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INTEGRABILITY OF EXPECTED INCREMENTS OF
POINT PROCESSES AND A RELATED

RANDOM CHANGE OF SCALE
BY

F. PAPANGELOUO

Abstract. Given a stationary point process with finite intensity on the real line R,
denote by N(Q) (Q Borel set in R) the random number of points that the process
throws in Q and by ^ (t s R) the c-field of events that happen in ( — co, t). The main
results are the following. If for each partition A = {¿»=f0<fi< • • • <fn + i = c} of an
interval [b, c] we set SA(co) = IJ.0 E(N[ÍV, f,+i)|3»,) then lim4 5Ä(cu)= W(a,, [b, c))
exists a.s. and in the mean when maxos,än (fv + i — fv) ->-0 (the a.s. convergence
requires a judicious choice of versions). If the random transformation / » W(<a, [0, /))
of [0, oo) onto itself is a.s. continuous (i.e. without jumps), then it transforms the
nonnegative points of the process into a Poisson process with rate 1 and independent
of ^o- The ratio c~1E(N[0, e)\^0) converges a.s. as e|0. A necessary and sufficient
condition for its convergence in the mean (as well as for the a.s. absolute continuity
of the function W[Q, t ) on (0, »)) is the absolute continuity of the Palm conditional
probability P0 relative to the absolute probability P on the cr-field &<,. Further
results are described in §1.

1. Introduction. The present paper, dealing with (mostly stationary) point
processes on the real line, is a natural sequel to [5], where many of the results were
obtained in partial form (more details are given at the end of this introduction).
The processes studied here are assumed to have finite intensities and no multiple
points.

For a quick description of the main results let the random variable N(Q)
denote the number of points of the process in the Borel set Q and for each real t
let !Ft be the <r-field of events that happen left of t, i.e. the a-field generated by the
random variables N(Q) with ÖS(-co, t). Given an interval [b, c] and a partition
A={6 = £0 < íi < • • • < £n+1 = c] of [b, c] we set

(1) Sa(oj)= 2£(A^v,£v+1)|^v).
v = 0

In §3 and §4 we study the behaviour of the random sums 5A when the mesh
IA|| =max1Sván (fv+i~ fv) goes to zero. We show (Theorem 1) that, with the right
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choice of versions, these sums converge almost surely to a random variable
W(w, [b, c)) and that they also converge in the mean (Theorem 3). A consequence
of the a.s. convergence is the existence of lim^o £~1E(N[0, e)|^b) a.s. (using the
"correct" versions). The latter, however, is not always a mean limit and a necessary
and sufficient condition for this is described below.

In §5 we prove that if the random function <pm(t)= W(u>, [0, t)) (t>0) is a.s.
continuous and if t,(co) < t2(w) < ■ ■ are the nonnegative points of the process
then the process t1(cü)^t2(oj)S • •-, where t„(co)= W(w, [0, tn(o>))), is a Poisson
process in [0, co) with rate 1 and independent of J^ (Theorem 6). The proof of this
is based on a characterization of the Poisson process (Theorem 5) proved in [5].
Combining this with the fact that W is the limit of sums such as (1) we obtain the
limit Theorem 7. The "physical" interpretation of Theorems 6 and 7 is given in
the text: Roughly, moving in [0, oo) so as to meet expected future points at a rate
of one per time unit (given at each instant complete knowledge of the past), we
meet them at the times of a Poisson process. In other words, under the assumption
made, by smoothing the "conditional rate" of the process we make it into a
Poisson process.

Let now 7*0 be the Palm probability of the process, i.e. the conditional proba-
bility measure given that the process has a point at 0. If P denotes the absolute
probability measure then the following conditions are equivalent:

(i) P0«P on J*b (« means absolute continuity);
(ii) lime|0 e~1E(N[0, Ol-^o) exists in the mean;

(iii) the function ya(t) = W(<d, [0, i)) is a.s. absolutely continuous relative to the
Lebesgue measure.

In this case if we denote by Xthe Radon-Nikodym derivative whose existence is
implied by (i), and by X(t), —co<t<co, the translates of X, then W(oj, [b,c))
= a fa X(t, oj) dt. These statements are enunciated in Theorems 9 and 10. Theorem
11 gives a criterion for the condition "Po«/" on ¡FQ", which is expressed in terms of
P0 alone. Using this criterion we prove in Theorem 12 that if P0«P on J*!,, for
every £>0 then P0«P on ^b- Finally, Theorem 13 is a sharpened version of a
theorem in [5] and Theorems 8 and 14 state that IF is a.s. continuous or absolutely
continuous if and only if the conditional distribution (under P0) of the first positive
point, given J^, is a.s. continuous or absolutely continuous respectively.

Of the main results, Theorems 3 and 6 are proved in [5] for the case where P0«P
on &Q. Theorem 3 (the mean convergence of 5A) now dispenses with all restrictive
assumptions (except stationariness) and its present proof is based on the (new) a.s.
convergence Theorem 1. Theorem 6 relaxes the assumption to one which is optimal,
but the proof is only an adaptation ofthat in [5]. We give most of this proof here
(except for some technical propositions) for two reasons, first in order to indicate
the changes (use of the Radon-Nikodym derivative is now replaced by two applica-
tions of Theorem 4) and second because this is one of the basic results. The
sufficiency of the condition "P0«P on J^" in Theorems 9 and 10 (but not the
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1972] INTEGRABILITY OF INCREMENTS OF POINT PROCESSES 485

necessity) is already proved in [5], as is a weak-convergence version of Theorem 7,
which is now established as an a.s.-convergence theorem.

After the above results were obtained I learned from H. Rost that sums of
conditional increments such as those in (1) had been used by K. Murali Rao [4]
in a new proof of Meyer's decomposition theorem for continuous parameter
supermartingales. His convergence results are naturally weaker than ours, since
his processes are more general. We make some comments on the connection between
his work and ours in [6].

The Burkill integral has of course proved useful in the study of other aspects of
point processes. It has been employed for example by F. Zitek (see [9]) and by
W. Fieger in a series of papers, the latest of which has appeared recently [2].
However, Murali Rao's is the only other work I am aware of in which it has been
used with conditioning.

I am indebted to H. Rost for many invaluable discussions and to the referee for
his many suggestions which have resulted in the elimination of some obscurities.

2. Groundwork. Let R he the real line and 3S the a-field of Borel subsets of 7?.
Following [8] we let Q be the space of all countable subsets of R which are un-
bounded on both left and right and are locally finite (i.e. have no finite accumula-
tion point). Such sets will be denoted by co. If eu e D and QeSS, we denote by
N(a>, Q) the number of points of co in Q and we let IF he the minimal cr-field
relative to which all functions N(a>, Q) (Q bounded Borel set in R) are measurable.
A point process in 7? is defined by a probability measure P on SP'.

If ßsT?, A e& and t e R, we set Q + t = {x + t : xe Q}, A + t = {io + t :a>eA}.
A point process is said to be stationary if

Wßi) =7i, • •  >N(Qn) =jn) = P(N(Q1 + t) =A,. ..,N(Qn + t) =jn)

for any bounded Borel sets Qlt ■ ■ -, ßn> any nonnegative integers71,.. .,jn and any
real t. In other words if Tt is the "translation" Ttoj = a) + t on Í2 then P=P o Tf1
for any /.

