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INTEGRABILITY OF JACOBI AND POISSON

STRUCTURES

by Marius CRAINIC & Chenchang ZHU (*)

Abstract. — We discuss the integrability of Jacobi manifolds by contact groupoids,
and then look at what the Jacobi point of view brings new into Poisson geometry.
In particular, using contact groupoids, we prove a Kostant-type theorem on the
prequantization of symplectic groupoids, which answers a question posed by We-
instein and Xu. The methods used are those of Crainic-Fernandes on A-paths and
monodromy group(oid)s of algebroids. In particular, most of the results we obtain
are valid also in the non-integrable case.

Résumé. — Nous discutons l’intégrabilité des variétés de Jacobi par des grou-
poïdes de contact. Nous considérons ensuite ce que le point de vue des structures
de Jacobi apporte à la géométrie de Poisson. En particulier, en utilisant les grou-
poïdes de contacts, nous prouvons un théorème à la Kostant sur la préquantization
des groupoïdes symplectiques. Ce théorème répond à une question posée par Wein-
stein et Xu. Nous utilisons les méthodes de Crainic-Fernandes sur les A-paths et les
group(oïd)es de monodromie d’algebroïdes. En particulier, la plupart des résultats
que nous obtenons sont valides dans le cas non-intégrable.

1. Introduction

The “integrability” in the title refers to the global geometric structures

behind infinitesimal data. Examples of “integrations” are given by Lie’s

third theorem (which integrates finite dimensional Lie algebras), by Palais’

work on integrability of infinitesimal Lie algebra actions [18], by Wein-

stein’s symplectic groupoids which integrate Poisson structures [19] (and

variations, e.g. Dirac structures [2]) or by the integrability of general “Lie

brackets of geometric type”, i.e. Lie algebroids [6].

Keywords: Jacobi structure, Poisson geometry, prequantization, contact groupoids,
integration.
Math. classification: 53D17.
(*) The first author was supported in part by a KNAW and a Miller Research Fellowship.



1182 Marius CRAINIC & Chenchang ZHU

The structures that we want to integrate here are Lichnerowicz’s Jacobi

manifolds [16], known also as Kirillov’s “local Lie algebra structures” on

C∞(M) [15].

Definition 1.1. — A Jacobi manifold (M,Λ, R) is a manifold M to-

gether with a bivector field Λ and a vector field R satisfying

(1.1) [Λ,Λ] = 2R ∧ Λ, [Λ, R] = 0,

The vector field R is called the Reeb vector field of M .

In the equation above, [· , · ] stands for the Schouten-Nĳenhuis bracket

on multivector fields. Using Kirillov’s terminology, C∞(M) together with

the bracket {f, g} = Λ(df, dg) +R(f)g − fR(g) is a local Lie algebra (and

Λ and R can be recovered from this bracket).

There are three types of “extreme examples”:

1. Contact manifolds: To give a contact form θ on an (2n+1)-dimensional

manifold M , i.e. a 1-form with the property that θ∧(dθ)n 6= 0, is equivalent

to giving a Jacobi structure with the property that Λn∧R 6= 0; the defining

formula is iθ(Λ) = 0, iR(θ) = 1.

2. Vector fields: Clearly, vector fields on M can be seen as Jacobi struc-

tures with vanishing bivector.

3. Poisson manifolds: Also, a Poisson structure on M is the same thing

as a Jacobi structure with vanishing Reeb vector field; then Λ is called a

Poisson bivector. Note that multiplying a Poisson structure Λ on M by a

smooth function f , the new structure Λf = fΛ will no longer be Poisson

unless the Hamiltonian vector field Xf (obtained by contracting df and Λ)

is zero; instead, Λf together with Xf always defines a Jacobi structure.

There is yet another connection between Jacobi and Poisson manifolds:

to any Jacobi manifold (M,Λ, R) one can associate a Poisson manifold [16].

Definition 1.2. — The poissonization of a Jacobi manifold (M,Λ, R)

is the Poisson manifold M × R with the bivector:

(1.2) Λ̃ = e−s
(
Λ +

∂

∂s
∧R

)
,

where s is the coordinate on R. When M is contact, M×R will be called the

symplectification of M (since Λ̃ is non-degenerate, it defines a symplectic

form).

To understand the global picture behind Jacobi structures it is useful

to first recall what happens in the Poisson case, when one discovers We-

instein’s symplectic groupoids [19]. First of all, given a Poisson manifold

P , one has an associated topological groupoid Σs(P ) which shows up as

ANNALES DE L’INSTITUT FOURIER



INTEGRABILITY OF JACOBI AND POISSON STRUCTURES 1183

the phase space of the Poisson-sigma model [4], or as the “cotangent mon-

odromy groupoid” of the Poisson manifold [6, 7]. We will call it the sym-

plectic monodromy groupoid of P . The terminology, and the subscript “s”

come from the fact that, when Σs(P ) is smooth, then it is naturally a sym-

plectic groupoid of P , i.e. it comes endowed with a symplectic form which

is multiplicative(1) and it induces the Poisson structure on P .

This correspondence between Poisson manifolds and symplectic

groupoids, which is “almost one-to-one”, is best explained through the

infinitesimal version of Lie groupoids, i.e. Lie algebroids. At this point, let

us fix some notations and basic definitions (for more details and proper

references, please see [6]). For a groupoid Σ over M (hence Σ is the space

of arrows and M is the space of objects, also identified with the subspace

of Σ consisting of the identity arrows 1x at points x ∈ M), we denote by

α the source map, by β the target map, and by m(g, h) = gh the multipli-

cation (defined when α(g) = β(h)). Hence α, β : Σ −→ M , m : Σ2 −→ Σ,

where Σ2 is the space of composable arrows. Lie groupoids will have smooth

structure maps, α and β will be submersions (so that Σ2 is a manifold),

and, although the base manifold M and the α-fibers α−1(x) are assumed

to be Hausdorff, Σ may be a non-Hausdorff manifold (important examples

come from bundles of Lie algebras and foliations). Recall also that a Lie

algebroid A over M is a vector bundle together with a Lie bracket [·, ·] on

the space of sections Γ(A) and a bundle map ρ : A −→ TM so that the

Leibniz identity holds:

[ξ1, fξ2] = f [ξ1, ξ2] + Lρ(ξ1)(f)ξ2

for all sections ξ1 and ξ2 and all functions f ; here L stands for Lie deriva-

tives along vector fields. ρ is called the anchor of A. As in the case of Lie

groups and Lie algebras, any Lie groupoid has an associated Lie algebroid

(obtained by taking the tangent spaces along the α-fibers at each identity

element 1x). However, not all Lie algebroids arise in this way; one says

that A is integrable if it comes from a Lie groupoid. Nevertheless, any Lie

algebroid A has an associated monodromy groupoid G(A) (called also the

Weinstein groupoid of A), made out of homotopy classes of paths in the

algebroid world, and it is a topological groupoid which is the universal

candidate for integrating A [6] (this will be recalled in Section 3).

Going back to Poisson manifolds, the cotangent bundle T ∗P of any Pois-

son manifold P is naturally a Lie algebroid: the anchor is the contraction

(1) Recall that a form ω on a Lie groupoid Σ is called multiplicative if m∗ω = pr∗
1

ω +

pr∗
2

ω, where pr
1
, pr

2
are the projections, and m is the multiplication, all defined on the

space Σ2 of pairs of composable arrows of Σ.

TOME 57 (2007), FASCICULE 4



1184 Marius CRAINIC & Chenchang ZHU

by the Poisson tensor:

(1.3) Λ♯ : T ∗M −→ TM, Λ(ω, η) = η(Λ♯(ω)),

and the bracket is

(1.4) [ω, η]Λ = LΛ♯ωη − LΛ♯ηω − dΛ(ω, η).

Note that the bracket is uniquely determined by the Leibniz identity and

[df, dg] = d{f, g}. With these, the symplectic monodromy groupoid of P is

just

Σs(P ) = G(T ∗P ),

the monodromy groupoid associated to T ∗P .

For Jacobi manifolds, there are partial results which are similar to those

in the Poisson case, and the necessary objects are already known [9, 14].

Definition 1.3. — A contact groupoid over a manifold M is a Lie

groupoid Σ over M together with a contact form θ, and a function r on Σ,

with the property that θ is r-multiplicative in the sense that

(1.5) m∗θ = pr∗2(e
−r) · pr∗1 θ + pr∗2 θ.

(where, as in the previous footnote, m is the multiplication and pri are

the projections). The function r is called the Reeb function, or the Reeb

cocycle of Σ.

For a discussion on the non-symmetry of the previous equation, and

versions which use the point of view of contact hyperplanes instead of

contact forms, please see Example 7.8 in the last section.

As we shall explain, Reeb cocycles come from integrating Reeb vector

fields of Jacobi manifolds. The term “cocycle” comes from the fact that the

definition above forces the cocycle condition r(gh) = r(g)+ r(h), whenever

gh is defined. This implies that the base M of a contact groupoid has an

induced Jacobi structure [14] (and it will also follow from the next section).

