*) U(&Xz-XI). (3.15) 
&E{l,-I} 
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Requiring that the commutator [.%,, &2] is zero leads to functional equations for the functions 
u(z) and w(z). We know already from Theorem 2.1 that these functional equations admit non- 
trivial solutions given by the potentials (2.2)-(2.6). By writing out the relevant equations one finds 
that there exist also elliptic solutions (observation due to S. N. M. Ruijsenaars): 

u(z) = 
~s(Z> -.....-~e-7sz dw,+z) 
4.d dzh(4 ’ 

w(z)= n ( 
u,(cLr+d a(p;+y+z) as(Pu:+Y+z) 

orrs3 g,(z) Ii dr+z> 1 a,(r+z> ’ 

(3.16) 

(3.17) 

where the coupling constants of the external field potentials must satisfy the linear relation 

b4+)(LS)+ c Pr’Ov (3.18) 
ocrs3 

and s = 1,2, or 3. Condition (3.18) ensures that the potential w(z) is doubly periodic in z [cf. Eqs. 
(3.1), (3.6)]. If this condition is not fulfilled, then the commutativity of Zt and X2 breaks down. 

Thus, we have the fol!owing proposition. 
Proposition 3.1: Let Xl, .A$ be of thenform (3.!1)-(3. IS) with the potentials v and w given 

by (3.16) and (3.17). Then the operators .%, and .Z2 commute if the coupling constants of the 
external field satisfr Condition (3.18). 

C. The general case 

A serious drawback of the difference CM system in the previous subsection compared to the 
ones in Sec. II is the absence of an independent parameter in u(z) (3.16) playing the role of 
coupling constant. Furthermore, the symmetry between the primed and the unprimed coupling 
constants in the external field potentials of type I-III is broken in w(z) (3.17). In trying to cure 
these diseases we are led to a more general ansatz for the potentials V(Z) and w(z): 

IV Elliptic case 

u(z)= 
G+z) 

u(z) ’ 

w(z)= l-I 
a&-+Z) ah;+ y+z) 

osrr3 a,(z) a,(r+d . 

(3.19) 

(3.20) 

Apart from an exponential factor in u(z) (3.16), the potentials (3.16), (3.17) correspond to setting 
k=ro, and pi=0 if r # 0 ,s. In contrast with u (3.16) [which is doubly periodic with (nonprimi- 
tive) period lattice 4 I’], the potential u (3.19) is no longer periodic in general. The external field 
potential w (3.20), however, is again doubly periodic provided the parameters satisfy the condition 

c (/-b+PL:)=o. (3.21) 
ocrs3 

In fact, by using the defining equation for a,(z) [Eq. (3.5)], and Eqs. (3.1), (3.2), one readily 
verifies that w(z) is covariant with respect to a shift of the argument over a half-period provided 
(3.21) holds: 

z I-+ z+w * Pu, - P,*(r)* 4 I-+ t$,) f (3.22) 
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where we have introduced the permutations rr,,=id, rrt=(O1)(23), ~~=(02)(13), and 
rrTT3=(03)( 12). 

Unfortunately it turns out that the operators &r , k2 (3.11)-(3.15) with potentials given by 
(3.19) and (3.20) do not commute if p # 0. (For p = 0 comrnutativity is trivial because in that 
case the two particles become independent.) However, as will be demonstrated next, it is possible 

to replace U{l,2),1A (3.14) ad U{l,2), 2 (3.15) by functions such that the resulting operators 

.%r (3.11) and .%Y2 (3.12) with potentials u(z) (3.19) and w(z) (3.20) do commute if 
(3.21) holds. Specifically, these functions read 

u{l*2}J=o~<3 C:I1I, 

ur(PL- Yfxj) ar(PCL- YBxj) 

-_ 
CT (- y+x.) i- I ar(- YAxj) ' 

where 

2 

Cr=dP)4P-2y)o,ss3 
rI a%,(s)- Y) a,(&(J 

(3.23) 

(3.24) 

[with T, as in Eq. (3.22)], and 

q1.2},2= c W(EX*) W(E’X2) U(EXISE’X2) u(-&X1-&‘X2-279. (3.25) 
E,E’E{I,-I} 

Our proof of commutativity exploits a small variation on a standard technique used t! dem- 
onstrate functional identities between elliptic functions: we compute the commutator of %, and 
.& and show that the coefficients of the resulting AA0 are given by entire functions, i.e., poles 
introduced by the denominators of u (3.19) and w (3.20) cancel each other in the commutator. 
Using this property, and some additional information involving the quasiperiodicity of the coeffi- 
cients, it follows (Appendix B) that these functions vanish identically. 

First we need a lemma; it basically says that a one-particle version of (3.23) differs from 
(3.13) only by an (irrelevant) additive constant. 

