INTEGRABILITY OF DISTRIBUTIONS IN GCR-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS

RAKESH KUMAR, SANGEET KUMAR, AND RAKESH KUMAR NAGAICH

ABSTRACT. In present paper we establish conditions for the integrability of various distributions of GCR-lightlike submanifolds and obtain conditions for the distributions to define totally geodesic foliations in GCR-lightlike submanifolds.

1. Introduction

The study of geometry of Cauchy-Riemann (CR)-submanifolds in Kaehler manifolds was initiated by Bejancu [2], which include holomorphic and totally real submanifolds as special cases and has been further studied by Bejancu [3, 4], Chen [6], Duggal [7, 8], Yano and Kon [17, 18] and others.

The geometry of lightlike submanifolds was initiated by Kupeli and further developed by Bejancu and Duggal [9] and they also introduced the notion of CR-lightlike submanifolds of indefinite Kaehler manifolds. But this class of submanifolds exclude the complex and totally real submanifolds as subcases. Later on, Duggal and Sahin [11] introduced SCR-lightlike submanifolds of indefinite Kaehler manifolds. Since there was no inclusion relation between CR and SCR cases therefore Duggal and Sahin [12] introduced a new class called GCR-lightlike submanifolds of indefinite Kaehler manifolds which is an umbrella for all these types of submanifolds. In present paper we establish conditions for the integrability of various distributions of GCR-lightlike submanifolds and obtain conditions for the distributions to define totally geodesic foliations in GCR-lightlike submanifolds.

2. Lightlike submanifolds

We recall notations and fundamental equations for lightlike submanifolds, which are due to the book [9] by Duggal and Bejancu.

Let (\bar{M}, \bar{g}) be a real (m+n)-dimensional semi-Riemannian manifold of constant index q such that $m, n \geq 1, 1 \leq q \leq m+n-1$ and (M,g) be an

Received May 9, 2011.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53C15,\ 53C40,\ 53C50.$

 $[\]label{eq:Keywords} \textit{Key words and phrases.} \ \ \text{indefinite Kaehler manifold}, \textit{GCR-} \ \text{lightlike submanifold}, \ \text{integrability of distributions}.$

m-dimensional submanifold of \bar{M} and g the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle TM of M, then M is called a lightlike submanifold of \bar{M} . For a degenerate metric g on M

(1)
$$TM^{\perp} = \bigcup \{ u \in T_x \bar{M} : \bar{g}(u, v) = 0, \forall v \in T_x M, x \in M \},$$

is a degenerate n-dimensional subspace of $T_x\bar{M}$. Thus both T_xM and T_xM^{\perp} are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace $\mathrm{Rad}T_xM = T_xM \cap T_xM^{\perp}$ which is known as radical (null) subspace. If the mapping

(2)
$$\operatorname{Rad}TM: x \in M \longrightarrow \operatorname{Rad}T_xM,$$

defines a smooth distribution on M of rank r>0, then the submanifold M of \bar{M} is called an r-lightlike submanifold and $\mathrm{Rad}TM$ is called the radical distribution on M.

Screen distribution S(TM) is a semi-Riemannian complementary distribution of Rad(TM) in TM, that is

(3)
$$TM = \operatorname{Rad}TM \perp S(TM)$$

and $S(TM^{\perp})$ is a complementary vector subbundle to RadTM in TM^{\perp} . Let $\operatorname{tr}(TM)$ and $\operatorname{ltr}(TM)$ be complementary (but not orthogonal) vector bundles to TM in $T\bar{M}\mid_M$ and to RadTM in $S(TM^{\perp})^{\perp}$ respectively. Then we have

(4)
$$\operatorname{tr}(TM) = \operatorname{ltr}(TM) \perp S(TM^{\perp}),$$

(5)
$$T\bar{M} \mid_{M} = TM \oplus \operatorname{tr}(TM) = (\operatorname{Rad}TM \oplus \operatorname{ltr}(TM)) \perp S(TM) \perp S(TM^{\perp}).$$

Let u be a local coordinate neighborhood of M and consider the local quasi-orthonormal fields of frames of \bar{M} along M, on u as $\{\xi_1,\ldots,\xi_r,W_{r+1},\ldots,W_n,N_1,\ldots,N_r,X_{r+1},\ldots,X_m\}$, where $\{\xi_1,\ldots,\xi_r\},\{N_1,\ldots,N_r\}$ are local lightlike bases of $\Gamma(\operatorname{Rad}TM\mid_u)$, $\Gamma(\operatorname{ltr}(TM)\mid_u)$ and $\{W_{r+1},\ldots,W_n\},\{X_{r+1},\ldots,X_m\}$ are local orthonormal bases of $\Gamma(S(TM^{\perp})\mid_u)$ and $\Gamma(S(TM)\mid_u)$ respectively. For this quasi-orthonormal fields of frames, we have:

Theorem 2.1 ([9]). Let $(M, g, S(TM), S(TM^{\perp}))$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) . Then there exists a complementary vector bundle ltr(TM) of RadTM in $S(TM^{\perp})^{\perp}$ and a basis of $\Gamma(ltr(TM)|_u)$ consisting of smooth section $\{N_i\}$ of $S(TM^{\perp})^{\perp}|_u$, where u is a coordinate neighborhood of M such that

(6)
$$\bar{g}(N_i, \xi_j) = \delta_{ij}$$
, $\bar{g}(N_i, N_j) = 0$ for any $i, j \in \{1, 2, ..., r\}$, where $\{\xi_1, ..., \xi_r\}$ is a lightlike basis of $\Gamma(\text{Rad}(TM))$.