As in the Poisson case, any Jacobi manifold has an associated Lie alge-

broid [14], hence a monodromy groupoid.

Definition 1.4. — The Lie algebroid of the Jacobi manifold (M,Λ, R)

is T ∗M ⊕ R, with the anchor ρ : T ∗M ⊕ R −→ TM given by

ρ(ω, λ) = Λ♯(ω) + λR,

and the bracket

[(ω, 0), (η, 0)] = ([ω, η]Λ, 0)− (iR(ω ∧ η),Λ(ω, η))

[(0, 1), (ω, 0)] = (LR(ω), 0),

ANNALES DE L’INSTITUT FOURIER



INTEGRABILITY OF JACOBI AND POISSON STRUCTURES 1185

(where Λ♯ and [·, ·]Λ are given by (1.3) and (1.4) above). The associated

groupoid

Σc(M) = G(T ∗M ⊕ R),

is called the contact monodromy groupoid of the Jacobi manifold M . We

say that M is integrable as a Jacobi manifold if the associated algebroid

T ∗M ⊕ R is integrable (or, equivalently, if Σc(M) is smooth, cf. [6]).

The fact that R can be integrated to define a multiplicative function on

Σc(M) (which will be explained in detail in the main body), together with

the local result of Dazord [9], suggests that Σc(M) is a contact groupoid

whenever it is smooth. Our first main result proves that this is indeed the

case, and also describes the relation between the integrability of M and

of its Poissonization. To describe this relation at the groupoid level, one

remarks that any multiplicative function r on a groupoid Σ over M can

be used to define an “r-twisted multiplication by R”, which is a groupoid

Σ×r R over M × R (cf. Definition 2.3). We then have:

Main Theorem 1. — For any Jacobi manifold M ,

(i) there is an isomorphism of topological groupoids

Σs(M × R) ∼= Σc(M)×r R,

and M is integrable if and only if the Poisson manifold M × R is

integrable.

(ii) M is integrable if and only if Σc(M) is smooth. Moreover, in this

case Σc(M) has a natural structure of contact groupoid.

Next, we concentrate on Poisson geometry by viewing Poisson manifolds

as Jacobi ones with vanishing Reeb vector fields. In other words, we look

at what the “Jacobi point of view” (rather than Jacobi structures) brings

new into Poisson geometry. First of all, it shows that a Poisson manifold P

comes not only with the symplectic monodromy groupoid Σs(P ), but also

with a contact monodromy groupoid Σc(P ). Of course, it is not a surprise

that the relation between the two heavily depends on the Poisson geometry

of P . However, this relation also provides new insights, e.g. into the geo-

metric prequantization of Poisson manifolds. First of all, we concentrate

on describing the relation between the two groupoids. Here we restrict to

the case where P is integrable as a Poisson manifold (the general case is

treated in Section 4). We have a bundle of groups over P , PΛ, whose fiber

at x ∈ P is the period group of the restriction of Ω to the α-fiber α−1(x),

where Ω is the symplectic form of Σs(P ). We also define GΛ as the quotient

of the trivial bundle with fiber R by PΛ.

TOME 57 (2007), FASCICULE 4
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Main Theorem 2. — For any Poisson manifold P , there is a short

exact sequence of topological groupoids

1 −→ GΛ −→ Σc(P ) −→ Σs(P ) −→ 1.

Moreover, if P is integrable as a Poisson manifold, the following are equiv-

alent

(i) P is integrable as a Jacobi manifold.

(ii) PΛ is smooth.

(iii) GΛ is smooth.

Next, we will use the contact groupoid Σc(P ) to clarify the prequantiza-

tion of the symplectic groupoid Σs(P ). In particular, we will see that any

prequantization is a contact groupoid. As a simplified theorem that we can

state in this introduction, we mention here:

Main Theorem 3. — For any integrable Poisson manifold P , the fol-

lowing are equivalent:

(i) Σs(P ) is prequantizable.

(ii) PΛ ⊂ P × Z.

Moreover, if Σs(P ) is Hausdorff, the conditions above are also equivalent

to

(iii) The symplectic form of Σs(P ) is integral.

In this case, the prequantization Σ̃ is Hausdorff.

And, finally, we will describe the connection with the Van Est map.

More precisely, the Poisson tensor can be viewed as an algebroid 2-cocycle

on T ∗M , and it makes sense to ask when it is integrable (i.e. when it comes

from a 2-cocycle on the symplectic groupoid, via the Van Est map). We

will show (compare with the previous theorem):

Main Theorem 4. — Let (P,Λ) be an integrable Poisson manifold,

and Σs(P ) is Hausdorff. Then the following are equivalent:

(i) Λ is integrable as an algebroid cocycle.

(ii) The symplectic form of Σs(P ) is exact.

(iii) PΛ = 0.

Moreover, in this case Σc(P ) is isomorphic to the product Σs(P ) with R,

with the multiplication twisted by a cocycle on Σs(P ) integrating Λ.

The paper is organized as follows. In the first section we give more details

on the poissonization process, including a groupoid version. Next, there

is one section devoted to each of the main theorems, which provides the

ANNALES DE L’INSTITUT FOURIER
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details on the definitions, more precise statements, and the proofs. In the

last section we look at several particular cases and examples.

Late comment: Finally, we would like to mention that, at the time the

first version of this paper was written, we were not aware of several related

works. Most notably, the non-trivial remark that the integrability of Jacobi

structures is intimately related to prequantization already appears in [10].

Also, the idea of viewing the Reeb vector field of a Jacobi manifold as an

algebroid cocycle already appears in [13] (where it plays a central role).

However, regarding the main results, there is hardly any overlap, and our

methods (and point of view) is very different from the existing ones. One of

the reasons is due to the fact that we use the A-path approach of [6] (and

this has been proven to be more powerful also in the Poisson case [7]).

Acknowledgments. — The second author would like to thank her advi-

sor Alan Weinstein for very helpful comments and discussions.

2. Poissonization and homogeneity

2.1. The manifold case [16, 11]

A homogeneous Poisson manifold is a Poisson manifold (P, Λ̃) together

with a vector field Z, called the homogeneous vector field of P , with the

property that

Λ̃ = −LZ(Λ̃).

If Λ̃ comes from a symplectic form ω, then the equation above becomes

ω = LZ(ω), and one calls (P, ω, Z) a homogeneous symplectic manifold.

Recall also that the poissonization of a Jacobi manifold (M,Λ, R) is the

Poisson manifold (M ×R, Λ̃), where Λ̃ is given by the formula (1.2) in the

introduction. We have (cf. Subsection 11 in [16], or the theorem on pp. 443

of [11]):

Proposition 2.1. — The poissonization construction defines a one-to-

one correspondence between Jacobi structures on M and homogeneous

Poisson structures on M × R with homogeneous vector field ∂
∂s

.

Moreover, when restricted to contact manifolds, this induces a one-to-

one correspondence between contact structures on M and homogeneous

symplectic structures on M × R with homogeneous vector field ∂
∂s

.

Proof. — The proof is based on some simple remarks which are interest-

ing on their own. First, for the inverse of the poissonization construction

TOME 57 (2007), FASCICULE 4



1188 Marius CRAINIC & Chenchang ZHU

we remark that, given a homogeneous Poisson structures Λ̃ on M ×R with

homogeneous vector field ∂
∂s

, one has an induced Jacobi structure on M

with

Λ = (pr1)∗(e
sΛ̃), R = esΛ̃♯(ds),

where pr1 : M×R −→M is the projection. Next, when the Jacobi manifold

M is actually contact with contact form θ, then its poissonization is actually

symplectic, with the symplectic form

ω = d(es pr∗1 θ).

And, finally, if (M × R, ω) is symplectic and L ∂
∂s
ω = ω, then the induced

Jacobi structure on M comes from the contact form θ = ι
(

∂
∂s

)
ω. �

2.2. The groupoid case

We now discuss the groupoid version of the proposition above. Corre-

sponding to Poisson manifolds are symplectic groupoids, i.e. Lie groupoids

Σ
α

⇒
β

P equipped with a symplectic form ω on Σ which is multiplicative,

i.e. which satisfies

(2.1) m∗ω = pr∗1 ω + pr∗2 ω,

where the equation is on the space Σ2 of pairs of composable elements,

prj is the projection into the j-th component, and m is the multiplication.

Recall also that a multiplicative vector field on Σ consists of a vector field Z

on Σ and a vector field Z0 on the base manifold M , with the property that

the flow φt
Z is a local Lie groupoid morphism over the flow φt

Z0
. That means

that for any arrow g from x to y so that g′ = φt
Z(g) is defined, x′ = φt

Z0
(x)

and y′ = φt
Z0

(y) are defined too and g′ is an arrow from x′ to y′, and the

multiplicativity condition φt
Z(gh) = φt

Z(g)φt
Z(h) holds whenever the right

hand side is defined. These conditions can be reformulating by saying that

Z : Σ −→ TΣ is a groupoid morphism with base map Z0 : M −→ TM ,

where TΣ is with the induced structure of groupoid over TM (for details,

see [17]. Since Z0 can be recovered from Z (push down along the source

map), we simply say that Z is a multiplicative vector field.