Lemma 3.2: Zf the coupling constants satisfy (3.21), then the expression 

w(z)+w(-z)+ c c, u(-y+o,+z) u(-Y-or-d 
osr=z3 

(3.26) 

is constant in z [with v(z), w(z) given by (3.19), (3.20), and c, dejined by (3.24)]. 
Proof: Condition (3.21) implies that Expression (3.26) is doubly periodic in z. Recall that the 

c-function is entire and that its zeros are simple and located at the points of the period lattice 
2 r( = 2w,Z+ 20~2). For y generic the zeros of the sigma functions induce simple poles in the 
terms of (3.26) by means of the denominators of u and w. These poles are congruent to one of 

Z=Or, z=+y+w,, OGrS3 (3.27) 

(with the convention oo=O). We want to show that the total residue of (3.26) at the above poles 
vanishes. Because (3.26) is covariant with respect to shifts z-+z+ o, , i.e., such shifts amount to 
a permutation of the coupling constants CL, and p: [cf. (3.22)], it suffices to verify the cases z=O 
and z = + y. Since (3.26) is even in z the vanishing of the residue at z = 0 is immediate and either 
z = - y or z = y remains to be checked. Using a(z) = z + 0(z3) [and the duplication-formula for 
sigma functions (3.7)], one infers that the latter residue vanishes too. 
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The upshot is that (3.26) is entire and bounded (because doubly periodic) in z. By Liouville’s 
theorem it must then be a function independent of z. 

cl 
We are now ready to, prov,e that [&, , &Y2] = 0. 
Theorem 3.3: Let XI, .X2 be of the form (3.11), (3.12) with the functions UI,p dejined by 

(3.13) and (3.23)-(3.25), and the potentials v and w given by (3.19) and (3.20). Then the opera- 
tors &, and 5k2 commute if the coupling constants of the externaE$eld sati& Condition (3.21). 

Proof A straightforward calculation entails 

^ ” 
L%? *21= c Kl(EXlS’X2rY) we1 War2 Uelce’2 %l+s’2+27 e 

-p(Ee,+E’e2) 

e,E’E{l,-1) 

+ c K2(=1,~2,d W,I u,1+2 ~~1-2 empEil 
&E{l,--I} 

+ c K~(=~,xI ,Y) w,2 U,Z+I ~~2-1 evpei 
ee{l,-I} 

(3.28) 

with 

K~(xIJ~,Y)= C Cr II U-y+o,+j U-7-o,-j- II Uy+o,+j U-3y-co,-j 
04rc3 j= I,2 j=l,2 

+cw*+w-1) Ul-2-27 ~-1+2-(Wl+27+W-1-27) VI-2 U-1+2-27 

+(wz+w-2) u-1+2-27 ul-2-(w2+27+w-2-27) u-1+2 Ul-2-27 

(3.29) 

and 

K2hx2a)=wl+27 W2 7J1+2+27 u-1-2-47-wl W2 U1+2 U-1-2-27 

+w-l-27 w2 u-1+2-27 Ul-2-w-1 w2 u-1+2 Ul-2-27 

+Wl+Zy W-2 ul-2+27 u-1+2-47-wlw-2 ul-2 u-1+2-27 

+w-l-27 w-2 u-1-2-27 u1+2-w-1 w-2 u-1-2 u1+2-27 

+(W2+W-2) 

x c CAU 7+w,+1 u-37-w,-1-u-7+0,+1 U-7-o,-l)U-7+w,+2 U-7-0,-2 
OSr43 

+w2-27 w-2 bl+2-27 u-1-2-u-1+2-47 ul-2+27) 

+w-2-27 w2 h-2-27 u-1+2-u-l-2-47 U1+2+27)* (3.30) 

where we have introduced the short-hand notation WEj= w( &Xj) and uE1 +r,2+27+o r 
= u(ext+~‘x~+27+o,),etc. 

By considering (3.29) and (3.30) as function of y and ,U we will see that K1 and K2 are 
identically zero. 

It follows from (3.1), (3.6) and Condition (3.21) that K1 and K2 are quasiperiodic in y 

(3.3 1) 
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K,(x,,~~,y+20,)=e-~~~(~+~~~~~~~~)K~(x~,~~,y). (3.32) 

The idea is now to show that Kt and K2 are entire in y, ,u, and then apply Lemma B.l of 
Appendix B. 

If xi, x2 and p, ,I.+, p: are fixed in general position, then the zeros of the sigma functions 
induce simple poles in the terms of (3.29) and (3.30) via the denominators of u, W, and c,. For 
K i ( y) these poles are located at 

y= +(x1-x2)/2 mod I’, (3.33) 

Y= fXj mod r, Y=- x I2 j mod r/2, Y= -Xi/3 mod I’/3, (3.34) 

y=p/2 mod I’ (3.35) 

[with the lattice I’ given by (3.4)]. Using the double periodicity of the function w (period lattice 
2 r), one sees that the poles at (3.33) in (3.29) cancel manifestly. As regards the poles at (3.34), 
it suffices to consider only the cases that y is actually equal to %xi, -xj/2, or -xj/3, because 
K1 is covariant with respect to simultaneous translation of the positions over the half-periods 
[cf. (3.22)]. At y= -Xj/2 the residues in (3.29) cancel again manifestly. Using Lemma 3.2 
one infers that the total residue at y= ‘xi and at y= -xj/3 vanishes, too. Finally, the poles 
(3.35), which are caused by the denominator of c, (3.24), are compensated by zeros in the 
part between brackets in the first line of (3.29) [the latter zeros stem from the identity 
u(-p/2+z) u(-p/2-z)=l]. 