Let $\bar{\nabla}$ be the Levi-Civita connection on \bar{M} then according to the decomposition (5), the Gauss and Weingarten formulas are given by

(7)
$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \forall \ X, Y \in \Gamma(TM),$$

(8)
$$\bar{\nabla}_X U = -A_U X + \nabla_X^{\perp} U, \quad \forall \ X \in \Gamma(TM), U \in \Gamma(\operatorname{tr}(TM)),$$

where $\{\nabla_X Y, A_U X\}$ and $\{h(X,Y), \nabla_X^{\perp} U\}$ belong to $\Gamma(TM)$ and $\Gamma(\operatorname{tr}(TM))$, respectively. Here ∇ is a torsion-free linear connection on M, h is a symmetric bilinear form on $\Gamma(TM)$ which is called second fundamental form, A_U is a linear operator on M and known as shape operator.

According to (4), considering the projection morphisms L and S of tr(TM) on ltr(TM) and $S(TM^{\perp})$, respectively, then (7) and (8) become

(9)
$$\bar{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y),$$

(10)
$$\bar{\nabla}_X U = -A_U X + D_X^l U + D_X^s U,$$

where we put $h^l(X,Y) = L(h(X,Y)), \ h^s(X,Y) = S(h(X,Y)), \ D^l_X U = L(\nabla_X^\perp U), \ D^s_X U = S(\nabla_X^\perp U).$

As h^l and h^s are $\Gamma(\operatorname{ltr}(TM))$ -valued and $\Gamma(S(TM^{\perp}))$ -valued respectively, therefore they are called as the lightlike second fundamental form and the screen second fundamental form on M. In particular

(11)
$$\bar{\nabla}_X N = -A_N X + \nabla_X^l N + D^s(X, N),$$

(12)
$$\bar{\nabla}_X W = -A_W X + \nabla_X^s W + D^l(X, W),$$

where $X \in \Gamma(TM), N \in \Gamma(\operatorname{ltr}(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Using (9)-(12) we obtain

(13)
$$\bar{g}(h^s(X,Y),W) + \bar{g}(Y,D^l(X,W)) = g(A_W X,Y),$$

(14)
$$\bar{g}(h^{l}(X,Y),\xi) + \bar{g}(Y,h^{l}(X,\xi)) + g(Y,\nabla_{X}\xi) = 0,$$

(15)
$$\bar{q}(A_N X, N') + \bar{q}(N, A_{N'} X) = 0$$

for any $\xi \in \Gamma(\text{Rad}TM)$, $W \in \Gamma(S(TM^{\perp}))$ and $N, N' \in \Gamma(\text{ltr}(TM))$.

Let P be the projection morphism of TM on S(TM) then using (3), we can induce some new geometric objects on the screen distribution S(TM) on M as

(16)
$$\nabla_X PY = \nabla_X^* PY + h^*(X, PY),$$

(17)
$$\nabla_X \xi = -A_{\varepsilon}^* X + \nabla_X^{*t} \xi$$

for any $X,Y \in \Gamma(TM)$ and $\xi \in \Gamma(\operatorname{Rad}TM)$, where $\{\nabla_X^*PY, A_\xi^*X\}$ and $\{h^*(X,PY),\nabla_X^{*t}\xi\}$ belong to $\Gamma(S(TM))$ and $\Gamma(\operatorname{Rad}TM)$, respectively. ∇^* and ∇^{*t} are linear connections on complementary distributions S(TM) and $\operatorname{Rad}TM$, respectively. h^* and A^* are $\Gamma(\operatorname{Rad}TM)$ -valued and $\Gamma(S(TM))$ -valued bilinear forms and called as the second fundamental forms of distributions S(TM) and $\operatorname{Rad}TM$, respectively.

Using (9), (10), (16) and (17), we obtain

(18)
$$\bar{g}(h^l(X, PY), \xi) = g(A_{\xi}^* X, PY),$$

(19)
$$\bar{g}(h^*(X, PY), N) = \bar{g}(A_N X, PY)$$

for any $X, Y \in \Gamma(TM), \xi \in \Gamma(\text{Rad}(TM))$ and $N \in \Gamma(\text{ltr}(TM))$.