Finally,

Definition 2.2. — A homogeneous symplectic groupoid (Σ, ω, Z) is a

symplectic groupoid together with a multiplicative vector field Z, with the

property that LZ(ω) = ω.

ANNALES DE L’INSTITUT FOURIER
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Next, we need the groupoid version of “multiplying with the reals” that

appears in the poissonization procedure above.

Definition 2.3. — Given a groupoid Σ (Lie or not), and a multiplica-

tive function r on Σ, we define the groupoid Σ×r R = Σ×R over M ×R,

with source α, target β and multiplication given by

α(g, s) = (α(g), s), β(g, s) = (β(g), s− r(g)),
(2.2)

(g1, s1)(g2, s2) = (g1g2, s2).

Actually, it is easy to check that Σ ×r R is a groupoid if and only if

r(g1g2) = r(g1) + r(g2), i.e. r is multiplicative,

Proposition 2.4. — Let Σ be a Lie groupoid endowed with a smooth

multiplicative function r. Then there is a one-to-one correspondence be-

tween contact groupoid structures on the Lie groupoid Σ with Reeb func-

tion r, and homogeneous symplectic groupoid structures on the Lie

groupoid Σ×r R with homogeneous vector field ∂
∂s

.

Proof. — By the second part of the previous proposition we are left with

showing that, if the groupoid Σ comes equipped with the multiplicative

function r and a contact form θ, and if ω is the induced symplectic structure

on Σ × R, then the multiplicativity of ω (i.e. equation (2.1)) is equivalent

to the r-multiplicativity of θ (i.e. equation (1.5)). For this one recalls that

ω = d(esθ), and one remarks that the space of composable pairs of arrows

in Σ×r R can be identified with Σ2 × R by

((g, s− r(g′)), (g′, s)) 7−→ (g, g′, s).

Taking the component of (2.1) containing ds, we obtain (1.5) immediately.

The other direction follows by multiplying by es and taking derivatives. �

Definition 2.5. — Given a contact groupoid Σ with Reeb function r,

the associated symplectic groupoid Σ ×r R is called the symplectification

of Σ.

2.3. Compatibility

We now point out the compatibility between the correspondences de-

scribed by the previous two propositions. Recall that, given a symplectic

groupoid Σ over P , there is an induced Poisson structure on P , uniquely

TOME 57 (2007), FASCICULE 4
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determined by the property that the source map is a Poisson map(2) (i.e.

preserves the Poisson bivector). A similar result holds for contact groupoids

and Jacobi manifolds:

Lemma 2.6. — Given a contact groupoid Σ over M , there exists an

unique Jacobi structure with the property that the source map α : Σ −→M

is a Jacobi map. In this case, we call Σ a contact groupoid of the Jacobi

manifold M .

The proof of this lemma will also show the following which, although

straightforward, proves that the correspondence of Proposition 2.4 implies

that of Proposition 2.1.

Proposition 2.7. — If (Σ, θ, r) is a contact groupoid over M , and

(Σ ×r R, ω) is the associated homogeneous symplectic groupoid, then the

poissonization of the Jacobi structure induced on M (by the contact

groupoid Σ) coincides with the Poisson structure induced on M × R (by

the symplectic groupoid Σ×r R).

Proof of Lemma 2.6 and of Proposition 2.7. — The uniqueness in the

lemma is clear since α is a submersion. We prove the rest. Remark that, in

general, a Poisson tensor Λ̃ is homogeneous with respect to a vector field Z

if and only if φt
Z maps Λ̃ into etΛ̃. On the other hand, if Γ is a homogeneous

symplectic groupoid over P with homogeneous vector field Z, we know that

the flow of Z is a (local) groupoid homomorphism over the flow of Z0. We

deduce that the induced Poisson structure on P is a homogeneous one, with

homogeneous vector field Z0. Now, given a contact groupoid Σ over M , we

form the homogeneous symplectic groupoid Σ×r R, and it follows that the

induced Poisson structure on M × R is homogeneous with vector field d
ds

.

Hence it comes from a Jacobi structure on M . One still needs to remark

that, by the correspondence of Proposition 2.1, Jacobi maps correspond to

Poisson maps (and we apply this to the source map). �

3. Symplectic and contact monodromy groupoids

3.1. The main theorem of the section

In this section we investigate the effect that the poissonization process

has on the monodromy groupoids. We first recall the construction of the

(2) This construction actually gives one-to-one correspondences between symplectic
groupoids over P and integrable Poisson structures on P .

ANNALES DE L’INSTITUT FOURIER



INTEGRABILITY OF JACOBI AND POISSON STRUCTURES 1191

monodromy groupoid G(A) associated to a Lie algebroid A. As mentioned

in the introduction, when applied to the algebroid T ∗P of a Poisson mani-

fold P and to the algebroid T ∗M ⊕R of a Jacobi manifold M , one defines

Σs(P ) = G(T ∗P ), Σc(M) = G(T ∗M ⊕ R),

called the symplectic monodromy groupoid of P , and the contact mon-

odromy groupoid of M , respectively. The purpose of this section will then

be to prove the following stronger version of the Main Theorem 1 stated in

the introduction.

Theorem 1. — Let M be a Jacobi manifold with Reeb vector field R,

let Σc(M) be the contact monodromy groupoid of M and let Σs(M × R)

be the symplectic monodromy groupoid of the Poissonization of M . Then:

(i) By integration, the Reeb vector field R induces a multiplicative

function r on Σc(M).

(ii) One has an isomorphism of topological groupoids

(3.1) Σs(M × R) ∼= Σc(M)×r R,

(where r is the one from (i), and “×r” was introduced in Defini-

tion 2.3).

(iii) M is integrable as a Jacobi manifold if and only if M × R is inte-

grable as a Poisson manifold.

(iv) In the integrable case, Σc(M) is the source-simply connected con-

tact groupoid of M with Reeb function r, and its symplectifica-

tion (cf. Definition 2.5) is isomorphic to the symplectic groupoid

Σs(M × R) of Poisson manifold M × R.

3.2. Monodromy groupoids

We now recall from [6] the construction of the monodromy groupoid

G(A) associated to a Lie algebroid A.

Definition 3.1. — Given a Lie algebroid A
π
−→ M with anchor ρ :

A −→ TM , an A-path of A is a C1 map a: I = [0, 1] −→ A with the

property that

ρ(a(t)) =
dγ

dt
(t),

where γ(t) = π ◦ a(t) is called the base path of a. We denote by Pa(A) the

set of all A-paths of A.

TOME 57 (2007), FASCICULE 4
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The choice of the order of smoothness is not very important, and we

choose it finite in order to work with Banach manifolds and not with Frechet

ones. In particular, the space P (A) of all paths in A will be a Banach

manifold modelled by the Banach space P (Rn) = C1(I,Rn), and Pa(A)

will be a Banach submanifold. For more details, see [6].

Definition 3.2 ([6]). — Let ∇ be a connection on A with torsion T∇
defined as

T∇(α, β) = ∇ρ(β)α−∇ρ(α)β + [α, β],

and let ∂t be the induced derivative operator (which associates to a path

a = a(t) in A, the path in A ∂ta which is the ∇-horizontal component of
da
dt

). An A-homotopy is a family aǫ(t) = a(ǫ, t) of A-paths of class C2 in

ǫ with the property that their base paths γǫ(t) = γ(ǫ, t) have fixed end

points, and the solution b = b(ǫ, t) of the equation

(3.2) ∂tb− ∂ǫa = T∇(a, b), b(ǫ, 0) = 0

satisfies b(ǫ, 1) = 0 for all ǫ. We say that two A-paths a0 and a1 are ho-

motopic, and write a0 ∼ a1, if there exists an A-homotopy a(ǫ, t) with the

property that ai(t) = a(i, t), i = 0, 1.

Recall [6] that the solution b of the previous equation (hence also the

homotopy relation) does not depend on the choice of the connection ∇. In-

tuitively, A-homotopies are “algebroid homotopies with fixed end-points”,

and the equation (3.2) above is just the algebroid version of the equation

(in R
n) d

dt
d
dǫ

= d
dǫ

d
dt

which can be used to compute b = dγ
dǫ

from a = dγ
dt

.

Finally, the monodromy groupoid of A is defined as

G(A) :=
(
Pa(A)/ ∼

) α

⇒
β

M.

The source and target maps α and β are given by

α([a]) = γ(0), β([a]) = γ(1),

where γ is the base path of a. The multiplication is basically the concate-

nation of paths:

a⊙ b(t) ≡

{
2b(2t), 0 6 t 6 1

2

2a(2t− 1), 1
2 < t 6 1

Strictly speaking, this forces us to consider the pathwise smooth A-paths.