The space Ü can be made into a Polish space (complete separable metric space)
in which J^ is the cr-field generated by the open sets. This topology is the one
induced by the vague topology for measures on 7? if we identify each co e Í2 with
the measure assigning mass 1 to each point of co. See [5] for details. As a consequence
the existence of regular versions of conditional expectations will be taken for
granted.

We shall assume throughout the present paper for all of our processes that the
measure

(2) p(Q) = f  N(w, Q)P(d<o)
Ja

is finite for bounded Borel Q. If the process is stationary, then a=p([0, 1]) is its
intensity.
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486 F. PAPANGELOU [March

As noted in [8], for fixed A the Radon-Nikodym theorem implies the existence
of a Borel function P(A\x) (x e R) such that

I   N(oj, Q)P(doS) = f P(A\x)p(dx)       (Qe<%)
JA JQ

and P(A\x) can be chosen so as to be a true probability in A for fixed x. If in
addition the process is stationary then P(A\x) can be chosen so that P(A\x)
=P(A + t\x + t) for all Ae&, xeR, t e R; in this case we set Po(A)=P(A\0)
and call P0 the Palm probability of the stationary point process. P(A\x) can be
interpreted as the conditional probability of A given that the process has a point
at x.

Consider now the space 7? x Q and the a-field 3& <g> IF in it. If we set

(3) m(QxA) = f N(oj, Q)P(dw) = f P(A\x)p.(dx)
Ja Jq

then mis a set function defined for rectangles QxA (QeSS, A e!F), which can
be extended to a measure m on 3S (g> J5". By the Fubini theorem (see [3, p. 15]), if
DeSS®F then

(4) m(D) = [ N(co, Da)P(dw) = f P(Dx\x)p(dx)
Jn JR

where Dx={co e Q : (x, oS) e D}, Dw = {xeR: (x, a>) e D). In [5] we show that
when the process is stationary, practically all the formulae involving P0 (such as
(6) below) are immediate consequences of (4). We shall not go into this here. We
note only that P0 is carried by the set Q0 = {o) e Q : 0 e to}. For proofs of many of
the unproved statements of this section we refer the reader to [8], [5] and the
literature cited in [5].

In the rest of this section we assume that P is stationary. If u) e Q and x e R, we
can enumerate the points of tu

• • - < t-,(w; x) < t0(w; x) < t,(oj; x) < ■ ■ ■

so that t0(w, x)<x^t,(w, x). If x = 0 we write simply t¡(w) instead of í¡(ü>; 0). Then
we set

ti(<») = U + ,(cS)- tioS),       8(w) = - t0(u>),

and for w e Q0,
(5) r,¡(w) = £i+1(cu)        (coeQ0).

The connection between P and P0 is known to be ([8])

(6)
X(w) P(dw) = a X(u> - x) dx P0(dco)

Jn Jn0 Jo

= ai X(o>-x)P0(doS)dx.
JO   JlïIoèA)
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The probability 7*0 is invariant on Í20 under the one-to-one mapping T*w
= co —r/0(co) of D0 onto itself. In other words the TVdistribution of the random
sequence

(7) ...,    77-1,    r¡0,    17!,     ...

is shift invariant. In particular if i > 0 then

f r    i-noto)+ ■••+ 11^10)
(8) X(w) P(da>) = a\ X(a-X) dx P0(da>)

and analogously for / < 0.
If t e R we let &i denote the cr-field of events generated by the random variables

7V(co, Q) with f2=(-°°. 0- Note that &o is clearly generated by 0(co), £_i(co),
t,-2(<o), —

We now introduce some notational conventions. Measures will sometimes be
denoted by their corresponding "differentials", for instance

T'oí'h 6 dxu r¡2 e dx2,...)

will denote the distribution of the sequence r¡u r¡2,... in the space R+=R+x R+
x-- (where 7?+=(0, co)), i.e. the probability measure P0((riu t¡2, ...) e B)
(B e SS"). Analogously for all other measures. As is customary for random
variables we shall frequently write N(Q) for 7V(<o, Q), N[x,y) for N(a>, [x, y)),
etc. EX and E(X\3>) will denote expectation and conditional expectation taken
relative to P, while £0^and EQ(X\3i) will denote the corresponding expectations
taken relative to TV When we want to exhibit E(X\3>) or E0(x\@) as random
variables in co we shall write E(X\Sf)(ta), E0(X\@)(u>). Finally A will denote the
Lebesgue measure on R.

Lemma 1. Ifg(x, xu x2,...) is a bounded Borel function on 7<+ then

f   g(6(of),i.l(oi),i.2(w), ...) P(doj)
Jn

= a X<vo S x}(^g(x, r¡ _ x(w), r¡ _ 2(co), . . . ) P0(d(v) dx.
Jo  Jo0

This follows from (6) and the fact that if co e £20 and 0 < x S 7î0(co) then 6(w — x) = x,
í_i(co-x) = ry_1(co), C-2(oJ-x) = r¡_2(oj), etc.

Lemma 2. If G is a Borel set in R+ then P0((y-uV-2> ■ ■ )eG) = 0 if and only if
the set A = {(ueQ:(ti(aJ) — tí-1(co),ti^1(cü) — ti_2(w),...)eGfor some i} is a
P-null event.

Proof. Let ^¡={co e Í2 : (/¡(co) - ¡¡ _ ̂ co), f,_i(o»)-f,_a(tt),...) e G}. If

Po((r¡-l,V-2,---)£G) = 0
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then by (6) and Lemma 1

P(Ao) = f  Xa0 HP(doj)
Ja

= « Xtuoè x)Íw)Xa0Í"> - x) Po(dœ) dx
Jo   Jilo

/"CO

= «      Po(vo = x and (i?_!, r¡_2,...) e G) dx = 0.
Jo

For Ai with />0 the result follows from (8); analogously for /<0.
Conversely if P(A) = 0 then P(A0) = 0, hence by the above equality

Poiivo = x and (rj_i, ^_2)...) e G) = 0   for every x > 0.

It follows that P0(v-i, V-2,. • •) e G) = 0.

3. The a.s. limit theorem.    Let [b, c) be a finite interval. If A = {b= f0< &< • • ■
<fn+i = c} is a partition of [è, c), then ||A|| will denote the mesh of A, i.e. the
number max0 s v s n (f v +1 — £v)- Suppose that to each partition A of [b, c) corresponds
a number 5A. We shall say that 5A converges to 7 as || A|| -»■ 0 (written limnAn_0 5A
= 7) if for every e > 0 there is a 6 > 0 such that || 5A — 71| < e for all partitions A with
||A||<S. Note that Umnan-o 5A = 7 if and only if, for every sequence {Ak} with
||Afc|| -^0, limfc^oo SAk = I.

The next definition is classical. An interval function F[x,y) (x<y) is called
Burkill integrable over the interval [b, c) if

lim   2 fi*». f»+i)« Wl
IIAII-0   v = 0

exists. Wcb is then called the Burkill integral of F over [b, c).
The aim of the present section is to prove the following theorem.

Theorem 1. There is a "canonical" version Z(œ, [x, y)) (tu e Q, x<y) of the
random interval function E(N[x, y)\-Fx)(w), such that for every to e Q the sample
interval function Z(w, [x, y)) (x<y) is Burkill integrable over any finite interval.

We shall denote the Burkill integral of Z(w, [-, ■)) over [b, c) by W(oj, [b, c)).
The latter is identified in the proof. For fixed w, W(oj, [b, c)) is a a-additive function
on the class of left-closed right-open intervals (see §5).