From the geometry of Riemannian submanifolds and non degenerate submanifolds, it is known that the induced connection ∇ on a non degenerate submanifold is a metric connection. Unfortunately, this is not true for a light-like submanifold. Indeed, considering $\bar{\nabla}$ a metric connection then we have

(20)
$$(\nabla_X g)(Y, Z) = \bar{g}(h^l(X, Y), Z) + \bar{g}(h^l(X, Z), Y)$$

for any $X,Y,Z\in\Gamma(TM)$. From [9] page 171, using the properties of linear connections we have

$$(21) \qquad (\nabla_X h^l)(Y, Z) = \nabla_X^l(h^l(Y, Z)) - h^l(\nabla_X Y, Z) - h^l(Y, \nabla_X Z),$$

$$(22) \qquad (\nabla_X h^s)(Y, Z) = \nabla_X^s(h^l(Y, Z)) - h^s(\nabla_X Y, Z) - h^s(Y, \nabla_X Z).$$

Barros and Romero [1] defined indefinite Kaehler manifolds as:

Definition 2.2. Let $(\bar{M}, \bar{J}, \bar{g})$ be an indefinite almost Hermitian manifold and $\bar{\nabla}$ be the Levi-Civita connection on \bar{M} with respect to \bar{g} . Then \bar{M} is called an indefinite Kaehler manifold if \bar{J} is parallel with respect to $\bar{\nabla}$, that is

(23)
$$(\bar{\nabla}_X \bar{J})Y = 0, \quad \forall \quad X, Y \in \Gamma(T\bar{M}).$$

3. Generalized Cauchy-Riemann lightlike submanifolds

Definition 3.1 ([12]). Let (M, g, S(TM)) be a real lightlike submanifold of an indefinite Kaehler manifold $(\overline{M}, \overline{g}, \overline{J})$ then M is called a generalized Cauchy-Riemann (GCR)-lightlike submanifold if the following conditions are satisfied:

(A) There exist two subbundles D_1 and D_2 of Rad(TM) such that

(24)
$$\operatorname{Rad}(TM) = D_1 \oplus D_2, \quad \bar{J}(D_1) = D_1, \quad \bar{J}(D_2) \subset S(TM).$$

(B) There exist two subbundles D_0 and D' of S(TM) such that

(25)
$$S(TM) = \{\bar{J}D_2 \oplus D'\} \perp D_0, \quad \bar{J}(D_0) = D_0, \quad \bar{J}(D') = L_1 \perp L_2,$$

where D_0 is a non degenerate distribution on M, L_1 and L_2 are vector subbundle of ltr(TM) and $S(TM)^{\perp}$, respectively.

Then the tangent bundle TM of M is decomposed as

(26)
$$TM = D \perp D', \quad D = \operatorname{Rad}(TM) \oplus D_0 \oplus \bar{J}D_2.$$

M is called a proper GCR-lightlike submanifold if $D_1 \neq \{0\}, D_2 \neq \{0\}, D_0 \neq \{0\}$ and $L_2 \neq \{0\}$.

Let Q, P_1 and P_2 be the projections on $D, \bar{J}(L_1) = M_1 \subset D'$ and $\bar{J}(L_2) = M_2 \subset D'$, respectively. Then for any $X \in \Gamma(TM)$ we have

$$(27) X = QX + P_1X + P_2X,$$

applying \bar{J} to (27) we obtain

$$\bar{J}X = TX + wP_1X + wP_2X,$$

and we can write (28) as

$$\bar{J}X = TX + wX,$$

where TX and wX are the tangential and transversal components of $\bar{J}X$, respectively.

Similarly

$$\bar{J}V = BV + CV$$

for any $V \in \Gamma(\operatorname{tr}(TM))$, where BV and CV are the sections of TM and $\operatorname{tr}(TM)$, respectively.

Differentiating (28) and using (9)-(12) and (30) we have

(31)
$$D^{s}(X, wP_{1}Y) = -\nabla_{X}^{s}wP_{2}Y + wP_{2}\nabla_{X}Y - h^{s}(X, TY) + Ch^{s}(X, Y),$$

(32)
$$D^{l}(X, wP_{2}Y) = -\nabla^{l}_{X}wP_{1}Y + wP_{1}\nabla_{X}Y - h^{l}(X, TY) + Ch^{l}(X, Y).$$

Using Kaehlerian property of $\bar{\nabla}$ with (11) and (12), we have the following lemmas.

Lemma 3.2. Let M be a GCR-lightlike submanifold of an indefinite Kaehlerian manifold \bar{M} . Then we have

(33)
$$(\nabla_X T)Y = A_{wY}X + Bh(X,Y)$$

and

(34)
$$(\nabla_X^t w)Y = Ch(X, Y) - h(X, TY),$$

where $X, Y \in \Gamma(TM)$ and

$$(35) \qquad (\nabla_X T)Y = \nabla_X TY - T\nabla_X Y,$$

(36)
$$(\nabla_X^t w)Y = \nabla_X^t wY - w\nabla_X Y.$$

Lemma 3.3. Let M be a GCR-lightlike submanifold of an indefinite Kaehlerian manifold \bar{M} . Then we have

$$(37) \qquad (\nabla_X B)V = A_{CV}X - TA_VX$$

and

(38)
$$(\nabla_X^t C)V = -wA_V X - h(X, BV),$$

where $X \in \Gamma(TM)$, $V \in \Gamma(\operatorname{tr}(TM))$ and

(39)
$$(\nabla_X B)V = \nabla_X BV - B\nabla_X^t V,$$

(40)
$$(\nabla_X^t C)V = \nabla_X^t CV - C\nabla_X^t V.$$

4. Integrability of the distributions

Theorem 4.1. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . If the distribution D is integrable, then the following assertions hold