Consequently, K t is an entire function of y. A similar analysis of the residues reveals that also 
K2 is entire in y. Furthermore, both expressions are entire in /.L too [poles caused by c, (3.24) are 
again compensated by zeros in the parts between brackets]. 

It now follows from Lemma B.l that the functions K, and K2 are zero. 
cl 

D. Further properties of the system 

In the elliptic case ..%r and .&T2 are transformed into Hermitian operators fir and 2?2 in the 
same way as the operators of Sec. II. Using parameters as in (2.14) and conjugating with the 
appropriate function from Appendix A entails 

I;T1= C wi:’ v$+, ~f{‘-~ eePEil r~‘/z,+~ u-,1-2 w-,1 112 l/2 

eP{l,-l} 

+ c 
l/2 

W.92 uEL”+~ uEL”-~ e -he2 uy,“2+, u1/:24 w’/:2+ U{1,2}, 1, (3.36) 
ee{l,-I} 

+ U{2), 1 c 4:’ uE{‘+~ u:{“-~ e 112 112 -f=el ut/,2,+2 u-,1-2 w-,1 
&E{I,-1) 

+ U{l).l c ‘I2 WC2 u ti”+ 1 u A:“- 1 e 
-pEe, uy2 

&2+1 rJ!i,-, w!,22+u{1,2},2, (3.37) 
sE{l,-1) 
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with u, w, and lJ1,p as in Sec. III B. [Eqs. (3.16), (3.17), and (3.13)-(3.15)] or as in Sec. III C. 
[Eqs. (3.19), (3.20), and (3.13), (3.23)-(3.25)]. The Hermiticity of gi, and h2 hinges on Assump- 
tion (3.10) and Condition (2.14) [verification as in Sec. II: U(Xj)=u( -xi), W(Xj)= w(--xj) and 

h,, = fJI,pl. 
By comparing the Hermitian counterparts of the operators in Sec. III B and III C it follows 

that the former model is a ;pecial case of&the latter. More precisely, setting p = w, and p; = 0, 
r # O,s, in the operators H1 (3.36) and H2 (3.37) with potentials from Sec. III C leads, up to 
multiplicative and additive constants, to the corresponding operators with potentials from Sec. 
III B. To verify this, notice that exponential factors in u zf+2, if u(z) is given by (3.16), give rise 
to multiplicative constants in H, and gi, after commuting them through the difference operators 
exp( ?j?Gj), expp( + & + &). Furthermore, the respective formulas for U( 1 2) p in Sec. III B and 
III C can be compared by an analysis of residues and by invoking the Liouiilie theorem similar to 
the proof of Lemma 3.2. 

Let us now clarify the connection between our two-particle difference CM system and a 
quantization of the Inozemtsev Hamiltonian (1.3). By expanding in p [and using Eq. (3.9)] one 
infers that [cf. (2.17)-(2.19)] 

2Ci,(p)=const+B,,0p2+0(P2), (3.38) 

fi2(P)=~2,,P4+4P4), (3.39) 

with const=4+C,g:(2g,-h)lg(g-6) and 

+ c g”,(g,-n)(B(w,+x,)+63(o,+x,)), (3.40) 
O=sr43 

,. ,. 
H2,0= 6; 8;+1.0. (3.41) 

Just as in Sec. II a confluence of the parameters g, and g: into a single coupling constant 
g,.=g,.tg: occur: for p + 0. It follows from Theorem 3.3 and the above asymptotics that the 

PpOs HI,, and H2,o commute, which proves the (quantum) integrability of the Hamiltonian 
Hl,o (if C,g,= 0). For the corresponding classical two-particle Hamiltonian of the type (1.3) the 
Liouville integrability follows of course already from Ref. 8 (without any restrictions on g,). 

Another point of interest is the question whether Condition (3.21) is really essential for 
integrability. It is not difficult to deduce from the quasiperiodicity of the sigma functions that 
(3.21) guarantees that UI,p is doubly periodic in the positions. The part of the coefficient that does 
not commute with the translator is quasiperiodic but double periodicity is restored after gauging to 
Hermitian form (3.36), (3.37). It can be seen from the proofs that the double periodic&y of the 
relevant functions UI,p, A and thus Condition (3.21), is essential for the commutativity of &I and 
X2. However, notice that UI, ,2),1 ( 3.23) remains doubly periodic even if (3.21) is not fulfilled, 
and that, because of Lemma 3.2, also U bl,, (3.13) can be rewritten in a form that is doubly 
periodic for arbitrary values of the parameters. Probably there also exists a doubly periodic version 
of U{1,2),2 [which coincides with (3.25) if (3.21) holds] such that the operator k2 (3.12) com- 
mutes with kl (3.11) without further restrictions on the coupling constants. 