We first choose a regular version of P0(A \r¡_, = x,,-n_2 = x2,...), i.e. one
which is a true probability in A for fixed (jcl9 x2,...) e R+ and Borel measurable
in (x,, x2,...) e R+ for each fixed Ae^. This version will be fixed throughout
this paper. Next we establish the relationship between P and P0 on ^0.
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Definition.

>/i(x, X„ X2, ...) = P0(Vo ^ X I r¡_, = XU i?_a = X2, . . .).

This is a Borel function on 7? + , being left continuous in x for fixed (x,, x2,...).

Lemma 3.

P(6 e dx, £_! e dx,, £_2 e dx2,...)
= ai/>(x, x,, x2,.. .)-dx-P0(-q-,edx,,r¡_2edx2,...).

Proof. If g(x, x,, x2,...) is a bounded Borel function on R+ then using the
transformation Q a to => (9(w), £_i(to),...) e 7?+ we have by (6) and Lemma 1

g(x, x„ x2, ...)P(6edx,t,-,e dx„ ...)
Ja»

=  f   g(e(«>),^,(a>),...)P(da>)
Jci

= « X{,o s *)(<") • gix, V -1(<")» • • • ) Po(d<») dx
Jo  Ja0

= a g(x,r,_,(oj),...)-E(XUoix) \r¡_„r¡_2,...)P0(dw)dx
Jo   Jfio

= « g(x, X„ X2,.. .)P(tjo = X \r¡_, = X„ r¡_2 = X2, . . .)
Jo Jr™

P0(r¡_,edx,,r¡_2edx2,...) dx

from which the result follows.

Lemma 4. If A e¿F then for dx-P0(Tn_, edx,,.. .)-almost all (x, x,, x2,...)
e R+, we have

P(A | 6 = x, £_! = x„ £_2 = x2,.. .)ip(x, x„ x2,...)
= P0((A+X)r\{n0 ^ x) \V_, = X„r¡_2 = X2, ...).

(If we write irXlX2...(-) for the probability P0(- | V-i=Xi,-n~a~xa,...), this
lemma simply says that P(A \ 6=x, l-, = x,,.. ,) = ttXiX2...(A+x \ r¡0^x).)

Proof. Let Q be a Borel set in (0, oo) and 5 a Borel set in R+. We start out with
the integral

(9) Í      P(A\6 = x,r,_1 = x„...)P(eedx,t_,edx,,...).
Jqxs

By Lemma 3 this is equal to

(10) P(A | 0 = x, £_! = x„...)ai/i(x,x,,...)dxP0(-q-1edx,,...).
Jqxs
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On the other hand (9) is equal to

Xq(x)xs(xux2,...)P(A I 0 = *,£_! = x1,...)P(9edx,t,_1edx1,...)

= Í xo(0("))-xs(£-iH,£-»>• • )n¿ \ 9,l-i,.. OW^WJn

= f xo(on)xs(c-1n,-)xA(oo)p(d<o)
Jn

= a] X^o ¿ x)(w) ■ Xq(x)xs(v - iH> • • • )xa("> - x) Po(da>) dx   (by (6))
Jo Jn0

= «      Xq(x)       Xsiv - iW. • • • )Xa+ x(<»)x<r,0 ë*>(<") Po(dto) dx
Jo Jci0

= a\    Xq(x)\     XsiV-Á<»\--)-Po((¿+x)n{vo^x}\ri_1,...)iaj)
Jo Jn0

Poidco) dx

= «      Xq(x)       Xsixu x2,.. .)PoiiA+x) n{ij0 £ x} | i)_i = *!,...)
Jo Jb»

fotl-iE&i,. . .)<&

= « 7>o((/4 + x)n{7?0 ^ ^Itj.í = xj, ...)P0(7?_1eo'x1, ...)a"x.
JO Js

The result follows if we compare this with (10).

Lemma 5. The event H1={a}eQ. : 4>{tiW) — U-i{°)), U-ii?») — 'i-2(tu), • • )>0for
all i} has P-measure 1.

Proof. Let G={ix, xu ■ ■ ■) '■ <l>ix, xlt.. .) = 0} and for each (jci, x2,...) define
GXlx2...={x : <pix, Xu x2,.. .)=0}. From the definition of <¡i we see that if for each
(*i> x2,... ) we let

yixu x2, ...) = sup {x : P0ir¡0 ^ x | rl_1 = xu . . ■) > 0}

then GXlx2... is [yixu x2,...), oo) or iyixu x2,...), co). In either case we clearly
have for all xlt x2,...

PoivoeGXlX2... \r¡_1 = xu-. ■) = 0,

hence  P0((tj0, i-i,...)eG)=0,   P0((t¡ _x, ij_a,...) 6 G)=0   and   the   assertion
follows from Lemma 2.

Lemma 6. 7/ A'(co) is an integrable random variable and if we set Xt(co) = X(a> + t)
(t e R), then E(Xt\S^)(w-t) is a version of E(X\&\)(w).
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This follows easily from the stationariness of P. We leave the proof to the reader.
Combining this with Lemma 4 we get canonical versions of our conditional
expectations.

Lemma 7. Given xe R and an integrable random variable X(oj) there is a P-null
set E (depending on x and X(oî)) in Q with the following property. Ifœ0$E and if

tofaoix) = b0
t0(<»o;x)-t-,(a>0;x) = *i

t-i((a0;x) — t-2(œ0;x) = x2

then

E(X\Px)(<o0)

= ,/,/„     u     y     y-J X(w + b0)P0(dw\r,_1= X,,...).
tp(X — O0, X,, X2, . . . ; J{n0¿x-b0)

Lemma 8. For P0(v-i e dx,, -q-2e dx2,.. .)-almost all (x,, x2,...) e RX,

N(w, (b, c))P0(doj | r¡_, = X„ 7J_2 = x2, - - -) < oo
Jdo

for any finite interval (b, c).

Note. This lemma is needed because Jno A'Xco, (b, c)) P0(doj) may be infinite for
all (b, c). Let for instance ^0 be a random variable with P0(vo = 1/«) = const/«2, set
7li=Vo (' — 0, ± 1,...) and construct the corresponding stationary point process.

Proof. We first show that for every x > 0,

Jín-íex)
N(oi, (b, c)) P0(doj) < oo   (any b < c).

In fact Jn 7Y(to, (b, c+1)) P(da>) < oo and by a relation analogous to (6) (see (8)),
this integral is equal to

« N(a> + x, (b,c+l)) dx P0(dw)
Jn0 Jo

= a I    ( N(oj, (b-x,c+l-x)) P0(dw) dx.
Jo  Jin-^x)

Hence for  almost  all x>0,  j{v_lix)N(w, (b-x, c+l-x))P0(dio)<cn. When
x e (0, 1) the interval (b, c) is contained in (b-x, c+1 —x), therefore

(12) f N(oj,(b,c))P0(doj)<oo
Jlv-i^x)

for almost all x e (0, 1) and, therefore, (by monotonicity) for all x>0.
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If now AXco) is any P„-integrable random variable then

| f    X(œ)P0(dœ\V^ = Xu...)Po(v-i£dXl,...)
«' [X, oo ) x R + x R + x • • • J iî0

E0(X\r]_1 = Xu...)Po(v-isdxu...)
J[X,<x>)x R + x •••

= f £0(^ h -i,... )H Po(A») = I *(«) W«).
J{!I-ièa:> J(^_iëx)

Taking a sequence Xniw) f N(co, (b, c)) we see that

N(a>, (b, c))P0(daj\ri_1 = xlt. ■ .)Po(-q-iedxu ■ ■ ■)
J[x,œ)y R+ x •■•  Jf20

= I 7V(co,(¿,c))P0(a'co)<oo   by (12),
J{v.¡a,x}

i.e. Jn, N(oi, (b, c))P0(dw\ri_1 = x1, ■ ■ .)<co for PoOi-i e^,.. .)-almost all
(^i, x2,...). The result follows if we let b, c run through all pairs of integers k, I
with k < I.