- (i) $\bar{g}(D^l(\bar{J}X,W),Y) = \bar{g}(D^l(X,W),\bar{J}Y) \Leftrightarrow \bar{g}(A_W\bar{J}X,Y) = \bar{g}(A_WX,\bar{J}Y).$
- (ii) $\bar{g}(D^l(\bar{J}X,W),\xi) = \bar{g}(A_WX,\bar{J}\xi).$
- (iii) $\bar{g}(D^l(X,W),\xi) = \bar{g}(A_W\bar{J}X,\bar{J}\xi)$ for any $X,Y \in \Gamma(D), \xi \in \Gamma(D_2)$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. Let the distribution D be integrable then for $X,Y\in\Gamma(D)$ and $W\in\Gamma(S(TM^{\perp}))$ we have

$$\bar{g}(D^{l}(\bar{J}X,W),Y) = \bar{g}(\bar{\nabla}_{\bar{J}X}W + A_{W}\bar{J}X - \nabla^{s}_{\bar{J}X}W,Y)
= -\bar{g}(W,\bar{\nabla}_{\bar{J}X}Y) + \bar{g}(A_{W}\bar{J}X,Y)
= -\bar{g}(W,h(\bar{J}X,Y)) + \bar{g}(A_{W}\bar{J}X,Y)
= -\bar{g}(W,h(X,\bar{J}Y)) + \bar{g}(A_{W}\bar{J}X,Y)
= -\bar{g}(W,\bar{\nabla}_{X}\bar{J}Y) + \bar{g}(A_{W}\bar{J}X,Y)
= \bar{g}(\bar{\nabla}_{X}W,\bar{J}Y) + \bar{g}(A_{W}\bar{J}X,Y)
= -\bar{g}(A_{W}X,\bar{J}Y) + \bar{g}(D^{l}(X,W),\bar{J}Y) + \bar{g}(A_{W}\bar{J}X,Y),$$
(41)

or

(42)
$$\bar{g}(D^l(\bar{J}X,W),Y) - \bar{g}(D^l(X,W),\bar{J}Y) = \bar{g}(A_W\bar{J}X,Y) - \bar{g}(A_WX,\bar{J}Y).$$

Therefore part (i) of the assertion follows. Substituting $Y = \xi$ and $Y = \bar{J}\xi$ in (42), for any $\xi \in \Gamma(D_2)$, we obtain (ii) and (iii), respectively.

Theorem 4.2. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then D' is integrable if and only if $\nabla_X \bar{J}Y = \nabla_Y \bar{J}X$ for any $X, Y \in \Gamma(D')$.

Proof. For any $X, Y \in \Gamma(D')$ we have

(43)
$$h(X, \bar{J}Y) = \bar{\nabla}_X \bar{J}Y - \nabla_X \bar{J}Y$$

and

(44)
$$h(\bar{J}X,Y) = \bar{\nabla}_Y \bar{J}X - \nabla_Y \bar{J}X.$$

Subtracting (44) from (43), we obtain

$$\begin{split} h(X,\bar{J}Y) - h(\bar{J}X,Y) &= \bar{J}\bar{\nabla}_X Y - \bar{J}\bar{\nabla}_Y X - \nabla_X \bar{J}Y + \nabla_Y \bar{J}X \\ &= \bar{J}[X,Y] - \nabla_X \bar{J}Y + \nabla_Y \bar{J}X \\ &= T[X,Y] + w[X,Y] - \nabla_X \bar{J}Y + \nabla_Y \bar{J}X. \end{split}$$

Equating tangential parts of above equation, we obtain

(45)
$$T[X,Y] = \nabla_X \bar{J}Y - \nabla_Y \bar{J}X.$$

Hence from (45) the result follows.

- (i) $\bar{g}(h^*(X,Y),N) = \bar{g}(h^*(Y,X),N),$
- (ii) $\bar{g}(h^*(X, \bar{J}Y), N') = \bar{g}(h^*(Y, \bar{J}X), N'),$
- (iii) $h^s(X, \bar{J}Y) = h^s(\bar{J}X, Y),$
- (iv) $\bar{g}(\nabla_X^* Y, \bar{J}\xi) = \bar{g}(\nabla_Y^* X, \bar{J}\xi)$ for any $X, Y \in \Gamma(D_0), N \in \Gamma(\operatorname{ltr}(TM)),$ $N' \in \Gamma(L_1)$ and $\xi \in \Gamma(D_2).$

Proof. Using the definition of GCR-lightlike submanifold, D_0 is integrable if and only if

$$\bar{g}([X,Y],N) = \bar{g}([X,Y],\bar{J}N') = \bar{g}([X,Y],\bar{J}W) = \bar{g}([X,Y],\bar{J}\xi) = 0$$

for any $X,Y \in \Gamma(D_0)$, $N \in \Gamma(\operatorname{ltr}(TM))$, $N' \in \Gamma(L_1)$, $W \in \Gamma(L_2)$ and $\xi \in \Gamma(D_2)$.