Instead, since reparametrization does not affect the homotopy class [6], we

can first reparametrize A-paths by a cut-off function τ ∈ C∞(I, I) (the

reparametrization of a is aτ (t) = τ ′(t)a(τ(t)), and then define [a] · [b] =

[aτ ⊙ bτ ].
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Since G(A) is the quotient of the Banach manifold Pa(A), it follows that

G(A) is a topological groupoid, and we can talk unambiguously about its

smoothness: we are only interested on smooth structures for which the

projection from Pa(A) onto G(A) is a submersion, and there is at most one

such structure. It then follows that A is integrable if and only if G(A) is

smooth, in which case G(A) will be the unique Lie groupoid integrating A

which has simply connected α-fibers [6].

3.3. Passing to 1-cocycles

To prove (i), (ii) and (iii) of Theorem 1, it is useful to concentrate on the

algebroid

A = T ∗M ⊕ R,

to identify the Reeb vector field with the section R ∈ Γ(A∗) which vanishes

in the R-direction:

R(ω, λ) = ω(R),

and to remark that R becomes an algebroid 1-cocycle, i.e.

R([α, β]) = Lρα(R(β))− Lρβ(R(α))

for all α, β ∈ Γ(A).

Definition 3.3. — Given a Lie algebroid A and a 1-cocycle R ∈ Γ(A∗),

define A ×R R as the algebroid over M × R, which, as a vector bundle, is

the pull-back of A to M × R along the projection, has the anchor ρR :

A×R R −→ T ∗(M × R),

ρR(α) = ρ(α)−R(α)
∂

∂s
,

and the Lie bracket:

[α, β]R = [α, β]−R(α)
∂β

∂s
+R(β)

∂α

∂s
,

where ρ and [·, ·] are anchor and Lie bracket on A.

Via the remark that 1-cocycles R ∈ Γ(A∗) are the same thing as Lie

algebroid actions of A on M × R, the algebroid A ×R R is the standard

action algebroid (or pull-back algebroid) associated to the action (see e.g.

[12, 17]). The point of this definition is that it allows us to include the

algebroid T ∗(M × R) into the general picture:
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Lemma 3.4. — For the Lie algebroid A = T ∗M⊕R, and the Reeb vector

field R viewed as a 1-cocycle of A, one has an isomorphism of algebroids

T ∗(M × R) ∼= A×R R.

Proof. — One uses the bundle isomorphism ψ(v, t) = (e−tv, t). �

We now have the following general result:

Proposition 3.5. — Let A be a Lie algebroid, and let R ∈ Γ(A∗) be

an 1-cocycle. Then

(i) The integral

r(a) =

∫

a

R :=

∫ 1

0

〈R(γ(t)), a(t)〉dt

only depends on the homotopy class of the A-path a, and induces

a multiplicative function r on G(A).

(ii) There is an isomorphism of topological groupoids

G(A×R R) ∼= G(A)×r R.

(iii) A is integrable if and only if A ×R R is. In this case, the previous

isomorphism is a Lie groupoid isomorphism.

Proof. — That
∫

a
R only depends on the homotopy class of a has been

proven for Lie algebroids coming from Poisson manifolds in [7], and exactly

the same proof applies in general. That r is multiplicative is clear from the

additivity of integration. Next, it is easy to see that an A-path of A×R R is

the same thing as an A-path a of A, together with a path γ0 in R, satisfying

(3.3)
dγ0

dt
= −R(a(t)).

In turn, this determines γ0 from the initial point s = γ0(0). This defines a

bĳection Pa(A×R R) ∼= Pa(A)×R ((a, γ0) corresponds to (a, s)), which is

clearly smooth. Moreover, choosing a connection ∇ on A and the pull-back

∇̃ on A ×R R in order to write the homotopy equations (3.2) for the two

algebroids, it is straightforward to see that this correspondence preserves

the homotopy, hence it descends to the isomorphism of topological spaces:

G(A×R R) ∼= G(A)× R.

It is straightforward to identify the groupoid structure on the right hand

side with G(A) ×r R. For instance, the source and the target of ([a], s)

will be (γ1(0), γ0(0)) = (α([a]), s), and (γ1(1), γ0(1)) = (β([a]), s − r(a)),

respectively, where we have integrated (3.3) to compute γ0(1).
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For (iii) we use again ∇. We can talk about geodesic A-paths, and define

the exponential map

exp∇ : A −→ G(A),

which associates to v ∈ A the homotopy class of the geodesic A-path that

starts at v. As in the classical case, exp∇ is defined only for small enough v’s,

but we make an abuse of notation and write as if it was defined globally.

The point is that A is integrable if and only if, locally around the zero

points, exp∇ is injective. This has been explained in [6], to which we refer

also for more details on the exponential map. Then, for the first part of (iii),

it suffices to remark that, after the identification G(A×R R) ∼= G(A)×r R,

exp
∇̃

is identified with exp∇×id. Also, since the smooth structure on G(A)

is constructed with the help of the exponential map (and that is why we

need it to be injective), the last part of (iii) follows. �

3.4. Proof of Theorem 1

By Lemma 3.4, (i), (ii) and (iii) in Theorem 1 follow from Proposition 3.5.

We are now left with part (iv). Since Σs(M ×R) is a symplectic groupoid,

the isomorphism (3.1) makes Σc(M)×r R into a symplectic groupoid with

symplectic form denoted by ω. Using Proposition 2.4, it suffices to show

that d
ds

is multiplicative and (Σc(M)×r R, ω) is homogeneous with respect

to the vector field d
ds

. We only have to show that L d
ds
ω = ω. We will make

some general remarks. First of all, if (P,Λ) is a Poisson manifold, and λ

is a non-zero real, it is immediate from the construction of the symplectic

form ωΛ on Σs(P,Λ) (see [7]) that

Σs(P, λΛ) = Σs(P,Λ), ωλΛ = λ−1ωΛ.

Next, if φ : (M1,Λ1) −→ (M2,Λ2) is an isomorphism of two Poisson man-

ifolds, then it induces an isomorphism of algebroids φ∗ : T ∗M1 −→ T ∗M2

which, on each fiber, is given by the inverse (dφ)−1 of the differential of φ. In

the integrable case, it induces a map φ∗ : Σs(M1) −→ Σs(M2) of symplectic

groupoids. Applying this to φu : M × R −→ M × R, φu(x, s) = (x, s+ u),

Λ1 = Λ̃, Λ2 = e−uΛ̃, and using also the previous remark, we obtain

(φu)∗ : (Σs(M × R), ω) −→ (Σs(M × R), euω).

After the identification from (iii), we see that (φu)∗(g, s) = (g, s+u) is the

flow of d
ds

. Hence d
ds

is multiplicative. Taking derivatives in (φu)∗(ω) = euω

(with respect to u, at the origin), we obtain the desired equation L d
ds
ω = ω.
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Remark. — Let us go back to Theorem 1 and conclude with the explicit

formulas. First of all, the Reeb function on Σc(M) is given by

r([a]) =

∫

a

R :=

∫ 1

0

〈R(γ(t)), a1(t)〉dt,

for any A-path a = (a1, a0) of T ∗M ⊕ R with base path γ. Also, the

isomorphism in (iii) comes from a diffeomorphism at the level of A-paths,

(3.4)
Pa(T ∗(M × R)) −→ Pa(T ∗M ⊕M R)× R

ã1 + ã0ds ←→ ([a1, a0], s).

On the left hand side, ã = ã1 + ã0ds is an A-path of T ∗(M × R) over the

base path γ = (γ0, γ1) in M × R, while on the right hand side we have a

pair consisting of an A-path a = (a1, a0) of T ∗M ⊕M R over the base path

γ1 in M , together with a real number s. The explicit formulas are:

ai(t) = e−γ0(t)ãi(t), (i = 0, 1), s = γ0(0)

for computing the right hand side from the left one, while for the other

direction:

ãi(t) = eγ0(t)ai(t),

γ0(t) = −

∫ t

0

i(E)a1(t)dt+ s.

4. The Poisson case I: general discussion

4.1. The main theorem of the section

In this section (as well as in the next two) we look at what the Jacobi

point of view brings new into Poisson geometry. In other words, we start

with a Poisson manifold (P,Λ), and we view it both as a Poisson manifold,

as well as a Jacobi manifold with trivial Reeb vector field. Then (P,Λ) will

have two associated groupoids: the symplectic monodromy groupoid Σs(P )

(with the role of integrating the Poisson structure), and the contact mon-

odromy groupoid Σc(P ) (with the role of integrating the Jacobi structure).

The aim of this section is to describe the relation between the two. Empha-

size here that the smoothness of the one does not imply the smoothness

of the other, i.e. P can be integrable as Poisson manifold without being

integrable as Jacobi, or the other way around (see the examples).

Given (P,Λ), we will define a bundle of groups PΛ over P , where each

fiber PΛ,x is an additive subgroup of R. When P is integrable as a Pois-

son manifold, i.e. when Σs(P ) is symplectic Lie groupoid, with symplectic
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form denoted by Ω, then PΛ,x can be described as the group of periods of

Ω|α−1(x):

(4.1) Per(Ω|α−1(x)) =
{∫

g

Ω : [g] ∈ π2(α
−1(x))

}
.