If now G*={(x1,x2,...):§noN(üj,(b,c))P0(dw\iri_1 = x1,--) = °o for some
finite interval (b, c)} then G* is a null set under P0(v-i e dxu ■ ■ ■) and hence by
Lemma 2 the event

772 = {co 6 Í2 : (/¡H-ti.iíco), íj-iM-íj-aí«), ...) £ G*, any i}

has P-measure 1. Let 77! be as in Lemma 5.
Definition. If x e R and O á l"(co) ̂  A^co, [b, c)) for some b, c, we define the

canonical version of E(X\!FX) as follows: If <u0 $ H1 n 772 then £(Ar|J^)(co0) = 0;
if co0 e Hi n H2 then £'(A'|J^.)(co0) is as in (11). In particular the canonical versions
of E(N[x, y) | J^Xcoo) and P(N[x, y) ä 1 | J^)(co0) are given, for co0 e H-, n 7/2, by

(13)
//y   a   v   y-ï I N(a)> [x-b0,y-b0))P0(daj\r¡_1 = xu ...)

fyX — Oo, Xu x2,.. .) J{x-60su0<!/-!>o>

and

(14) (<fi(x-b0, Xu x2,.. .))-1P0(^-¿o Ú vo < y-bo \ V-i = *i> • • ■)

respectively (we use the notation of Lemma 7). We shall write Z(co0, [x, y)) for the
canonical version of E(N[x, y) \ ¡Fx)(wa).

Proof of Theorem 1. We shall prove that if co0 e Hx n 772 then the numerical
interval function Z(co0, [x, y)) (x<y) is Burkill integrable over any finite interval.

Fix co0 e Hi n 772. If co0 is the set —< i_i(co0) < t0ioj0) < t1(w0) < ■ ■ ■ where
/0(co0)<0¿/1(co0), we shall show that Z(w0, [x, y)) is Burkill integrable over any
interval [?i(co0), i(+i(co0)). Fix such an interval and let b0 = tt(a}0)<c0¿ti+1(w0). If
b0<x<c0 then clearly /0(ai0; x)=b0 and we set

to(ai0;x) — t-1(to0; x) = xlt       t-i(o)0',x)-t-2(oj0;x) = x2,    -

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] INTEGRABILITY OF INCREMENTS OF POINT PROCESSES 493

Now consider a partition A={b0 = $0<^,< • • • <{n<ê„+, = c0} of [b0, c0). By
definition

n n

2 Z(to0, [|v, fv+i)) = Z(co0, [b0, £,)) + 2 Z(a>0, [$v, £v+1))
v=0 v=l

= Uv~^-) I N^°' [Xu xi + ti-*<>))
f{X,, X2, . . .) J{x1$vo<x1+ii-bo)

P0(d(O | T7_j = X2, r¡_2 = X3,. . .)

"If
+ 2 Mp—h    y    r-Ï Ar(ttí'[ív - Ô0, ív+1 - ¿o))

v = l VlSv-°0; ^1> ^2, • • -^ J{{v-í)oí1o<ív + i-í'o>

P0(doj | i?_i = xlf t)_2 = x2,...).

When || A || -^- 0, i, -> b0 and hence the first term converges to

„«    ,/,rv    v-ï N(co,{x,})P0(dw\r¡_, = X2,r¡_2 = x3,...)
(15)       Vl-*1» *2> •  •  •) J{Vo = X1)

= (</>(*!, X2, . . .))_1P0(i?o = X, I f)_, = X2,rn^2 = X3, . . .).

Since b0, x,, x2,... are fixed we simplify the notation for the remaining terms by
setting

-*(■) = Pq(- \v-i — x,,t]-2 = x2,...),
Fix) = ir(Vo < x),

Kx-bo) = Kx-K, x„ x2,...).

Note that 1 — F(x — b0)=ir(r]0'^x—b0)=<(i(x—b0). Since a>0 e H, we have tf¡(c—b0)
>0 and if we let ß = >Jj(c-b0) then <p(x-b0)tß for all x e [b0, c0). Also we H2
implies

(16) f   7V(to, [¿0, c0)) Tri» < oo.
Jn0

Then

n If
2  ,177—TT\ Niw> tév - b0, £v+1 - b0)) -"(du)
v = l Vt£v — Oo) J {fv-boSri0<iv + 1-bo)

(17) = %iK^-bo)n^~b° áV0< ^+1~¿o)

+ 2 wr-jr^ f [% [iv-è0, fv+i-¿o))-i] ^)-
v = l VyCy — Oo) J{(v-b0Srio<(v + i-b0)

The first sum on the right is equal to

(18) 2i    F(\    hViFiUi-bo)-F(tv-b0))=\ fn(x)dF(x)
v = l t — ̂ tSv-Do) J(0,co-b0)

where /n(x) is the step function assuming the value 0 in (0, Ç, — b0) and the value
1/(1 -F(^v-b0)) in [£,—b0, Çv+,-b0) (v= 1, 2,..., n). The integral is meant in the
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Lebesgue-Stieltjes sense, i.e. dF(x) is the measure induced by F on (0, oo). Clearly,
when || A|| -*0, limn^œfn(x) = l/(l-F(x)) by the left continuity of 1/(1 -Fix)),
hence by the Lebesgue dominated convergence theorem the first sum converges to

(19) ÍJ(
Fidx)

(0,c0-b0) 1— Fix)

If F has no jumps this is - log ( 1 - F(c0 — b0)).
The second sum on the right of (17) (which is nonnegative since the integrand is

= 0 on the region of integration) is less than or equal to

(20)       g      ( 2 Niw' tév-bo, £v+i-bo)\-XMt,-b0.(,+l-b0)i2}i'»)A.dw).

When || A || ->- 0 the integrand in (20) converges to zero pointwise (in fact for each
w the integrand is zero when ||A|| is less than the minimal distance between the
points of w in (b0, c0)). Since the integrand is dominated by N(w, (b0, c0)), the
Lebesgue dominated convergence theorem (see [1]) together with (16) implies that
(20) converges to zero. (Note that the filter we obtain when we direct partitions
according to their mesh has a denumerable base.) This completes the proof.

Note that when b0 = ti(oj0)<c0^tl+,(oj0) we have identified the limit
W(cu0, [b0, c0)) as the sum of (15) and (19). For the general interval [b, c) a finite
sum of such expressions is needed.

Corollary. Suppose Ak={b = Ço<£i< ■ ■ ■ <f£fc+i = c}, k=l,2,..., is a se-
quence of partitions of [b, c) such that || Ak || -> 0. Using any versions of the con-
ditional expectations define

nie

i.

Then

5k(to) = 2 E(N[$k, fí+1)|^f).

lim 5k(ío) = W(w, [b, c))   a.s.
k-*<*>

We now turn to the local limit theorem.