Using (9) and (16) we have

(46)
$$\bar{g}([X,Y],N) = \bar{g}(h^*(X,Y),N) - \bar{g}(h^*(Y,X),N)$$

and

$$\bar{g}([X,Y],\bar{J}N') = \bar{g}(\bar{\nabla}_X Y,\bar{J}N') - \bar{g}(\bar{\nabla}_Y X,\bar{J}N')
= -\bar{g}(\bar{\nabla}_X \bar{J}Y,N') + \bar{g}(\bar{\nabla}_Y \bar{J}X,N'),$$

using (16) we have

(47)
$$\bar{g}([X,Y], \bar{J}N') = -\bar{g}(h^*(X, \bar{J}Y), N') + \bar{g}(h^*(Y, \bar{J}X), N').$$

Again using (9) we obtain

$$\bar{g}([X,Y], \bar{J}W) = \bar{g}(\bar{\nabla}_X Y, \bar{J}W) - \bar{g}(\bar{\nabla}_Y X, \bar{J}W)
= -\bar{g}(\bar{\nabla}_X \bar{J}Y, W) + \bar{g}(\bar{\nabla}_Y \bar{J}X, W)
= -\bar{g}(h^s(X, \bar{J}Y), W) + \bar{g}(h^s(\bar{J}X, Y), W).$$
(48)

Finally from (16) we obtain

(49)
$$\bar{g}([X,Y],\bar{J}\xi) = \bar{g}(\nabla_X^*Y,\bar{J}\xi) - \bar{g}(\nabla_Y^*X,\bar{J}\xi).$$

Thus from (46)-(49) the result follows.

Corollary 4.4. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then D_0 is integrable if and only if

 \Box

- (i) $g(X, A_N Y) = g(Y, A_N X)$,
- (ii) $g(\bar{J}X, A_{N'}Y) = g(\bar{J}Y, A_{N'}X),$
- (iii) $h^s(X, \bar{J}Y) = h^s(\bar{J}X, Y),$
- (iv) $\bar{g}(h^l(X,\bar{J}Y),\xi) = \bar{g}(h^l(Y,\bar{J}X),\xi)$ for any $X,Y \in \Gamma(D_0), N \in \Gamma(\operatorname{ltr}(TM)),$ $N' \in \Gamma(L_1)$ and $\xi \in \Gamma(D_2).$

Theorem 4.5. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then $\mathrm{Rad}(TM)$ is integrable if and only if

- (i) $\bar{g}(h^l(\xi, \bar{J}\xi''), \xi') = \bar{g}(h^l(\xi', \bar{J}\xi''), \xi),$
- (ii) $\bar{g}(h^l(\xi, Z), \xi') = \bar{g}(h^l(\xi', Z), \xi),$

- (iii) $h^s(\xi', \bar{J}\xi) = h^s(\bar{J}\xi', \xi),$
- (iv) $\bar{g}(\xi, h^l(\xi', \bar{J}N)) = \bar{g}(\xi', h^l(\xi, \bar{J}N))$ for any $Z \in \Gamma(D_0)$, $\xi'' \in \Gamma(D_2)$, ξ , $\xi' \in \Gamma(\text{Rad}(TM))$, $W \in \Gamma(L_2)$ and $N \in \Gamma(L_1)$.

Proof. Using the definition of GCR-lightlike submanifolds, Rad(TM) is integrable if and only if

$$\bar{g}([\xi, \xi'], Z) = \bar{g}([\xi, \xi'], \bar{J}N) = \bar{g}([\xi, \xi'], \bar{J}W) = \bar{g}([\xi, \xi'], \bar{J}\xi'') = 0$$

for any $Z \in \Gamma(D_0)$, $\xi'' \in \Gamma(D_2)$, ξ , $\xi' \in \Gamma(\operatorname{Rad}(TM))$, $W \in \Gamma(L_2)$ and $N \in \Gamma(L_1)$.

Using (9) and (16), we obtain

$$\bar{g}([\xi, \xi'], \bar{J}\xi'') = \bar{g}(\bar{\nabla}_{\xi}\xi', \bar{J}\xi'') - \bar{g}(\bar{\nabla}_{\xi'}\xi, \bar{J}\xi'')
= -\bar{g}(\xi', \bar{\nabla}_{\xi}\bar{J}\xi'') + \bar{g}(\xi, \bar{\nabla}_{\xi'}\bar{J}\xi'')
= -\bar{g}(h^{l}(\xi, \bar{J}\xi''), \xi') + \bar{g}(h^{l}(\xi', \bar{J}\xi''), \xi)$$
(50)

and using (18)