IV. PARTIAL RESULTS FOR ARBITRARY PARTICLE NUMBER 

It seems plausible that one can generalize the difference CM systems of Sec. III to arbitrary 
pAarticle number. We have checked by computer that with the potentials of Sec. III B the operators 
X1 (2.9)-(2.13) commute for n =3,4, and expect this result to be true for any n. 
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Conjecture 4.1: The operators 5%‘, (2.9)-(2.13) with potentials given by (3.16)-(3.18) com- 
mute. 

As regards the generalization of the system in Sec. III C, the situation seems less straightfor- 
ward. Probably there again exist functions UtSP such that the operators %, , . . . ,$IYn commute if the 
potentials u, w are given by (3.19), (3.20). Furthermore, it is expected that these functions U,,P 
have similar properties asAthose in Sets. II and III. 

Conjecture 4.2: Let Xl be of the form (2.9)-(2.12) with poten@als v and w given by (3.19) 
and (3.20). Then there existfunctions Ut,P with UI,o= 1 such that .X1 ,.. .,X,, commute. Further- 
more, the functions UI,P have the following properties: 

i. UI,P does not depend on xi, i $ I, and is invariant under permutations of xi, iE I; 
ii. Ut, is even, meromorphic, and doubly periodic in xi (with primitive periods 2w, and 

202); 

iii. Ut,P is holomorphic in h at h =O; 
iv. UI,, is real for Xi real and parameters given by (2.14) [with half-periods as in (3. IO)]. 

Unfortunately we have not yet succeeded in producing general formulas for UI,, , nor have we 
proved the existence of such functions by any other means. Having said this, let us continue by 
outlining some partial results that support Conjecture 4.2. 

Generalization of the two-particle Hamiltonian Xl in Sec. III C leads to a Hamiltonian of the 
form 

A,= C VSj emEp’i+U, 
1SjSn 

E=Zl 

(4.1) 

with 

V,j=W(EXj) n U(EXj+Xk)U(&Xj-X/o, 

k+j 
(4.2) 

iJ= c ci- rI 
(+r(ll- Y+xj) ar(Pu- YMxj) 

ocrc3 ISj=Q (+r(- Y+xj) (+r(- Ymxj) ’ 
(4.3) 

where c, is again given by (3.24). Furthermore, as generalization of the integral &2 we have 
found an operator .kn that commutes with the n-particle Hamiltonian (4.1) if Condition (3.21) 
holds: 

.sg= c UJc WEJ VEJ; Jc eWB’eJ, (4.4) 
JC{l....,n} 

ej=tl, jEJ 

with WcJ and VEJ; K given by (2.10), (2.11), and 

UK= c (-1)‘Kll-J ( w &kxk) n U(&kXk+&k,Xk’)U(-&kXk-&k’Xk’-2y). 
.ck=tl, ksK RczK k,k’ E K 

k<k’ 

(4.5) 

Although in the present case the comb~natorics~involved in computing the commutator is much 
more laborious, the commutativity of X1 and %a can be verified with the same techniques used 
already in Sec. III C (i.e., by an analysis of the residues at poles occurring in the coefficients of the 
commutator, and by invoking Lemma B.l). 
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Theorem 4.3: The operators &, and a,, (4.1)-(4.5), with potentials v, w given by (3. I9), 
(3.20), commute if the coupling constants of the external field satisfy Condition (3.21). 

When all coupling constants of the external fields are zero (so w = 1 and U= 0), then a 
straightforward calculation shows that 

A%$ = (.3%+-sit)2 = #++.%f - &+ .k-$k &+, 

with 

A&= c rl[ ~(Ejxj+E~k)e-B(EIel+“‘+Enen)/2, E=+l. (4.7) 
~~,...,e~~{l,-l} lGj<k=Gn 

E,“‘En=6 

The operators &Z are an elliptic generalization of certain trigonometric difference operators 
introduced by Macdonald that are a:sociated pith the half-spin weights of the root system 
D 9~11 The commutativity of &+ , .%‘- , and %‘r amounts to functional equations for u(z) that 
cann’again be verified with the techniques from Sec. III. Thus, in this special case we have three 
independent integrals, which implies the integrability of the model for n=3. (In fact, for n= 3 
integrability follows already from Ref. 5 because in that case our system coincides up to coordi- 
nate transformation with the four-particle RCM model in center of mass coordinates; indeed, the 
root systems D3 and A3 are isomorphic.) The structure of the integ;als .$? is not of the form 
anticipated in Conjecture 4.2. However, the combinations (.B+ B- +k-.%+)/2 and 
&+ + @ are of the correct form corresponding to 1 = n - 1 and I= n, respectively. 