Lemma 9. For every to e Q, Z(w, [x, y)) is continuous from the left in the half-
plane{(x,y) : x<y}inthesensethatifu\xandv\ythenZ(o>, [u, v)) ->Z(o>, [x,y)).
In particular Z(u>, [x, y)) is jointly measurable in (to, x, y) relative to the o-field
& (8> 0S <g) SS.

Proof. For each to, N(w, [x, y)) is continuous from the left, i.e. if u f x and
ufv then N(<o, [u, v)) -> N(w, [x, y)). If now oi0eH,<~\ H2, t0(œ0; x)=b0 and
u\x then t0(w0;u)=b0 eventually, hence by (13), Lemma 8 and the Lebesgue
dominated convergence theorem, Z(to0, [x, y)) is left continuous.
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Theorem 2. The limit

7H=   lim  ZKE.J0)
[«.yuto)    y~ X

exists almost surely and EY^a. i[x,y] j{0} means x^O, j^O, y—x>0, x-+0,
y->o.)

Proof. For fixed co the function fit) = W(co, [0, t)) is nondecreasing, hence
/'(0 = üirWH «> W(w, [m, f))/(f-m) exists for almost all r>0 (recall that W is
additive). By a well-known theorem on Burkill integrals (see for instance [7, p. 23])
this is equal, for almost all t>0, to the corresponding limit for Z. The Fubini
theorem together with Lemma 9 implies the existence of a t > 0 such that the limit
exists almost surely at that t. The theorem follows from the stationariness of the
process.

4. The mean theorem.   We begin with a lemma.

Lemma 10. Suppose <u0eD. and b<c. If w0 has no points in [b,c) and if
Afc = {è=fi$<£ï< • ■ ■ <£nfc+i = c}, k=l,2,..., is a sequence of partitions of [b, c)
such that Afc+1 is a refinement of Ak, tfren the sequence

nie

4K) = 2 Wfv, fv+i) ̂ WK)
v=0

iwhere we use canonical versions on the right) is nondecreasing.

Proof. This follows from (14).

Theorem 3. If for each partition A={è = |0<£i< • • • <£n+i = c} of a given
interval [b, c) we let SA(<o) = 2;=0 E(N[£„ iv+i)|^v) then

(21) lim   Í  |SA(«)- Wicj, [b, c))\ P{dm) = 0.
iiaii-»o Ja

Proof. For the sake of simplicity we assume 6=0, c=l and write FT(co) for
^(co, [0, 1)). Then ¡a 5'A(co)P(a'co) = P(Ar[0, l)) = a and therefore by the corollary
to Theorem 1 we have jn U^co) P(o"co) á a. Since 5A ä 0, to show (21) it is sufficient,
by a well-known theorem, to prove

(22) f   Wiw) Pidw) = a.
Ja

To do this we take a sequence Afc={0 = £o<fï< • • ■ <iït+i = l}, Jk=-1,2,..., of
partitions such that Afc+1 is a refinement of Ak and || At|| ->- 0, and prove that the
sequence SAk is uniformly integrable. This will imply mean convergence of 5Afc to
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W and hence also (22). Using canonical versions we have

5At(to) = 2 e(n[& tUiW&n
v = 0

v = 0

= 2 £(^[í5,A+i)-i)-X(«íf.íf+l)ii)l^f)(«')
v = 0

nie

+ 2 £(X{M{¡f.5Í+1)gi)l^íif)H = AM + £kH    say.

Now

hence
(7/(15, fÇ+i)-l)-X{OT<*i*+1>*i) = Wféï, f?+i)-X{wtiîf.î!f+1S2}

Ak(oj)P(dw) g       2 ^líÍ-ÍHiWtó^aí'^
Jn Jn v=o

0

which converges to zero because the integrand converges pointwise to zero and is
dominated by N[0, 1).

On the other hand

7?fc(to) . g P{N[&, Ä+i) = l|-^ï)(«)
v = 0

«te

= 2 P(N[&&+J = îl^H-ximiï.ïî«)^)^)
v = 0

+ 2 ^(tftft ?ï+i) £ i|*ií)(«)-X(«í*.íf+1).o)H
v = 0

= CfcH + í'fcítü)   say.

Since Cfc(to)^2ï=o X{Jv[ij,{*+1)si}("') = A''(to, [0, 1)), the sequence Ck(oS) is uni-
formly integrable. Finally it follows from Lemma 10 that the sequence 7ffc(£o) is non-
decreasing for each to. In fact if w has no points in [£k, £k+,) say, and if the points
of Afc+1 in [£*, tUi) are lï = a0<o-1< • • • <am+1 = ¿*+1, then Xim„<rt*i>-oi(*»)-^
for every/=0, l,...,m and

/W#, «+i) = 1|^5)H = 2 WK »y+i) = ll^X«)-
í=0

Further J"n supk Ek(oS)P(doi)<co, for otherwise Jn IP(to) i^íícu) would be infinite.
Thus the sequence 7ifc(to) is also uniformly integrable and hence so is 5Afc(to)
= Ak(a>) + Ck(a>) + Ek(w).

Corollary 1. If t<s and if Ae!Ft then

j N(œ, [t, s)) P(doS) = ^ W(œ, [t, s))P(do>). I.e., E(N[t, s)\&t) = E(W[t, s) \ &t).
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Proof. If for each partition A={i = |0<|1< • • • <£n+1=s} of [t, s) we construct
the sum 2?=oZ[fv, fv+i) then W[t, i) = lim,|A|H0 2ï=oZ[|„ ¿v+1) in the mean,
hence in particular, for A e Ft,

f   W[t,s)dP=   lim   f   2Z^v,lv+i)rfP
Ja iiaii-o Ja v=o

=   lim   2 f E(N[$„Ui)\^dP
IIAll —»0  v = oJA

=   lim   2 f N[£v,Ui)dP= f N[t,s)dP.
IIA||-»o v=o J^ Ja

Corollary 2. Die process Uit,w)=Niw,[0,t))-Wiw,[0,t)), t>0, is a
martingale.

I am indebted to H. Rost for this observation.

5. The induced past-dependent change of scale. For fixed co, Wiw, [b, c)) is a
cr-additive interval function defined for left-closed right-open intervals. (It is
finitely additive and "left continuous": given c and e>0 there is S>0 such that
W^co, [b, c))<e for all b with 0<c — b<8. This follows from Lemma 9 and the
definition of the Burkill integral.) It can therefore be extended to a measure on 38,
which we denote by H^co, Q) iQeSI). In suggestive notation »T(co, [x, x+dx))
= EiN[x,x + dx)\&rx). Clearly Wiw, Q) = Wiw + x, Q + x), hence Wiw, [n, n+l))
= Wiw-n, [0,1)) and by the ergodic theorem W(co, [0, n)) -> co a.s. In fact
U^co, [0, n))/n-+EiW[0, l)\f) a.s., where / is the invariant cr-field of the
transformation co^co-1. Now EiW[0, l)\f)>0 a.s. for if

C = {EiW[0,l)\f) = 0}ef
then W[0, 1) = 0 on C and, by the invariance of C, W[0, oo)=0 on C. The event
W[0, co) = 0, however, can easily be seen to have probability zero (this also follows
from the argument for the strict monotonicity of (26) below).