$$\bar{g}([\xi, \xi'], Z) = \bar{g}(\nabla_{\xi} \xi', Z) - \bar{g}(\nabla_{\xi'} \xi, Z)
= -\bar{g}(A_{\xi'}^* \xi, Z) + \bar{g}(A_{\xi}^* \xi', Z)
= -\bar{g}(h^l(\xi, Z), \xi') + \bar{g}(h^l(\xi', Z), \xi)$$
(51)

and

$$\bar{g}([\xi, \xi'], \bar{J}W) = \bar{g}(\bar{\nabla}_{\xi}\xi', \bar{J}W) - \bar{g}(\bar{\nabla}_{\xi'}\xi, \bar{J}W)
= -\bar{g}(W, \bar{\nabla}_{\xi}\bar{J}\xi') + \bar{g}(W, \bar{\nabla}_{\xi'}\bar{J}\xi)
= -\bar{g}(h^s(\xi, \bar{J}\xi'), W) + \bar{g}(h^s(\xi', \bar{J}\xi), W)$$
(52)

and

$$\bar{g}([\xi, \xi'], \bar{J}N) = \bar{g}(\bar{\nabla}_{\xi}\xi', \bar{J}N) - \bar{g}(\bar{\nabla}_{\xi'}\xi, \bar{J}N)
= -\bar{g}(\xi', \bar{\nabla}_{\xi}\bar{J}N) + \bar{g}(\xi, \bar{\nabla}_{\xi'}\bar{J}N)
= -\bar{g}(\xi', h^{l}(\xi, \bar{J}N)) + \bar{g}(\xi, h^{l}(\xi', \bar{J}N)).$$
(53)

Thus from (50)-(53), the result follows.

Corollary 4.6. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then $\mathrm{Rad}(TM)$ is integrable if and only if

- (i) $A_{\varepsilon}^* \xi' \notin \Gamma(M_1)$,
- (ii) $g(\nabla_{\xi'}^* \bar{J}Z, \bar{J}\xi) = g(\nabla_{\xi}^* \bar{J}Z, \bar{J}\xi'),$
- (iii) $g(A_W \xi', \bar{J}\xi) = g(A_W \xi, \bar{J}\xi'),$
- (iv) $g(A_N\xi', \bar{J}\xi) = g(A_N\xi, \bar{J}\xi')$ for any $Z \in \Gamma(D_0)$, $\xi, \xi' \in \Gamma(\text{Rad}(TM))$ and $N \in \Gamma(\text{ltr}(TM))$.

Theorem 4.7. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then the distribution D_1 is integrable if and only if

- (i) $\nabla_X^{*t} \bar{J} Y \nabla_Y^{*t} \bar{J} X \in \Gamma(D_1),$
- (ii) $A_{\bar{J}Y}^* X = A_{\bar{J}X}^* Y$,

Proof. Since \bar{J} is the almost complex structure on M therefore for any $X,Y\in$ $\Gamma(D_1)$ we have

$$\bar{\nabla}_X Y = -\bar{\nabla}_X \bar{J}^2 Y = -\bar{J}\bar{\nabla}_X \bar{J}Y,$$

using (9), we have

$$\nabla_X Y + h(X, Y) = -\bar{J}(\nabla_X \bar{J}Y + h(X, \bar{J}Y)).$$

Now, using (17), (29)-(30) and then equating the tangential components of the resulting equation both sides we obtain

(54)
$$\nabla_X Y = T A_{\bar{I}Y}^* X - T \nabla_X^{*t} \bar{J} Y - B h(X, \bar{J} Y),$$

replacing X by Y and then subtracting the resulting equation from (54) we obtain

$$[X,Y] = T(A_{\bar{J}Y}^*X - A_{\bar{J}X}^*Y) - T(\nabla_X^{*t}\bar{J}Y - \nabla_Y^{*t}\bar{J}X) - Bh(X,\bar{J}Y) + Bh(Y,\bar{J}X).$$

Hence from (55) the result follows.

Corollary 4.8. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then D_1 defines a totally geodesic foliation in M if and only if

- (i) $\nabla_X^{*t} \bar{J}Y \in \Gamma(D_1)$,
- (ii) $A_{\bar{J}Y}^*X = 0$, (iii) $Bh(X, \bar{J}Y) = 0$ for any $X, Y \in \Gamma(D_1)$.

Theorem 4.9. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then the distribution D_2 is integrable if and only if

- (i) $\nabla_X^* \bar{J} Y \nabla_Y^* \bar{J} X \in \Gamma(\bar{J} D_2),$
- (ii) $h^*(X, \bar{J}Y) = h^*(Y, \bar{J}X),$
- (iii) $Bh(X, \bar{J}Y) = Bh(Y, \bar{J}X)$ for any $X, Y \in \Gamma(D_2)$.