Let us return to the s$uation with a nontrivial external field. Assuming parameters as in Eq. 
(2.14) and transforming .%?i to the Hermitian gauge leads to the operator 

fi, = C Vi:’ emEaij Vy2j+ u. (4.8) 
l=GjGn 

&=&I 

Expanding (4.8) in ,B entails the following generalization of corresponding formulas in Sec. III D: 

with 

A ,. 
H,(p)=const+H,,a p2+o(p2), (4.9) 

+ C ir(irmfi) @(Or+xj)v 
ISjSn 

osrs3 

const=2n+- l c dcbr-h). 
gkw,,r,, 

(4.10) 

(4.11) 

Clearly fit,, (4.10) amounts (up to a factor 2) to a quantization of the Inozemtsev Hamiltonian 
(1.3). 

Remarks: i. Consider the operators %,, iead, which consist of those terms in $& that are of 
highest order in the exponentials exp(-pej): 
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&, lead= c W, VJ.Jc ema’J. 
JC{l,...,n} ’ 

pi=1 

(4.12) 

It is clear that if the operators .%[ (2.9) commute, then their leading parts .&?l,ie& must also 
commute. A similarity (gauge) transformation, resembling the ones we have seen before, turns 

&, lead into the integrals of the quantum RCM system: 

ii,, RCM= A& c-‘&l, ,&c Ai;; 

=A;& 2 n u(xj-xk) e-“J 
JC{l,...,n} jEJ 

IJI=[ keJC 

= 2 r]: ~“~(Xj-xk) empiJ n v”2(xk-xj), 

IC{l....,n} jcJ jEJ 

/J/=1 kcJC keJC 

(4.13) 

where 

A RCM= II dv(xj-Xk), C= fl c,(xjfxk) I-J C,(Xj), 
lSj<ksn l~j<k<n 1sZjSn 

(4.14) 

with d,, c,, 

&, lead 

and c, defined in Appendix A. The commutativity of Z!ll, RCM and thus also of 
follows from Ref. 5. Notice that &L, lead=limR+W exp(-ZphR) Ai’ &l AR with 

AR=exp(-iR(x,+ . . e + x,)), so the RCM system can be seen as a limiting case of the system 
studied here. 

ii. It is not difficult to see that operators &1 of the form (2.9)-(2.13) annihilate constant 
functions [for 1= 1 this is immediate from (2.1)]. This implies that, at least formally, the function 
A 1’2 of Appendix A is a joint eigenfunction with eigenvalue zero of the corresponding Hermitian 
operators HI (2.15) [ we assume parameters according to (2.14)]. In the trigonometric case this 
eigenfunction corresponds to the ground state of H (2.1) (cf. Remark iii. of Sec. II with h = 0). In 
other words: the system has a factorized (or Jastrow-like) wave function representing the ground 
state. 

A similar picture holds for the systems with potentials of type I, II, and for the special system 
with ellipec potentials of Conjecture 4.1. However, in the latter cases it has not been demonstrated 
yet that H (2.1) is positive, and for type I or II potentials the wave function A1’2 does not 
correspond to a true bound state because it is not normalizable. 

It is most unlikely that the ground state wave function of the Hamiltonian (4.8) with elliptic 
potentials (3.19), $3.20) factorizes for general parameters. Indeed, the function A 1’2 is no longer an 
eigenfunction of H, (4.8). 

iii. Sending periods to infinity in the special system of Conjecture 4.1 leads to operators 
$?r (2.9)-(2.13) with type I-III potentials corresponding to a special value for the parameter CL. 
Recall that in a similar transition from hyperbolic/trigonometric potentials to rational ones, a more 
general external field is obtained if first certain coupling constants are shifted over a half-period 
(Remark ii. of Sec. II). The same phenomenon occurs here; after introducing the appropriate shifts 
we obtain operators (2.9)-(2.13) with the following potentials. (For convenience we have chosen 
s=l.) 

u(z)= l/sh (a~), (4.15) 
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w(z) = 
sh a(po+z)sh cr(p,+z)ch a(fiz+z)ch 4,u3+z) sh d&+Y+d 

sh (az)ch (az) sh cr(y+z) 
; (4.16) 

rJ(z)=cot(az), (4.17) 

w(z) = 
sin a(po+z)cos ~~(p,+z)sin a(p2+z)cos (Y(~~+z) 

sin( (uz) cos( (YZ) 

X 
sin a(&+ y+z)cos a(~; + y+z) 

sin a(r+z) cos cu(y+z) ’ 
(4.18) 

*I--+~, %+iw (p,-+p,- wr) 

u(z)= l/z, (4.19) 

w(z)= 
(~o+z)(CL,+z)(r2+z)(LC3+z)(~~+ Y+d 

z(y+z) 
(4.20) 

The above transitions can be verified with the aid of the product representation of the a-function.3 
Using this representation one derives the asymptotics of the potentials u (3.16) and w (3.17). The 
potential w gives rise to a multiplicative constant converging to zero. Because the operator .& 
(2.9)-(2.13) is homogeneous in w, it is possible to collect such multiplicative constants into an 
overall factor. In order to get the above results, one should divide by this factor before sending the 
periods to infinity. This type of renormalization is to be compared with the division by a21 in the 
before-mentioned transition II/III--+1 (see Remark ii., Sec. II). 