Corollary 1 to Theorem 3 easily implies that if A e !Ft and Q^ [t, co) then

(23) f  W(co, ß)P(o-co) = f   Wiw, Ô)P(c7co).
Ja Ja

Just as with (3), one can define a measure m on 3S (g> 8F such that miQxA)
= $A Wiw, Q)Pidw) for rectangles QxA. Proceeding as with m, we can define
regular "Palm probabilities" PiA\x) such that

(24) miQxA) = f P~iA\x)adx
JQ

and the analogue of (4) is now

ï(7))= f   W(co, Da)Pidw) = \ PiDx\x)adx      iDe@®&).
Ja Jr

ml
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Definition. @>={De 38% !F : Dt e J^ for every teR). In other words a
subset D of RxQ. belongs to 2¿ if its characteristic function xd(U w) is a 38 % im-
measurable stochastic process adapted to the er-fields !Ft. We call Q> the o-field of
adapted sets.

Theorem 4. If De Si then m(D)=m(D).

Proof. Suppose D= Q x A, where g£ [/, co) and A e &¡. Then by (23) m(QxA)
=m(QxA) and it follows from (24) and the fact that p = aX that jQP(A\x)dx
= (<3P(A\x)dx. This implies that if A eFt then P(A\x)=P(A\x) for almost all
xü. If for each rational number r we choose a countable generating set in ¿F„
Ar<u Ar,2, ■ ■ -, closed under finite intersections, then there is a A-null set A/sP
such that if x$ M then P(AT¡n\x)=P(Arn\x) for all rationals r<x and all n. It
follows easily that if x $ M then P(A\x)=P(A\x) for any A e &x.

If now D e 2 then m(D) = a JB P^x) ox = a JB P(Z)x|x) dx = iñ(D).

Lemma 11.7/ C7(x), x 2:0, w a continuous nondecreasing function on [0, co) wiVA
(7(0) = 0 and if we denote by v the measure induced by G on [0, co) then for any Borel
set gÇ[0, co) we have v(G~1Q) = X(Q).

This is trivial.
The following theorem will be needed below. It is a consequence of [5,

Theorem 2].
Theorem 5. Suppose that a point process, which has no multiple points (but is

not assumed stationary), satisfies the following condition : For any interval [s, r],
E(N[s, r]\?Fs) = a'(r — s) a.s. (equivalently, if A e^¡ and if Q is an interval contained
in [t, co), then ¡A N(w, Q) P(dw) = a X(Q)P(A)). Then the process is homogeneous
Poisson with rate a'.

The main theorem of this section asserts that if the random transformation
t =*• W(w, [0, t)) of [0, co) onto itself is continuous (i.e. has no jumps) then it
transforms the nonnegative points of the given process into a Poisson process in
[0, co) with rate 1 and independent of J^. A proof of this under the stronger assump-
tion that P0 is absolutely continuous relative to P on ^ (which implies as will be
shown in §6 that U^co, [0, /)) is a.s. absolutely continuous) is given in [5]. The
following proof is an adaptation of this.

Theorem 6. Suppose W(w, ■ ) is an atomless measure for P-almost every co. Let

(25) 0 ^ ij.(co) < i2(co) < i3((o) <   • •

be the nonnegative points of w and define the sequence

(26) 0 ^ Tl(w) í t2(w) g t3(w) i-■ ■

by Tn(co)= W(w, [0, /„(co))). Under the probability P the sequence (26) is almost
surely strictly increasing and, in fact, a homogeneous Poisson process with rate 1 and
independent of the a-field F0.
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Proof. We can obviously assume that rV(ai, •) is atomless for every to. Then for
every w the function <pJj)=Y(t,ca)=W(w,[0,t)) is continuous and non-
decreasing. (For convenience we shall use the symbols <pm(t) and Y(t, cS) inter-
changeably.) Since for fixed /, W(oj, [0, t)) is ^-measurable, the continuity of
paths implies that Y(t, w), i^O, is measurable relative to J1 <g> ¡F (in fact progres-
sively measurable relative to the tr-fields Ft, t^O [3, p. 70]).

We first prove that the sequence (26) is a.s. strictly increasing. Let

K = {(/, uj) : there is e > 0 such that rpa(t—s) = <pa(t)}
= {(t, to) : there is e > 0 such that W(a>, [t-e, t)) = 0}.

Note that K=\J™=,{(t,a>) : <Po,(t-l/n) = <pa(t)} and hence KeâS®F, in fact
KeSt. Now m(K) = ¡aW(oj,Ka,)P(doj) = 0 since clearly Ka = (a,(co), b,(w)]
u (a2(to), b2(oj)] u • ■ ■, where [a,(a>), b,(a>)], [a2(to), b2(co)],... are the disjoint
intervals of constancy of <pa. By Theorem 4, J"n N(o>, Ka) P(doS) = m(K) = m(K) = 0,
therefore N(a>, Ka) = 0 for P-almost all w, i.e. with probability one w has no points
in Km and this implies that the sequence (26) is strictly increasing because if
IF(to, [0, tn(w)))= W(oj, [0, tn+,(oj))) then (j+iW 6 K01- For simplicity we assume
this for every to e Q.

Let now Q* be the set of all infinite but locally finite subsets of [0, co) and ¿F*
the (7-field of subsets of Q* generated by the random variables N*(a>*, Q)
(0= [0, co)) (definition obvious). We shall write -F*0_s) for the a-field generated in
SF* by the random variables 7V*(to*, Q) with gç [o, s).

One can prove exactly as in [5, Lemma 6] that the mapping Q a w => Sa>
={<pa(x) : x e to, x^0} e Q* is a Borel mapping of (Q, F) into (Q*, F*). On J^*
we introduce the following probabilities. For each BeF0 with P(B) > 0 we define

p*(A) = P(S~1A\B) = P(S-1A n B)/P(B)       (AeF*).

This determines the distribution of the process (26) when restricted to B. We shall
show that all these distributions are Poisson in [0, oo) with rate 1 and hence they
coincide. This will imply Pt(A)=P%(A), i.e. P(S~1A n B)=P(S~1A)P(B) which
shows the independence of F0 and the tr-field generated by (26).

Let Q = [s0, r0], with i0>0, and let A eF*0¡So). Then denoting by 5B the restric-
tion of 5 to B we have

P(B) f A^*(to*, Q)P%(dw*) = f       N(Sw, Q)P(dw)
Ja Js¡1a

= [ N(w,9z1Q)P(dw) = m(D)

where D={(t,w) : weB n S~1A, tecp^Q). Clearly De3S%F. It is proved in
[5, Lemma 6] that Dt e Ft for every t; hence D e 3¡ and by Theorem 4

m(D) = m(D) = I IF(to, 9~ »Q) P(dw).
jBnS-i-A
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Now by Lemma 11, Wiw, <pw1ß) = A(0 for any co, therefore

m(D) = X(Q)P(Br\S-1A),
i.e.

(27) £ N*(w*, Q) P*(dw*) = X(Q)P*(A).

This implies by Theorem 5 (as it applies to [0, co)) that P* defines a Poisson process
with rate 1. The proof is complete.

Theorem 6 is not surprising in view of the remark following (19), which could
presumably provide an alternative approach.

If A = {0= f0 < fi < • • •} is a partition of [0, co) we define a random transforma-
tion / => TA(t, w) of [0, co) onto itself by setting first

TA(tn, co) = n2Z(co, [fv, |v+1)),       n = 1, 2,...,
v = 0

and then interpolating TA(t, w) linearly for the other t's. Note that TA(t, w) is the
time at which we shall pass / if we adopt the following pattern of motion, starting
at 0: At each £„ we calculate the "expected number of points in [fv, £v+1) given
J^v" and move to fv+1 with constant velocity (E(N[$V, Iv+i^vXTKfv+i-Q, i-e.
so as to meet these expected points in [fv, fv+1) at an average rate of one per time
unit. From Theorem 1 and Theorem 6 we obtain

Theorem 7. Suppose W is a.s. atomless, let (25) be the sequence of nonnegative
elements of w and for each partition A of [0, co) define the sequence

(28) 0 S TAiw) ^ rf (co) ^ • • •

by TAiw) = TAitniw),w). When the mesh of A in each finite interval [0, r] goes to
zero, the process (28) converges P-almost surely to a Poisson process with rate 1 and
independent oflF0.