Proof. Since \bar{J} is the almost complex structure on M therefore for any $X,Y\in$ $\Gamma(D_2)$ we have

$$\nabla_X Y + h(X, Y) = -\bar{J}(\nabla_X \bar{J}Y + h(X, \bar{J}Y)),$$

using (16) and (29)-(30) and then equating tangential components of the resulting equation both sides we obtain

(56)
$$\nabla_X Y = -T \nabla_X^* \bar{J} Y - T h^*(X, \bar{J} Y) - B h(X, \bar{J} Y),$$

replacing X and Y and then subtracting the resulting equation from (56) we obtain

$$[X,Y] = -T(\nabla_X^* \bar{J}Y - \nabla_Y^* \bar{J}X) - T(h^*(X, \bar{J}Y) - h^*(Y, \bar{J}X))$$

$$-Bh(X, \bar{J}Y) + Bh(Y, \bar{J}X).$$

Hence from (57) the theorem follows.

Corollary 4.10. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then the distribution D_2 defines a totally geodesic foliation in M if and only if

- (i) $\nabla_X^* \bar{J}Y \in \Gamma(\bar{J}D_2)$,
- (ii) $h^*(X, \bar{J}Y) = 0$,
- (iii) $Bh(X, \bar{J}Y) = 0$ for any $X, Y \in \Gamma(D_2)$.

Theorem 4.11. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then $\bar{J}D_2$ is integrable if and only if

- (i) $\bar{g}(\bar{J}\xi, A_N\bar{J}\xi') = \bar{g}(\bar{J}\xi', A_N\bar{J}\xi),$
- (ii) $h^s(\bar{J}\xi, \xi') = h^s(\bar{J}\xi', \xi),$
- (iii) $\bar{g}(h^l(\bar{J}\xi,\xi'),\xi'') = \bar{g}(h^l(\xi,\bar{J}\xi'),\xi''),$
- (iv) $\bar{g}(\bar{J}Z, A_{\xi}^*\bar{J}\xi') = \bar{g}(\bar{J}Z, A_{\xi'}^*\bar{J}\xi)$ for any $Z \in \Gamma(D_0)$, $\xi, \xi', \xi'' \in \Gamma(D_2)$, $W \in \Gamma(L_2)$ and $N \in \Gamma(\operatorname{ltr}(TM))$.

Proof. Using the definition of GCR-lightlike submanifolds, $\bar{J}D_2$ is integrable if and only if

$$\bar{g}([\bar{J}\xi', \bar{J}\xi], N) = \bar{g}([\bar{J}\xi', \bar{J}\xi], \bar{J}W) = \bar{g}([\bar{J}\xi', \bar{J}\xi], \bar{J}\xi'') = \bar{g}([\bar{J}\xi', \bar{J}\xi], Z) = 0$$

for any $Z \in \Gamma(D_0)$, ξ , ξ' , $\xi'' \in \Gamma(D_2)$, $W \in \Gamma(L_2)$ and $N \in \Gamma(\operatorname{ltr}(TM))$. Using (11) we have

$$\bar{g}([\bar{J}\xi',\bar{J}\xi],N) = \bar{g}(\bar{\nabla}_{\bar{J}\xi'}\bar{J}\xi,N) - \bar{g}(\bar{\nabla}_{\bar{J}\xi}\bar{J}\xi',N)
= -\bar{g}(\bar{J}\xi,\bar{\nabla}_{\bar{J}\xi'}N) + \bar{g}(\bar{J}\xi',\bar{\nabla}_{\bar{J}\xi}N)
= \bar{g}(\bar{J}\xi,A_N\bar{J}\xi') - \bar{g}(\bar{J}\xi',A_N\bar{J}\xi)$$
(58)

and

$$\bar{g}([\bar{J}\xi',\bar{J}\xi],\bar{J}W) = \bar{g}(\bar{\nabla}_{\bar{J}\xi'}\bar{J}\xi,\bar{J}W) - \bar{g}(\bar{\nabla}_{\bar{J}\xi}\bar{J}\xi',\bar{J}W)
= \bar{g}(\bar{\nabla}_{\bar{J}\xi'}\xi,W) - \bar{g}(\bar{\nabla}_{\bar{J}\xi}\xi',W)
= \bar{g}(h^s(\bar{J}\xi',\xi),W) - \bar{g}(h^s(\bar{J}\xi,\xi'),W)$$
(59)

and

$$\bar{g}([\bar{J}\xi',\bar{J}\xi],\bar{J}\xi'') = \bar{g}(\bar{\nabla}_{\bar{J}\xi'}\bar{J}\xi,\bar{J}\xi'') - \bar{g}(\bar{\nabla}_{\bar{J}\xi}\bar{J}\xi',\bar{J}\xi'')
= \bar{g}(\bar{\nabla}_{\bar{J}\xi'}\xi,\xi'') - \bar{g}(\bar{\nabla}_{\bar{J}\xi}\xi',\xi'')
= \bar{g}(h^l(\bar{J}\xi',\xi),\xi'') - \bar{g}(h^l(\bar{J}\xi,\xi'),\xi'')$$
(60)

and finally

$$\bar{g}([\bar{J}\xi',\bar{J}\xi],Z) = \bar{g}(\bar{\nabla}_{\bar{J}\xi'}\bar{J}\xi,Z) - \bar{g}(\bar{\nabla}_{\bar{J}\xi}\bar{J}\xi',Z)
= -\bar{g}(\bar{\nabla}_{\bar{J}\xi'}\xi,\bar{J}Z) + \bar{g}(\bar{\nabla}_{\bar{J}\xi}\xi',\bar{J}Z)
= \bar{g}(\bar{J}Z,A_{\xi}^*\bar{J}\xi') - \bar{g}(\bar{J}Z,A_{\xi'}^*\bar{J}\xi).$$
(61)

Hence from (58)-(61) the result follows.