It should be stressed that the cases (4.15), (4.16), and (4.17), (4.18), are different in the sense 
that they are not connected via analytic continuation. Notice also that for the potentials (4.16) and 
(4.20) Condition (3.18) (s = 1) may be omitted because the dependence on ,!L; has dropped out in 
the limit. 

By studying similar limiting cases of the Hamiltonian (4.8) we have found,14 besides further 
generalizations of the models in Sec. II, certain difference Toda chains with boundary conditions 
generalizing the (free-end) relativistic Toda system.15 For n = 2 the integrability of these novel 
models is an immediate consequence of Theorem 3.3. 

V. THE CLASSICAL SYSTEM: LIOUVILLE INTEGRABILITY 

We conclude this paper with some results regarding the classical counterpart of our difference 
CM models. Let us IJrst restrict to the case of type I-III potentials. The classical counterpart 
$$ of the operator %‘i (2.9)-(2.13) is obtained by substituting real variables 0, for the partials 
0j and setting y =O [cf. Eq. (2.7)]. It is explained in Appendix C that the Poisson commutativity 
of* 2 t , . . . ,%,, is an immediate consequence of the quantum integrability of the difference system. 
Thus, we arrive at the following corollary of Theorem 2.1: 

Corollary 5.1 (Liouville integrability): The classical versions 39, , . . . ,.3.9,, of the commuting 
Hamiltonians in Theorem 2.1 are in involution (with respect to the Poisson bracket induced by the 
standard symplectic form W= Cj dxj A d tlj). 

Similar substitutions in Eq. (2.15) lead to the classical version HI of the Hermitian operator 
HI. The integrals %l and HI are connected by means of the canonical gauge transformation in 
Eqs. (A4), (A5) (Appendix A). The classical counterpart of Theorem 2.2 becomes: 
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Corollary 5.2 (transition to the BC,-type CM system): The limits 

H/,0= limp-2’HI(P), I= l,..., n, 
B-0 

(5.1) 

exist and the resulting functions H,,, ,...,H,,o Poisson commute. 
For I= 1 we recover the classical BC,-type CM Hamiltonian, which is given by the classical 

version of (2.19) (obtained by substituting 0j H ej and fi ~0). 
Next, we turn to the case of elliptic potentials. Up to a factor two the classical Hamiltonian 

associated with tit (4.8) reads 

HI= c n fr,p,(~jIfr,p~CXj)II f(xj-xk)f(xj+xk> Wej+ 2 Cr n f?,,(Xj), 
1 =zj=zn osrc3 k+j O=zr43 1SjSn 

(5.2) 

with 

f(z)= ( 
dp+z)dp-z) 1’2 

i 
lT (v+z)o (v-z) 1’2 

a(z)4 -z) ’ 
f&)= ( rg,(Z)(Tr;mz) 

1 
’ 

and 

cr=d4-2 l-I ~st~,~(s,)cr,(~~~~~)). 
o==ss3 

(5.3) 

(5.4) 

For ,G + 0 we now recover the Inozemtsev Hamiltonian (1.3) [cf. Expansion (4.9)-(4.11) with 
~j H ej andA=O]. 

In the case of two particles the Liouville integrability of H, (5.2) [with Condition (3.21)] is a 
consequence of Theorem 3.3 and Appendix C. The n = 2 specialization of the Hamiltonian (5.2) 
unifies various two-particle models for which the Liouville integrability was already demonstrated 
in Ref. 16. In particular, the situation that all parameters p: are equal to zero (so c,=O) corre- 
sponds to a model studied there. 

For some special values of the coupling constants H, (5.2)-(5.4) can be seen as a reduction 
of the RCM Hamiltonian (1.2). More precisely, by setting x,+ 1 -j= -xj and 8, + 1 -j = - ej in the 
m-particle version of HRCM (1.2) one obtains (up to a factor 2) 

Hre~= c f(2xj) n f(xj+xk)f(xj-xk) chPBj 
‘<j<,, k+j 

(5.5) 

if m=2n, and 

H~I= c f(xjIf(2xj) n f(xj+Xk)f(Xj-Xk) Wej i-1/2 11 f2(Xj> (5.6) 
ISjSn kfj 1SjShl 

if m = 2n + 1. [Because of Eq. (3.8), the function f (z) used here is essentially the same as the one 
used in the introduction.] With the aid of the duplication formula for a-functions (3.7) one verifies 
that H1 (5.2) reduces to (5.5) for p,=p/2, ,u: =0, and to (5.6) if instead of taking ,LL~ equal to 
zero one sets J& = p. 