This almost sure convergence can be taken to mean t£(co) -> t„(co) a.s. for each n
(t„(co) as in (26)) but can also be defined in terms of the natural topology in Ü*
indicated in §2. A weaker version of Theorem 7 is given in [5].

In view of Theorem 7 it is natural to interpret Theorem 6 as follows (see [5]):
Suppose an observer, who at each instant is able to see only the past, travels on
[0, co), regulating his motion (on the basis of up-to-the-moment information on
the past) so as to meet expected future points at an instantaneous rate of one per
time unit. Then he will meet the actual points of the given process at the times of a
Poisson process with rate 1 and independent of ¿F0.

The next theorem gives a criterion for the atomlessness of W.

Theorem 8. W is a.s. atomless if and only if for Poiv-i E dxu^-2 E dx2,.. .)-
almost all (xlt x2,...) the conditional distribution

Fix) = P0ÍV0 < X | 17-1 = Xu V-2 = x2,...)

is continuous.
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This follows from the identification of Win the proof of Theorem 1 (see (15) and
(19)) and Lemma 2. In fact if the conditional distributions of r¡0 given rj-, = x„
t]_2=x2, ... or given r¡_1 = x2, r¡_2 = x3,... are both continuous, then (15) is zero
and (19) is a right-continuous function of c0. Conversely, if for some co0, Whas an
atom, say W(w0, {jc})>0, then from the proof of Theorem 1 it is easily seen that an
expression of the form (15) is >0.

6. A condition of absolute continuity. In the present section we shall be con-
cerned with the case in which P0 is absolutely continuous relative to P on the o-
field F0. (Note that Q0, which carries P0, is not in F0.) Below we shall use the
symbol « to denote absolute continuity of one measure relative to another.

Suppose P0«P on F0 and let A^(to) be the corresponding ^¿-measurable Radon-
Nikodym derivative:

P0(A) = f X(oS) P(dœ)       (A e &0).
Ja

Observe that EX=l. The process X(t, co) = X(w — t) (t e R, to e Q) is stationary
under P, measurable and adapted to the o--fields !Ft, — oo</<co, i.e. for each
fixed t, the random variable X(t, ■) is immeasurable. Recall that a measurable
stationary Li-process is mean continuous:

(29) limE\X(t)-X(t0)\ = 0.
Í-Í0

Note also that

(30) P(A\t)=\   X(t,w)P(do>)       (AeßC).

Theorem 9. The condition P0«P on F0 is necessary and sufficient for mean
convergence in Theorem 2 (or equivalently in limE|0 b~1E(N[0, Ol-^o))- 7« this
case Y(oj) = aX(oj) a.s.

Proof. Sufficiency of the condition "P0<<:P on F0" is proved in [5, Theorem 6].
For the necessity suppose lime±0 e~*E(N[0, e) \ F0)= Y exists in the mean.

Given any interval [b, c) = ( — °°> 0) and any nonnegative integer j let F(co)
= Xmb,c)=»i<*>)- Then

Í   VYdP = lime"1 I    V-E(N[0,e)\F0)dP = lime"1 Í   VN[0,e)dP
Jn do        Jn eio Ja

= lim e-x f I   K(to) P(doj\x) a dx   by (3)
e i o       Jo Ja

= lim e -1 V(üj+x) P0(dco) a dx.
elo        Jo Jn

Now F(to + x)-> V(co) when xjO, hence Jn V(w + x) P0(dw) -> Jn V(œ) P0(da>)
and therefore jn VYdP=a¡n VdP0. Since this is also true if F is a finite product of
characteristic functions of the above type, we conclude YdP=adP0.
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Theorem 10. IfP0«P on &0, then for P-almost all wed,

Wiw, Q) = a I   Xit, co) dt  for all Qe38.
JQ

Conversely if for P-almost all weil the measure Wiw, ■ ) is absolutely continuous
relative to X then P0«P on ¿F0.

Proof. See [5, Theorem 6] for the first half of the theorem. To prove the second
half suppose W is a.s. absolutely continuous. If we define

X(t,w) = a'1  lime'1 Wiw, [t-e,t))
e Jo

then Xit, co) is measurable, stationary and adapted to !Ft, t e R, and Wiw, [b, c))
= a jl Xit, w) dt a.s. Corollary 1 of Theorem 3 now implies

EiN[x,y)\^x) = E{ajyX(t)dt\^j

and the proof of [5, Lemma 7] shows that this entails the existence of
lime|0 e~1EiN[0, e)|^b) in the mean. The result follows from Theorem 9.

The second half of this theorem will also be obtained as a consequence of
Theorem 13 below. Comparing with (30) we see that, for fixed /, X(t, ■) is the
Radon-Nikodym derivative of P(- \t) relative to P(), while for fixed w, aX(-, w)
is the Radon-Nikodym derivative of Wiw, •) relative to A(-).

Proposition 2 in [5] states that the following conditions are equivalent.
(a) P0«P on &0.
(h) lim¡i0(sup^0 \P(A\t)-P(A\0)\)=0.
(c) For each A e &o,limtloP(A\t)=P(A\0).
The proof is almost immediate and in fact conditions (b) and (c) shed little light

on (a). The following theorem gives a more useful criterion. Recall that ¿F0 is
generated by the random variables 0(co), £_!(co), t,-2(w).

Theorem 11. The following conditions are equivalent.
(i) P0«P on F0.

(ii) P0(r?o e dx, ij_j e dxu v-2e dx2,.. .)«a,xP0(îj_1 6 dxu r¡_2 e dx2,...).
(iii) Po(t?o £ dx, tj_! e dxx, T)-2e dx2,.. .)«P0(t?0 e dx)P0ir¡_1 e dxu v-2 e dx2,

...) andPoivo e dx)«dx.
(iv) There is a a-finite measure nidxu dx2,...) on R+ such that

Poivo e dx, Tj-i e dxu Tj-2 e dx2,...) « dx-nidxu dx2,...).

Proof. We shall prove (i) => (ii) => (iv) => (i) and (ii) o (iii).
Suppose (i) is true, i.e.

Po(0 € dx, £_! e dxu C-2 e dx2,...)« P(ö e dx, £_* e dxx, i-2e dx2,...).

From (5) and Lemma 3 we have

Pi6edx,(,-1edx1, l-2edx2,...) « dx-P0ii0e dxui-ie dx2,...)
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hence (i) implies

P0(6 e dx, £_! e dx„ £_2 e dx2,...) « dx-P0(l0 e dx„ (,., e dx2,...).