It is remarkable that these groups can be defined without any integrability

assumption. We also consider the quotient GΛ of P × R by PΛ, i.e. the

bundle of groups over P whose fiber above x ∈ P is R/PΛ,x. The main

result to be discussed in this section is the following improvement of Main

Theorem 2 stated in the introduction.

Theorem 2. — For any Poisson manifold (P,Λ), there is a short exact

sequence of topological groupoids

1 −→ GΛ −→ Σc(P )
π
−→ Σs(P ) −→ 1.

If P is integrable as a Poisson manifold, then the following are equivalent:

(i) P is integrable as a Jacobi manifold.

(ii) PΛ is locally uniformly discrete.

(iii) PΛ is smooth.

(iv) GΛ is smooth.

Moreover, in this case the symplectic form Ω of Σs(P ) and the contact form

θ of Σc(P ) are related by

π∗Ω = dθ,

and the Reeb vector field of Σc(P ) is

R =
d

ds
,

the infinitesimal generator of the action of GΛ on Σc(P ) (or, equivalently,

of the induced action of R via the projection R −→ GΛ).

We mention here that, as for the G(A)’s, when talking about the smooth-

ness of PΛ or GΛ we refer to the natural smooth structures, i.e. PΛ as a

subspace of P ×R, and GΛ as a quotient of it. In particular, there is at most

one such smooth structure. Also, the condition that PΛ is locally uniformly

discrete means that, for x ∈ P , the distance between the zero element and

PΛ,y −{0y} is bounded from below by a positive number, for y in a neigh-

borhood of x.
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4.2. Monodromy maps

To define the groups PΛ in the non-integrable case (and to proceed with

the proof of the theorem), we need to recall the construction of the mon-

odromy map of an algebroid (at a first reading, readers can restrict them-

selves to the integrable case, and skip the general definition of PΛ).

So, let A be a Lie algebroid over P . For x ∈ P we denote by gx(A) the

kernel of the anchor at x, and we call it the isotropy Lie algebra of A at

x. The Lie bracket can be restricted to this kernel, and this shows that

gx(A) is indeed a Lie algebra. As for any Lie algebroid, we can form the

associated groupoid G(gx(A)), which is a group since the base is a point.

This is nothing but the unique simply connected Lie group integrating

gx(A), viewed as gx(A)-homotopy classes of paths a1 : I −→ gx(A). Also,

the image of ρ defines a singular foliation on P , whose leaves are the orbits

of A.

Definition 4.1. — Let A be a Lie algebroid over P , let x ∈ P , and we

denote by Lx the orbit through x. The monodromy map at x,

∂A : π2(L, x) −→ G(gx(A)),

associates to the homotopy class of γ : I×I −→ L (representing an element

in π2(L, x)) the class of a (any) gx-path a1 : I −→ gx with the property

that there exists an A-homotopy a(ǫ, t) (cf. Definition 3.2), sitting over

γ(ǫ, t), and which connects the zero path (i.e. a(0, t) = 0) to a1.

The image of ∂A is called the (extended) monodromy group of A at x,

and these groups are central for understanding the integrability of A. In

particular, A is integrable if and only if these groups are discrete, locally

uniformly with respect to x. For this, and more details (e.g. to see that

a above can be chosen, and that [a1] does not depend on the choice of

a, but only on the homotopy class of γ), we refer to [6]. We describe here

what happens in the integrable case, when these constructions become more

transparent. Then G(A) is smooth, and the isotropy group Gx(A) (i.e.

arrows of G(A) that start and end at x) will be a Lie group that integrates

the Lie algebra gx(A). It may be different from G(gx(A)), and the main

reason is that it may fail to be simply connected. Applying the homotopy

long exact sequence associated the fibration β : α−1(x) −→ L, we get a

surjective boundary map

∂ : π2(L) −→ π1(Gx(A)),

and this is basically ∂A after one views π1(Gx(A)) as a subgroup of

G(gx(A)) (which is naturally the case since Gx(A) integrates gx(A)).
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4.3. The period groups in the general case

When (P,Λ) is a Poisson manifold, we denote by

∂s : π2(L, x) −→ G(gx(T ∗P )),

the monodromy map associated to T ∗P , and, similarly, by ∂c the one as-

sociated to T ∗P ⊕ R (the algebroid associated to P viewed as a Jacobi

manifold). Note that L is the symplectic leaf through x, whose tangent

space is spanned by the Hamiltonian vectors Xf = Λ♯(df) = {f, ·}, and

with the symplectic form

ωL(Xf , Xg) = {f, g}.

Definition 4.2. — Given a Poisson manifold (P,Λ), x ∈ P , we define

the period group of Λ at x,

PΛ,x =
{∫

γ

ωL : [γ] ∈ π2(L, x) and ∂sγ = 1x

}
⊂ R,

and we define the period bundle PΛ of Λ whose fiber at x is PΛ,x, and the

structural group bundle GΛ of Λ whose fiber at x is R/PΛ,x.

As promised, in the integrable case we have

Lemma 4.3. — If P is integrable as a Poisson manifold, then PΛ,x co-

incides with the group of periods (4.1) of the restriction of the symplectic

form of Σs(P ) to the α-fiber at x.

Proof. — Since T ∗P is integrable, we can use the description of ∂s as

the boundary of the homotopy long exact sequence (see the end of subsec-

tion 4.2). We deduce that

PΛ,x =
{∫

β∗(u)

ω : u ∈ π2(α
−1(x))

}
.

On the other hand, since β∗ω = −Ω on α−1(x) (β is anti-Poisson), we have
∫

β∗(u)

ω =

∫

u

β∗ω = −

∫

u

Ω,

and the lemma follows. �

Next, the two monodromy maps ∂s and ∂c are related as follows:

Lemma 4.4. — Let P be a Poisson manifold and x ∈ P . Denote by g
s
x

the isotropy Lie algebra at x of T ∗P and by g
c
x the isotropy Lie algebra at

x of T ∗P ⊕ R. Then

G(gc
x) ∼= G(gs

x)× R,
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and, after this identification, the monodromy maps ∂s and ∂c of T ∗P , and

T ∗P ⊕ R, respectively, are related by:

∂cγ =
(
∂sγ,−

∫

γ

ωL

)
,

for every [γ] ∈ π2(L, x).

Proof. — The first part follows from the remark that g
c
x = g

s
x×R, which

is clear at the level of vector spaces, and, at the level of Lie algebras, it

follows immediately from the formulas defining the Lie brackets of T ∗P and

T ∗P ⊕ R. Consider now [γ] ∈ π2(L), let ã(ǫ, t) be an A-homotopy over γ

connecting the trivial path with ã1 = (a1, u1) (so that ∂c([γ]) = [ã1]), and

let b be the solution of the equation (3.2). Write a = (a, u) and, similarly,

b = (b, v). The first component of the equation (3.2) tells us that a is

a homotopy between the zero path and a1, hence ∂c(γ) = (∂s(γ), [u1]).

On the other hand, G(R) ∼= R, where the homotopy class of an R-path

u1 is identified (homotopic) to the number
∫ 1

0
u1. We now look at the R-

component of the equation (3.2), which gives us

∂tv − ∂ǫu = Λ(a, b).

Since

Λ♯(a) =
dγ

dt
, Λ♯(b) =

dγ

dǫ
,

and γ stays entirely in the leaf L, we have

∂tv − ∂ǫu = ωL

(dγ
dt
,
dγ

dǫ

)
.

So

∫ 1

0

∫ 1

0

ωL

(dγ
dt
,
dγ

dǫ

)
dǫdt =

∫ 1

0

∫ 1

0

∂tvdǫdt−

∫ 1

0

∫ 1

0

∂ǫudǫdt

=

∫ 1

0

(v(ǫ, 1)− v(ǫ, 0))dǫ−

∫ 1

0

(u(1, t)− u(0, t))dt

= −

∫ 1

0

u(1, t)dt,

i.e.
∫

γ
ωL = −

∫ 1

0
u(1, t)dt. This proves the lemma. �
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4.4. Proof of Theorem 2

We now proceed with the proof of the theorem. The projection T ∗P ⊕

R −→ T ∗P is an algebroid morphism, hence it induces a groupoid mor-

phism

π : Σc(P ) −→ Σs(P )

which sends an A-path (a, u) of T ∗P ⊕R into the A-path a of T ∗P . This is

clearly surjective, and we denote by G its kernel. We will show that G = GΛ.

Recall [6] that, for any algebroid A over P , the isotropy group at x of the

monodromy groupoid of A (denoted by Gx(A)) has π0(Gx(A)) isomorphic

to π1(L), and the connected component of the identity in Gx(A) is

(Gx(A))0 = G(gx(A))/ Im(∂A),

independently of the integrability of A. Applying this to our algebroids, we

see that

Gx = Ker(π : G(gc
x)/ Im(∂c) −→ G(gs

x)/ Im(∂s)),

and, using the previous lemma, this is precisely R/PΛ,x. This proves the

exact sequence in the theorem. Note that the inclusion of GΛ into Σc(P )

sends the class of the real number λ into the A-homotopy class of the path

(0, λ) of T ∗P ⊕ R.