A complete set of (p-a&y inva$nt) integ$s for the (m-particle) RCM model is given by the 
cjassical version of (HI, RCM+ H,-,, ~~~ H,, RCM -‘) [cf. Eq. (4.13) with the convention 
Ho, RCM= I]? 
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H [,re~- C II f(Xj-xk) ChpeJ, l= l,...,m. 
JC{l,...,m} je.l 

IJI=[ kaJc 

(5.7) 

The Hamiltonian HRCM (1.2) corresponds to I= 1. If the initial particle-configuration is chosen 
invariant with respect to reflection of the particles in the origin, then the commuting Hl,re,-flo~~ 
preserve this symmetry. By computing the Hamiltonians that generate the reduced motion (i.e., 
setting as above x,+ t -j= -Xi and e,,,, , -j= - Oj), one finds a complete set of integrals for 
Hrd (5.5), (5.6); the structure of the resulting integrals is compatible with Conjecture 4.2: 

H 1,Ird= c UJC,I-1-11 FEJ;JC chfle,J 9 I= l,...,n (5.8) 
JC{l,...,n}, IJId 

Ej=?l, jeJ 

with 

F “J;X=j~~JP(&jxj+ej’xj’)~~J f(xjfxk)f(xj-Xk) 

j<j’ k=K 

r 
n f(2Xj)l m=2n 
jeJ 

x 

fl f(2Xj)f(Xj), m=2n+ 1 
jczJ 

and 

lZ’l=[p/*] ieA I’ 

(p odd), 1 (p even), m=2n 

f*(xJ (P odd), iF,, f*(-~) (P even), m=2n+ 1 

(5.9) 

(5.10) 

(here [p/2] denotes the integer part of p/2). Unfortunately, it does not seem straightforward to 
generalize the integrals HI,,& to the situation where the coupling constants of the external field are 
not related to p. 

Remarks: i. For type I/II potentials the above reduction of the classical relativistic Calogero- 
Moser system has been studied in Ref. 17 (Sec. 5B); it is shown that the action-angle transforma- 
tion for the reduced system is obtained by restricting the action-angle map for the relativistic 
system. 

ii. Recently it has been observed that similar reductions of the nonrelativistic CM system’ may 
be viewed as real cases of more general ‘duplication’ procedures in the complex plane;18 these 
duplication methods give rise to new types of integrable n-particle models on the line. 
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APPENDIX A: A GAUGE TRANSFORMATION 

If the functions c,(z) , c,(z) (# 0) satisfy the difference equations 

C,(z+iph)=C,(Z)IU(Z), c,(z + iPfi) = c,(z)lw(z), 

then it is not difficult to see that conjugation with A”*, where 

3001 

(Al) 

*= n dv(xj-tXk)dv(Xj-Xk) 11 d,(Xj), L42) 
lSj<kcn l<jcn 

4(z)= WC,(Z) c,(-z)), d,(z)= ll(c,(z) cd-z)), 643) 

transforms operators & of the form (2.9) into operators fi, of the form (2.15). The transition 
xl * HI for the corresponding classical systems (Sec. V) boils down to a canonical gauge 
transformation: 

Xj * Xj. 645) 

ej H 8,+& ln w(xj)+& c (In u(xj+xk)+h u(xj-xk)) 

k+j 

-2 In W(-Xj)-2 C (In U(-Xj+Xk)+ln u(-Xj-Xk)), 
k#j 

(‘44) 

It follows from classical results that the first-order difference equations (Al) have nontrivial 
solutions,” which are unique up to periodic multiplicative factors. In general, the solutions of 
(Al) may be badly singular. It turns out, however, that for all potentials of interest there exist 
solutions cU(z), c,(z) that are meromorphic in z. 

The potentials u(z) and w(z) are of the form 

u(z)= 
s(jPg+z) 

w(z)=rI 
s,(iPg,+z) s,(iPg:+y+z) 

42) ’ 
646) 

r s,(z) SAY+4 

with I: s(z),su(z)=z; II: s(z),sa(z)=sh (cuz), si(z)=ch (CYZ); III: S(z),Sa(z)=sin(m), 

s*(z>=cos(az); Iv: s(z),sl.j(z>=a(z>, s,(z)=(+,(z) (1 c 6 3). For convenience, 6 will be 
taken equal to one from now on. For g,g, E N it is now straightforward to write down meromor- 
phic solutions of (Al): 

c,(z)= n s-‘(ipk+z), 647) 
Ork<g 

c,(z)=rI l-I s;‘(i/t?k,+z) fl s;‘(i/3k;+ y+z). (‘4% 
r Osk,<g, OSk;<g; 