Lemma 4.12. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold M. If M is D-geodesic, then D defines a totally geodesic foliation in M.

Proof. For $X, Y \in \Gamma(D)$, using (31) and (32), we obtain $w\nabla_X Y = h(X, TY) - Ch(X, Y)$, then using the hypothesis, we obtain $w\nabla_X Y = 0$. Thus the proof is complete.

Lemma 4.13. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \overline{M} . If T is parallel, then Bh(X,Y) = 0 for any $Y \in \Gamma(D)$.

Proof. For any $X, Y \in \Gamma(TM)$, from (33) we have

(62)
$$(\nabla_X T)Y = A_{wY}X + Bh(X, Y).$$

From the hypothesis of lemma, the proof is complete.

Theorem 4.14 ([12]). Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then the distribution D defines a totally geodesic foliation in M if and only if $Bh(X,Y)=0 \ \forall \ X,Y\in \Gamma(D)$.

Theorem 4.15. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . If T is parallel, then the distribution D defines a totally geodesic foliation in M.

Proof. Let T is parallel, then from Lemma 4.13, we obtain Bh(X,Y)=0 for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Then using Theorem 4.14, D defines a totally geodesic foliation in M.

Theorem 4.16. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold \bar{M} . Then the distribution D' is parallel if and only if $A_{\bar{J}Y}X$ has no components in holomorphic distribution for any $X, Y \in \Gamma(D')$.

Proof. From (33), we have

$$-T\nabla_X Y = A_{wY}X + Bh(X,Y)$$

for any $X, Y \in \Gamma(D')$. Hence the proof follows.

References

- M. Barros and A. Romero, Indefinite Kähler manifolds, Math. Ann. 261 (1982), no. 1, 55–62.
- [2] A. Bejancu, CR submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135–142.
- [3] _____, CR submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc. **250** (1979), 333–345
- [4] A. Bejancu, M. Kon, and K. Yano, CR submanifolds of a complex space form, J. Differential Geom. 16 (1981), no. 1, 137–145.
- [5] D. E. Blair and B. Y. Chen, On CR submanifolds of Hermitian manifolds, Israel J. Math. 34 (1979), no. 4, 353–363.
- [6] B. Y. Chen, CR submanifolds of a Kaehler manifold I, J. Differential Geom. 16 (1981), no. 2, 305–322.

- [7] K. L. Duggal, CR-structures and Lorentzian geometry, Acta Appl. Math. 7 (1986), no. 3, 211–223.
- [8] ______, Lorentzian geometry of CR submanifolds, Acta Appl. Math. 17 (1989), no. 2, 171–193.
- [9] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Vol. 364 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
- [10] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003), no. 1, 49–68.
- [11] K. L. Duggal and B. Sahin, Screen Cauchy-Riemann lightlike submanifolds, Acta Math. Hungar. 106 (2005), no. 1-2, 137–165.
- [12] ______, Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds, Acta Math. Hungar. 112 (2006), no. 1-2, 107–130.
- [13] Kumar, Rakesh, Rani, Rachna, and R. K. Nagaich, Some properties of lightlike submanifolds of semi-Riemannian manifolds, Demonstratio Math. 43 (2010), no. 3, 691–701.
- [14] B. Sahin and R. Günes, Integrability of distributions in CR-lightlike submanifolds, Tamkang J. Math. 33 (2002), no. 3, 209–221.
- [15] ______, Geodesic CR-Lightlike submanifolds, Beiträge Algebra Geom. 42 (2001), no. 2, 583-594.
- [16] R. Sharma and K. L. Duggal, Mixed foliate CR submanifolds of indefinite complex space forms, Ann. Mat. Pura Appl. (4) 149 (1987), 103–111.
- [17] K. Yano and M. Kon, Differential geometry of CR submanifolds, Geom. Dedicata 10 (1981), no. 1-4, 369–391.
- [18] ______, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Birkhauser, Bostan, 1983.

RAKESH KUMAR

University College of Engineering

Punjabi University

Patiala 147002, India

E-mail address: rakesh-ucoe@pbi.ac.in

Sangeet Kumar

RAYAT INSTITUTE OF ENGINEERING & INFORMATION TECHNOLOGY

RAILMAJRA, SBS NAGAR 144533, INDIA E-mail address: sp7maths@gmail.com

RAKESH KUMAR NAGAICH DEPARTMENT OF MATHEMATICS PUNJABI UNIVERSITY

Patiala 147002, India

E-mail address: nagaichrakesh@yahoo.com