We now prove the equivalence of (i)-(iv) in the Theorem. We first show

that (i) is equivalent to (ii). By the general result of [6], (i) is equivalent

to the groups Im(∂c,x) being locally uniformly discrete. This means that,

if (xi) is a sequence in P converging to x, and [γi] ∈ π2(L, xi) satisfies

(4.2) lim
n→+∞

distance((∂c(γi), 0)) = 0,

then ∂c(γi) = 0 for i large enough. On the other hand, the similar condition

for ∂s is satisfied since T ∗P is integrable. Hence, using Lemma 4.4, the

condition becomes: if (xi) is a sequence in P converging to x, and [γi] ∈

π2(L, xi) satisfies ∫

γ

ωLxi
−→ 0,

then these integrals must vanish for i large enough. i.e. , PΛ must be locally

uniformly discrete. Next, (i) implies (iv) because π will be a submersion and

GΛ = π−1(P ) (P is embedded in Σs(P ) as the space of identity elements).

Similarly, (iv) implies (iii) because PΛ is π−1
0 (P ) where the projection π0 :

P × R −→ GΛ is a submersion. Assume now (iii), and prove (ii). The

condition (iii) implies that PΛx
is a smooth submanifold of R. But PΛx

is at most countable, since it is a quotient of the second homotopy group
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π2(L) of the leaf through x. It follows that PΛx
is discrete and the projection

from PΛ into P is a local diffeomorphism. This implies (ii).

We are left with proving the last part of the theorem. Using the corre-

spondence we have established in (3.4) and the formula of the symplectic

form in the path space [4], we have

(4.3) L d
ds
θ = 0, i

( d

ds

)
θ = 1,

i.e. d
ds

is the Reeb vector field of θ. From these formulas it also follows that

dθ is a basic form, i.e. dθ = π∗ω for some 2-form ω on Γs(P ). Since θ is

a contact form and it is multiplicative, it follows that ω is a symplectic

form on Σs(P ) which is multiplicative. Since the source map of Σc(P ) is

Jacobi, it follows that the source map α : (Σs(P ), ω) −→ P is Poisson. By

uniqueness of the symplectic groupoid integrating the Poisson manifold P ,

we must have ω = Ω.

5. The Poisson case II: Application to prequantization

5.1. The main theorem of the section

Recall that a prequantization of a symplectic manifold (S, ω) is a complex

line bundle L together with a connection ∇ so that ω represents the first

Chern class c1(L,∇). Equivalently, this is the same as a principal S1-bundle

π : S̃ −→ S together with a connection 1-form θ ∈ Ω1(S̃) with the property

that π∗ω = dθ. Kostant’s theorem (sometimes also attributed to Kobayashi

[1] or to Souriau) says that this is possible if and only if ω is integral.

Similarly, Weinstein and Xu have introduced the notion of prequantization

of symplectic groupoids, with the aim of quantizing Poisson manifolds “all

at once” [20]. More precisely:

Definition 5.1. — One calls prequantization of the symplectic

groupoid (Σ,Ω) any Lie groupoid extension of Σ by the trivial bundle of

Lie groups S1,

1 −→ S1 −→ Σ̃
π
−→ Σ −→ 1,

(and this makes Σ̃ into a principal S1-bundle over Σ), together with a

connection 1-form θ ∈ Ω1(Σ̃) which is multiplicative and satisfies π∗Ω = dθ.

When saying “the trivial bundle of S1”, we really mean triviality in the

sense of extensions, i.e. , besides the triviality as a bundle, the action of Σ

on the bundle must be trivial too. That simply means that gz = zg for all
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g ∈ Σ̃ and z ∈ S1. In particular, there is no ambiguity when talking about

Σ̃ as a principal S1-bundle over Σ. This corresponds to the “no-holonomy

above identity elements” condition that appears in [20] (where uniqueness

is proven).

In this section we show that, for a Poisson manifold P , Σc(P ) is inti-

mately related to prequantizing the symplectic groupoid Σs(P ). More pre-

cisely, we will prove the following result which is an extension of Kostant’s

theorem to symplectic groupoids, and an improvement of Main Theorem 3

stated in the introduction.

Theorem 3. — Let P be an integrable Poisson manifold, with associ-

ated symplectic groupoid Σs(P ). The following are equivalent:

(i) Σs(P ) is prequantizable.

(ii) PΛ ⊂ P × Z.

Moreover, if Σs(P ) is Hausdroff, the conditions above are also equivalent

to

(iii) Ω is integral.

Finally, in the prequantizable case, the prequantization Σ̃ together with

the connection 1-form becomes a contact groupoid which is a quotient of

(Σc(P ), θ), and Σ̃ is Hausdorff if Σc(P ) is.

5.2. Proof of Theorem 3

The implications (i)=⇒ (ii) follows from the fact that the s-fibers of a

prequantization groupoid are classical prequantizing bundles for the s-fibers

of the symplectic groupoid. Also, in the Hausdorff case, the implications

(i)=⇒ (iii)=⇒ (ii) are clear. Assume now (ii), and we prove (i) and the last

part of the theorem. First of all, it follows that PΛ is uniformly discrete,

hence, by Theorem 2, Σc(P ) is a Lie groupoid.

We put Σ̃ := Σc(P )/Z, where the action of Z is the one induced by

the action of R (see Theorem 2). From the hypothesis and Theorem 2 it

also follows that P × Z/PΛ is a smooth (étale) sub-bundle of Gλ. Since

Σc(P ) is a principal GΛ-bundle over Σs(P ), it follows that Σ̃ is smooth,

and it is a principal GΛ/Z = R/Z = S1-bundle over Σs(P ). Denote by

π̃ : Σ̃ −→ Σs(P ) the projection. This will be a morphism of Lie groupoids,

whose kernel is the trivial bundle of groups with fiber S1.

By (4.3), θ is R-invariant, so it descends to a 1-form θ̃ ∈ Ω1(Σ̃) such that

π̃∗θ̃ = θ. The same equations (4.3) imply the similar equations for θ̃, where
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the Reeb vector field will be the generator of the action of S1 on Σ̃. This

shows that θ̃ is a connection 1-form on our principal bundle. Moreover,

π∗Ω = dθ implies that π̃∗Ω = dθ̃. Hence (Σ̃, θ̃) is a prequantization of our

symplectic groupoid Σs(P ). By construction, it is a quotient of (Σc(P ), θ)

and it inherits the contact groupoid structure from Σc(P ). When Σs(P ) is

Hausdorff, so is Σ̃ as a S1 principal bundle over Σs(P ).

6. The Poisson case III: Relation to the Van Est map

6.1. The main theorem of the section

In this section we discuss the Poisson bivector from the point of view of

2-cocycles. The main remark is that the algebroid T ∗P ⊕ R (provided by

the Jacobi point of view) is made out of the algebroid T ∗P (provided by

the Poisson point of view) together with an extra-piece of data, namely a

2-cocycle. This will show that most of our results belong to a more general

class of results, depending on closed 2-cocycles on algebroids. As a conse-

quence of our discussions, labelled here as the main theorem of the section,

we have the following result which gives the precise conditions for when the

relation between Σc(P ) and Σs(P ) is the simplest possible. More precisely,

we will prove the following:

Theorem 4. — Let (P,Λ) be a Poisson manifold, and assume that the

symplectic monodromy groupoid Σs(P ) is smooth and Hausdorff. Denote

by Ω the symplectic form on Σs(P ). Then the following are equivalent:

(i) Λ is integrable as an algebroid cocycle.

(ii) Ω is exact.

(iii) PΛ = 0.

Moreover, if c integrates Λ, then Σc(P ) ∼= Σs(P ) ⋉c R.

This section is organized as a discussion around this theorem, which will

provide the precise definitions and the proof.

6.2. 2-cocycles and the Van Est map(3)

To see that 2-cocycles are at the heart of T ∗P ⊕ R we remark that, if

[·, ·] and ρ are the Lie bracket and the anchor of T ∗P , then the bracket of

(3) Here we only give a brief outline on algebroid cocycles, groupoid cocycles, and the
Van Est map. More details can be found in [5].
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T ∗P ⊕ R is
[
(ω1, ω0), (η1, η0)

]
=

(
[ω1, η1],Lρ(ω1)(η0)− Lρ(η1)(ω0) + Λ(η1, ω1)

)

(and the anchor is (ω1, ω0) 7→ ρ(ω1)). More abstractly, given any algebroid

A and any section Λ ∈ Γ(Λ2A∗), the previous formula defines a bracket on

A ⊕ R. On the other hand, the spaces Γ(ΛpA∗) together define an “A-De

Rham complex”, with the differential

dA(Λ)(X1, . . . , Xp+1)(6.1)

=
∑

i<j

(−1)i+j−1Λ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xp+1))

+

p+1∑

i=1

(−1)iLXi
(Λ(X1, . . . , X̂i, . . . , Xp+1))

(where Λ ∈ Γ(ΛpA∗) is arbitrary). The resulting complex is denoted by

Ω∗(A), and the cohomology is denoted by H∗(A). For instance, when A =

TP one recovers the usual De Rham cohomology, and when A = g is a Lie

algebra one recovers the Lie algebra cohomology.