In the rational and the trigonometric case one can generalize (A7) and (A8) to (meromorphic) 
solutions valid for arbitrary g,g,SO by rewriting in terms of gamma functions or q-shifted fac- 
torials, respectively (recall y = ip /2): 
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I. Rational case 

c,(z) = 
r(zlip) r(zlip)r( 1/2+zliP) 

r(g + zlip) ’ 
c,(z) = 

r(go+dip)r(g;+ 1/2+zlip) ’ 
649) 

III. Trigonometric case 

c,(z) = eiazg 
(em *aPge2iaz. , ,-24 

ICC 

(e 
2iaz. , e-2n% ’ 

(AlO) 

cdz)=e iaz(so+g~+8()+g;) 

x(e- 
*@gOe*inz 

, 
-e-2uPgle2iaz 

, e 
-*ufi(gA+ 1/2)e2iuz _e-2np(g~+1/2)e2iaz;e-2a~ 

JO3 

(e 
4raz. 

, e- 9, 
2 

(All) 

In the case of hyperbolic and elliptic potentials meromorphic solutions c,(z) valid for all 
g> 0 have been obtained by Ruijsenaars;6*20 in the latter situations c,(z) is given by an integral 
formula (hyperbolic case) or in terms of a product expansion (elliptic case). Appropriate shifts 
over half-periods and over y lead to the corresponding c,(z). 

Remark: In the hyperbolic case the system is periodic in the parameters g , g,, with period 
2 T /(a/? ). Thus, if this period is not a rational number, then the parameter values for which 
c, and c, can be written in terms of the elementary hyperbolic functions (A7), (A8), form a dense 
subset. 

APPENDIX B: A LEMMA 

In this appendix it is shown that certain quasiperiodic functions are identically zero. The result 
was used in Sec. III to prove the integrability of the two-particle difference model with elliptic 
potentials. As usual 20,) r = 1,2,3, denote the periods of the Weierstrass functions and 

77r= !3%>. 
Lemma &I: Let K,(z) be a complex function such that 

i. K,(z) is entire in both z and pu; 
ii. K,(z) is quasiperiodic in z: K,(z + 2 wr) = e 2vrp(p)Kfi(~), r=1,2, with p(p ) a certain 

polynomial of degree 31 in ,u. 

Then K,(z) must be the zero function. 
Proof: Consider 

G(w) E e -[vlPbLL)~dln WK 

Because of i. and ii., G(w) is holomorphic and univalent in w on e\(O); therefore, G(w) has a 
Laurent expansion around zero, which converges for all w f 0 

G(w) = c k&W. 
nez 

GQ) 

Substituting w = elTi’oilz yields a series expansion for K,(z), which is valid for all z E C 
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~,(z)=eI~‘P(“)IW,lZ~ k,(p)@%)Z. 
033) 

IlGZ 

It follows from the quasiperiodicity relation ii. for r= 2 [using Legendre (3.3)] that the coefficients 
FL,,(p) satisfy the relation 

k,(~)=e(~ilwl)(P(CL)f2 ““‘k,(p). 

Thus, k,(p) must be zero. 

APPENDIX C: THE CLASSICAL LIMIT 

In this appendix we consider n-particle difference Hamiltonians of the form (finite summa- 
tion) 

H=C V,(x,h) e-vi (Cl) 2 
with KPER” and ;=($i,..., Gn). It will be assumed that the coefficients Vp(x,jL) are holomorphic 
in h at h = 0, and holomorphic in x on F%+ i W”, where 9% is an open dense subset of R,” (these 
assumptions correspond to our applications). The classical Hamiltonian associated with H reads 

H=C V,(x, O)e-KP.0 (BER”). (W 
P 

Our aim is to show that the classical version of [k, ,Z?,]lifi coincides with {Hi ,H2}, i.e., the 
assignment l? H H is a Lie algebra homomorphism. ( [. , . ] denotes the commutator product and 

{* , * } is the Poisson bracket induced by the standard symplectic form O= Cj dxj A d8j.) 
Clearly, it is sufficient to consider monomials (bilinearity of the brackets): 

l?,=V,(x,h) e-“P”, H,=V,(x,O) ~T-~P”, p=1,2. cc31 

The relevant brackets are of the form: 

[I?,, ii,]=V,,,,,(x,fi) e-(K1+K2).i, 

{HI, H2}=V11,2~(~) e-(Kl+K2)‘e. 

cc41 

(W 

Proposition C.1: One has 

1 
p. x V[l,Z]( x3)= V{1,2}W. tW 

Proof: Working out the commutator product/Poisson bracket of (C3) yields for the r.h.s. of 

(C4), tw 

V[1,21(x7h)=V1(x,h) V2tx+ifiKl,h) - Vdx,R) Vltx+ifiK2,h), (C7) 

v{1,2}b)=hb,o) tK,‘VV2)tX,O) - v2ho) (K2’VV1)b,O). (C8) 

Taylor expansion of (C7) around h =0 entails 
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Corollary C.2: One has 

[ii,, I;r2]=0 * {H,, H2}=0. 

(C9) 
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