Since P0 is carried by Q0 this means

P0(t)_i edx,7]_2edx,,r)_3 edx2,...) « dx-Pa(r¡_, edx,,r¡_2 edx2,...)

which is (ii) because P0 is shift invariant.
That (ii) implies (iv) is trivial. We now prove (iv) => (i). Let f(w) be an im-

measurable function such that 0^/^ 1 and jnf(<») P(doS) = 0. We shall prove that
¡af(w)P0(do>) = 0. Suppose /(to)=g(9(w), £_i(to), £_2(to),...), then by Lemma 1

0 = f g(6(oS), i_,(oS), i-2(a>),.. .)P(du>)
Jn

= « g(y>V- i(w)> V - 2(0»), • • • ) Poidu>) dy
Jo  J{n0èy)

= « giy, x„ x2,...) Po{no edx,7]_,e dx„ ...)dy
JO        JCy

where Cy={(x, x,, x2,...) : x^y} = [y,ao)xR+ xR+x ■ ■-. If <p(x, x,, x2,...) is
the Radon-Nikodym derivative of P00?o edx,-q_,e dx,,...) relative to

dx-n(dx,, dx2,...),

then
/»OO    /» /»CO

0 = ct g(y, x„ x2,.. .)<p(x, x,, x2,...)dx Tr(dx„ dx2,...) dy
Jo   Jr% Jy

= « giy, x„ .. .)<p(y + x, x,,...)dx n(dx„ dx2,...) dy
Jo  Jr% Jo

f- i- CO    /*oo

= « g(y, x,,.. -)<p(y + x, x„ ...)dy dx -n(dx„ dx2,...).
JrI Jo Jo

By the Fubini theorem there is a 7r-null set 7C= R™ such that if (x,, x2,...)$K
then for almost all x 7t 0

/» 00

I   g(y,x,,...)cp(y+x,x,,...)dy = 0.

This implies J"" g(y, x,,.. .)<p(y, x„ ...) dy=0, hence

giy, x„ .. .My, x,,...)dy tridx,, dx.) = 0,
Jr% Jo

giy,x,,...)P0Í7]0edy,-q^,edx,,...) = 0
Jr™

from which we easily obtain J"flo/(to) P0(o'to)=0.
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The implication (ii) => (iii) is almost immediate: If PsP+ is such that
Js Poivo e dx) P0(r¡ _ j e dxu ... ) = 0 then there is a set Ms P+ such that P0(vo e M)
= 0 and, for all x e Mc, P0((y - u V- a» • • • ) e Bx) — 0 where

Bx = {(xu x2,...) : (x, xu x2,...) e B).

From this,

I     P0((v-i,V-2,.-.)eBx)dx = 0
Jmc

and by hypothesis (ii) this implies Po0}o 6 Mc and (r¡0, r¡_u ■. ■) e ñ) = 0 and hence
Po(ivo,V-u ■ • •) 6 B)íP0Ít¡0 e M)+P0iVû e Mc and (r/o.^-i. ...) e 5) = 0. Finally,
(iii) => (ii) trivially and the proof is complete.

Theorem 12. 7/P0«P on &-efor every £>0 then P0«P on &0.

Proof. By Theorem 11 it is sufficient to prove

(31) P0ir)0edx,r)_1edx1,. ■ ■) « <7x • P0(i7 _ i e dxlt ■ ■ ■)■

Consider a Borel function gix, xlt x2,...) on R+ with O^g^l and suppose that
Jn g(vo("), V - iM, • • • ) P0(d<») > 0 or equivalent^ jn g(r¡ _ x(w), r¡ _ 2(co),... ) P0(dw)
>0. Then, for some e>0,

(32) f g(r, _ ¿w), r, _ 2(co), . . . ) P0(dw) > 0.
J{U_1>£>

Let us define k-^iw; — e)= — tQ(w, — e), k¡[w; —è) = ti + 2(w, — e) — fi + 1(io; — e),
i— —2, —3,.... On the set {r¡.1>e} we have r¡i(w) = ki(w, —e), i= — 1, —2,....
Hence by (32)

I   g(k.1(w; -e),k-2(w; -e),...)P0(dw) > 0.
Ja

Now gik_i(co; — e), k_2(w, — e),...) is ^Immeasurable and by hypothesis we
must have

|   gik.^w; -e),k.2(w, -e),...)Pidw) > 0.
Jn

The stationariness of P implies

I   g(k.1(w-e; -é)tk-n(a>-e; -e),.. .)Pidw) > 0.
Ja

Since rC_!(co-e; — e)= — t0(w — e; — e) = e + ö(co) while Ar¡(co —e; — £) = £¡ + i(co) for

/ = —2, —3,... we obtain

f  gie+6iw), UM, £.», . . .)P(<7co) > 0.
Jn
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By Lemma 1

gie + X,r)-,i(o), -q-2(o>), . . .) dx P0(dw)  > 0,
Jn0 Jo

g(x, ij-^to), i?_2(to),...) dxP0(dw) > 0
J&o Je

and (31) follows.
Theorem 12 enables us to improve Theorem 7 of [5].

Theorem 13. Given a stationary point process in ( — 00, 00), suppose there exists
a measurable nonnegative stochastic process X(t, to), t ̂  0, on Q with the following
property : If for each to we set rn(to) = j"0"to> X(x, oS) dx (where tn(w) is as in (25)) then
the process

(33) tx(«) g r2(to) á •• •

is (i) a.s. strictly increasing, (ii) independent of FQ and (in) first order stationary, i.e.
there is an a>0 such that the expected number of members of (33) in any Bor el set
ße [0, 00) is a ■ X(Q). Then P0«P on F0.

This is proved in [5, Theorem 7], under the additional assumption that X(t),
i^O, is stationary. We can now dispense with this assumption. We prove exactly
as in [5] that P0«P on #1£ for every e>0 and then invoke Theorem 12 to deduce
that P0«P on F0. A corollary of Theorems 6 and 13 is the second half of Theorem
10. Note that the latter can also be deduced from the weaker version of Theorem 13
given in [5], since if W(o>, [0, 0) is absolutely continuous then its derivative
X(t, to) is measurable and stationary.

The last theorem is an analogue of Theorem 8.

Theorem 14. W is a.s. absolutely continuous if and only if for

Po0?-i e dx,, -q-2e dx2,.. .)-almost all (x,, x2,...) e R+
the conditional distribution F(x)=P0(rj0<x\rj_,=x,,-q_2=x2,...) is absolutely
continuous.

This is simply another way of stating condition (ii) of Theorem 11. It is clear
that the latter is implied by the condition of the present theorem (Fubini !). We now
prove the converse: Suppose (ii) (Theorem 11) is true and let Q,, Q2,... be an
enumeration of all intervals in (0, 00) with rational endpoints. If <p(x, x,, x2, ■ ■ ■)
is the Radon-Nikodym derivative whose existence is implied by (ii), then for any
Borelset5=7?ï

^0(^0 eßi I V-i = x,,r¡-2 = x2,...)P0(-q_,edx,,r¡_2edx2,...)
Jsp

= P0{q0 e Q, and (-q_,, r;_2,...) e 5)

= 9ÍX, x,, x2,...) dxP0(rj_, e dx,, -q_2 e dx2,...).
Js Jut
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Hence there exists a P0(v-i e dxu ■ ■ .)-null set M¡£P+ such that

Po(t?o 6 g, | Tj-i = xu ...) =       <p(x, Xu ...)dx
JOi

for all (xu x2,...)$ M¡. Clearly if (xu x2,...) i (Ji M{ then

Poi-no 6 ß h-i = Xu ■ ■ ■) =      9>(*. *i, ...)dx
Jq

for any Borel set g£P+.
This theorem follows also (just as Theorem 8) from the identification of W

given in the proof of Theorem 1. One can therefore base a proof of Theorem 11 on
Theorems 10 and 14.
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