For Λ ∈ Γ(Λ2A∗), the resulting structure on A ⊕ R is a Lie algebroid

structure if and only if Λ is a 2-cocycle, i.e. dAΛ = 0. The resulting algebroid

is denoted by A⋉Λ R. It is not difficult to see that the isomorphism class

of A⋉Λ R only depends on the cohomology class of Λ. Coming back to our

Poisson manifold, we conclude that

Lemma 6.1. — Given a Poisson manifold (P,Λ), the Poisson tensor is

a closed algebroid 2-cocycle for T ∗P , and

T ∗P ⊕ R ∼= T ∗P ⋉Λ R.

We now turn to the global picture, i.e. to cocycles on groupoids. Assume

that G is a Lie groupoid over P . A differentiable p-cocycle on G is a smooth

function c defined on the space of p-tuples (g1, . . . , gp) of composable ele-

ments of G (i.e. such that g1 . . . gp is defined). The differential of c is the

(p+ 1)-cocycle

(dc)(g1, . . . , gp, gp+1) = c(g2, . . . , gp+1)

+

p∑

i=1

(−1)ic(g1, . . . , gigi+1, . . . , gp+1) + (−1)p+1c(g1, . . . , gp).

We will only work with normalized cocycles, i.e. with the property that

c(g1, . . . , gp) = 0 whenever one of the entries is an identity arrow. The
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resulting complex is denoted by C∗
diff(G), and the cohomology is denoted

by H∗
diff(G).

As in the algebroid case, any (normalized) 2-cocycle c induces a Lie

groupoid structure on G × R, with (g1, λ1)(g2, λ2) = (g1g2, λ1 + λ2 +

c(g1, g2)). We denote this groupoid by G ⋉c R. Again, the isomorphism

class of G⋉c R only depends on the cohomology class of c.

Finally, by differentiation, groupoid cocycles on G induce algebroid cocy-

cles on the Lie algebroid A of G (see [5]). This construction induces a map

of complexes V E : C∗
diff(G) −→ Ω∗(A), hence also a map in cohomology

V E : H∗
diff(G) −→ H∗(A),

known as the Van Est map. Elements in the image of the Van Est map are

called integrable algebroid cocycles (note that this property only depends

on the cohomology class of a cocycle).

Definition 6.2. — Given a Poisson manifold (P,Λ), we say that Λ is

integrable if the Poisson manifold P is integrable, and Λ comes from a

differentiable groupoid 2-cocycle c on Σs(P ). In this case we also say that

c integrates Λ.

In general, the algebroid associated to an integrable algebroid 2-cocycle

is integrable. More precisely, if c is a groupoid 2-cocycle on a Lie groupoid

G and Λ is the induced algebroid 2-cocycle, it follows that the Lie algebroid

of G⋉c R is precisely A⋉Λ R [5].

6.3. Proof of Theorem 4

Clearly (ii) implies (iii), and we now prove the converse. We use The-

orem 2 and the fact that Gx = R (the hypothesis). It follows that π :

Σc(P ) −→ Γs(P ) is a principal R-bundle, with connection form θ and

curvature Ω. Since R is contractible, π∗ induces an isomorphism from

H2(Γs(P )) to H2(Σc(P )). So [π∗Ω] = [dθ] implies that [Ω] = 0, i.e. Ω

is exact.

To prove that (i) is equivalent to (iii), we use the following characteriza-

tion of integrable algebroid cocycles from [5]. Assume that ν is an algebroid

2-cocycle on A, and thatG is an α-simply connected Hausdorff Lie groupoid

integrating A. Since each fiber Ax is identified with the tangent space of

α−1(x) at the identity element at x, using right translations, ν will induce

a 2-form on α−1(x), call it ων,x. Then, ν is in the image of the Van Est

map if and only if Per(ων,x) = 0 for all x ∈ P . In our case, note that

ωΛ,x = Ω|α−1(x), hence the equivalence of (i) and (iii) follows.
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Corollary 6.3. — For a compact s-simply connected contact groupoid

of an integrable Poisson manifold, the Reeb vector field always has at least

one closed orbit.

Proof. — If the Reeb vector field has no closed orbit, then according to

Theorem 2, GΛ is the trivial R bundle. From Theorem 4, one has Σc(P ) ∼=

Σs(P )× R, which contradicts with the compactness. �

Corollary 6.4. — If every symplectic leaf in an integrable Poisson

manifold P has exact symplectic form, then the symplectic form Ω of Σs(P )

is also exact.

Proof. — It is a direct conclusion from Theorem 4 and Lemma 4.3. �

7. Special cases and examples

Example 7.1 (Symplectic manifolds). — Let (S, ω) be a symplectic man-

ifold, and assume for simplicity that S is simply connected (in general, one

has to replace the pair groupoid below with the homotopy groupoid). Then

the symplectic groupoid of S (viewed as a Poisson manifold) is

Γs(S) = (S × S, (ω,−ω)),

the pair groupoid (source and target are the projections, and the multiplica-

tion is (x, y)(y, z) = (x, z)), endowed with the symplectic form pr∗1 ω−pr∗2 ω.

In this case PΛ is a trivial group bundle over S with fiber Per(ω), hence,

by Theorem 2, S is integrable as a Jacobi manifold if and only if Per(ω) is

a discrete group, i.e. Per(ω) = aZ for some real number a. The interesting

case is when a 6= 0. In this case ωa = 1
a
ω is integral, hence we find a prin-

cipal S1-bundle π : S̃ −→ S and a connection 1-form θa ∈ Ω1(S̃) so that

π∗ωa = dθa. The gauge groupoid of S̃ is S̃ ⊗S1 S̃, the quotient of the pair

groupoid S̃ × S̃ by the diagonal action of S1 (hence the base manifold is

S̃/S1 = S). Moreover, the 1-form (θa,−θa) is basic, hence induces a 1-form

θ̄a on S̃⊗S1 S̃, and this makes the gauge groupoid into a contact groupoid.

It is not difficult to see that

Σc(S) = (S̃ ⊗S1 S̃, aθ̄a, 1).

Example 7.2 (Contact manifolds). — Let (M, θ) be a contact manifold,

and assume for simplicity that M is simply connected (as in the previous

example, in the general case one has to replace the pair groupoid by the

homotopy groupoid). Then the contact groupoid of M (viewed as a Jacobi
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manifold) can be described as follows. Consider the product M ×M × R

of the pair groupoid with R. The 1-form

θ = −(exp ◦p3)p
∗
1θ0 + p∗2θ0,

where pi, 1 6 i 6 3, is the projection on the i-th component, will be a

contact form, and it will be multiplicative with respect to the Reeb cocycle

r = exp ◦p3. With these,

Σc(M) = (M ×M × R, θ, r).

Example 7.3 (Vector fields). — Given a vector field X on a manifold M ,

one can view (M,X) as a Jacobi manifold with vanishing bivector. Note

that the orbits of the associated Lie algebroid T ∗M⊕R are precisely the or-

bits of X hence, since they are 1-dimensional, it follows that M is integrable

as a Jacobi manifold. Hence the associated contact groupoid, denoted here

by Σc(M,X), is smooth. Let us describe Σc(M,X) in more detail. First,

let us mention two other simpler groupoids which are associated to X.

1. The flow of X, D(X), is probably the best known example of Lie

groupoid. One has D(X) ⊂ M × R as the domain of the local flow φt
X of

X, consisting of pairs (x, t) with the property that φt
X(x) is defined. The

elements (x, t) ∈ D(X) are viewed as arrows from φt
X(x) into x, and the

composition is given by the rule φt
Xφ

s
X = φt+s

X .

2. In general, for any finite dimensional vector space V and any vector

v ∈ V , one has an associated Lie algebra g(v), which is V ∗ endowed with

the bracket

[α, β] = −α(v)β + β(v)α.

The associated simply connected Lie group, denoted by G(v), can be de-

scribed as follows:

G(v) = {λ ∈ V ∗ : φλ := IdV + λv ∈ Aut+(V )}

(where Aut+(V ) is the group of orientation preserving automorphisms of

V ). The product λη is defined by

u 7→ λ(u) + η(u) + λ(v)η(u),

i.e. so that φλη = φλφη. Applying this to each Xx ∈ TxM , we obtain a

bundle of Lie groups over M , denoted by G(X).

Note that D(X) acts on G(X): for each (x, t) ∈ D(X) viewed as an

arrow from y = φt
X(x) into x, (dφt

X)x : TxM −→ TyM preserves X, hence

it induces a Lie group map from G(Xy) into G(Xx), denoted by φx,t. One

then forms the semi-direct product G(X) ⋊D(X), which consists of triples

(λ, x, t) with (x, t) ∈ D(X), λ ∈ G(Xx),
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such a triple is viewed as an arrow from φt
X(x) into x, and the composition

is given by

(λ, x, t)(λ′, x′, t′) = (λ+ φx,t(λ
′), x, t+ t′).

With these, the contact groupoid is

(7.1) Σc(M,X) = G(X) ⋊D(X).

In particular, this tells us that the period group of X at x,

Perx(X) = {t : φt
X(x) = x},

acts on the Lie group G(Xx), and the isotropy group of Σc(M,X) (i.e.

arrows that start and end at x) is

Σc(M,X)x = G(Xx) ⋊ Perx(X).

To see (7.1), one looks at what happens at the infinitesimal level. The Lie

algebroid of D(X), denoted by LX , is the trivial line bundle together with

the bracket [f, g]X := −X(f)g + X(g)f for f, g ∈ Γ(LX) = C∞(M), and

the anchor is given by multiplication by X. Moreover, the Lie algebras

g(Xx) fit into a bundle of Lie algebras, denoted by g(X); this is T ∗M ,

together with the Lie bracket on 1-forms [ω, θ]X := −iX(ω ∧ θ). There is

an obvious exact sequence of algebroids

0 −→ g(X) −→ T ∗M ⊕M R −→ LX −→ 0,

and, from the explicit formulas for the bracket on T ∗M⊕R, it is not difficult

to see that T ∗M ⊕M R is a semi-direct product of Lie algebroids, where

the action of LX on Γ(g(X)) = Ω1(M) is the Lie derivative with respect

to X. Passing to the global picture, we find (7.1).

Example 7.4 (Homogeneous Poisson manifolds). — Let (P, Λ̃) be a ho-

mogeneous Poisson manifold (see Subsection 2.1). Note that the homogene-

ity equation LZΛ̃ = −Λ̃ can be reformulated in terms of the cohomology

complex of the algebroid A = T ∗P (see Subsection 6.2) as Λ = −dT∗M (Z).

In particular, Theorem 4 tells us that PΛ = 0. We deduce the following:

Corollary 7.5. — Any integrable homogenous Poisson manifold is

also Jacobi integrable, and Σc(P ) ∼= Σs(P )× R.

Example 7.6 (Conformal versions). — Given a Jacobi manifold (M,Λ, E),

and a smooth nowhere vanishing function τ on M , one defines the confor-

mal transformation of (Λ, E) by τ as the new Jacobi structure given by

Λτ = τΛ, Eτ = τE + Λ♯(dτ).
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One says that two Jacobi structures are conformal equivalent if they are

related by such a transformation; such an equivalence class of Jacobi struc-

tures is called conformal Jacobi structure. Of course, when restricted to

contact manifolds, this becomes the usual notion of conformal equivalence

of contact forms (see e.g. [1]): θ and θ′ are equivalent if θ′ = τθ for some

non-vanishing function τ . Equivalently, this corresponds to the fact that

the contact distribution of θ, Hθ = Ker(θ), coincides with the one of θ′.

Similarly, given a contact groupoid Σ over M with contact form θ and

Reeb function r, and a smooth nowhere vanishing function τ on M ,

θτ = α∗(τ)θ, rτ = r + lg(
α∗τ

β∗τ
),

define a new contact form and Reeb function so that (Σ, θτ , rτ ) is a contact

groupoid. Exactly as before, Σ, together with an equivalence class of a pair

(θ, r), will be called a conformal contact groupoid.

We then have:

Corollary 7.7. — There is a 1-1 correspondence between conformal

contact groupoids over M which are α-simply connected, and integrable

conformal Jacobi structures on M .

This follows immediately from our results and the following two simple

remarks:

(i) The integrability of Jacobi structures is stable under conformal

equivalences, hence one can talk about the integrability of con-

formal Jacobi structure.

(ii) If f : (N,Λ
′

, E
′

) −→ (M,Λ, E) is a Jacobi map, and τ is a non-

vanishing function on M , then f is Jacobi also as a map from

(N,Λ
′

τ◦f , E
′

τ◦f ) to (M,Λτ , Eτ ).

Example 7.8 (Locally conformal versions). — Apparently, the contact

groupoid equation

m∗θ = pr∗2(e
−r) · pr∗1 θ + pr∗2 θ,

is not symmetric. The “mirror symmetry” of the previous equation is

m∗θ′ = pr∗1 θ
′ + pr∗1(e

−r′

) · pr∗2 θ
′,

and this is obtained by the transformation θ′ = erθ and r′ = −r. A more

symmetric version of the equation is obtained by choosing θ0 = e−
r
2 θ,

r0 = r
2 , for which we have

m∗θ0 = pr∗2(e
−r0) · pr∗1 θ0 + pr∗1(e

r0) pr∗2 θ0.
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Of course, all these describe essentially the same contact groupoid, and

this is the point of view adapted in [8, 9]. The relation between all these

descriptions comes from the fact that Ker(θ) = Ker(θ′) = Ker(θ0). This

is only one of the several motivations for considering “locally conformal

versions” of the structures we have been discussing.

To formulate our conclusions, we recall here that a locally conformal

Jacobi structure on M is described by

(LCJ1): An open cover {Ui} of M together with Jacobi structures

(Λi, Ri) on each open Ui, so that, on the overlaps Ui ∩ Uj , the

restrictions of the two Jacobi structures are conformal equivalent via

τi,j , and so that the τi,j ’s satisfy the cocycle condition τi,jτj,k = τi,k
on Ui ∩ Uj ∩ Uk.

Of course, different covers and local Jacobi structures can lead to the

same locally conformal Jacobi structure, i.e. one has to consider a certain

equivalence relation. This is completely similar to the description of vector

bundles in terms (of equivalence classes!) of transition functions, and, as

there, there is an alternative global description:

(LCJ2): A (isomorphism class of a) line bundle L over M together

with a Lie algebra structure [·, ·] on the space Γ(L) of sections, so

that [·, ·] is local. (The isomorphisms are realized by bundle maps

covering the identity and inducing Lie algebra isomorphisms.)

The global picture (LCJ2) is obtained by gluing the local data of (LCJ1):

One glues the trivial line bundles over Ui using the transition functions τi,j ,

and then the local Lie brackets defined on each Ui by the Jacobi structures

(see the introduction) will fit together into a local Lie bracket on Γ(L).

Restricting to Jacobi structures coming from contact ones, we obtain

what we will call here locally conformal contact structure, and which are

well known in the literature (often under various other names). Similar to

the discussion above (and well known), such a structure on M is described

by either

(LCC1): An open cover {Ui} of M together with contact forms θi on

each Ui and nowhere vanishing functions τi,j defined on the overlaps

Ui ∩ Uj , such that θj = τi,jθi.

(LCC2): A contact hyperplane H, i.e. a smooth field of tangent hy-

perplanes H ⊂ TM so that, locally, H is of type Ker(θ) for some

(locally defined) contact 1-form θ.

Note that a conformal Jacobi structure is the same thing as a locally

conformal Jacobi structure with orientable line bundle, and a conformal
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contact structure is the same thing as a locally conformal contact structure

whose contact hyperplane is induced by a globally defined contact form. In

particular, if M is simply connected, then “locally conformal= conformal”.

Now, with our terminology, a locally conformal contact groupoid will

be a groupoid Σ over M together with a contact hyperplane H with the

property that H is compatible with the groupoid structure in the sense

that

(i) The inversion i : Σ→ Σ leaves H invariant.

(ii) For all X,Y ∈ H for which X ·Y = (dm)(X,Y ) is defined, we have:

X · Y ∈ H.

These have been introduced in [8, 9] under the name of contact groupoids

(see also [21]). With this, our main theorem on contact groupoids and the

correspondence with Jacobi structures has a locally conformal version (and

this completes the study of [8, 9]). There are various ways to see this.

For instance, Dazord shows that, if (Σ,H) is a locally conformal contact

groupoid so that H = Ker(dθ) for some globally defined contact form θ,

then θ can be choosen so that (Σ, θ, r) is a contact groupoid (for some

uniquely defined multiplicative function r), and two choices θ1 and θ2 define

the same locally conformal contact groupoid if and only if the associated

contact groupoids are conformal equivalent (see Proposition 4.1 in [9] or

Appendix I in [21]). In particular, if M is simply connected and Σ is α-

simply connected, then locally conformal structures on Σ are the same thing

as conformal structures on Σ. One can then pull-back Σ to the universal

cover M̃ , use our main result there, and show that it descends down to

M (this requires some care; in particular, the trivial line bundle over M̃

will descend to a possibly non-trivial line bundle over M). Alternatively,

one can check that all our arguments, after suitable modifications, make

sense in the locally conformal setting as well. For instance, if M is locally

conformal with associated bundle LM , and if (Σ,H) is a locally conformal

groupoid, then:

(i) the Poissonization of (M,LM ) will be LM viewed as a manifold.

(ii) the Lie algebroid of (M,LM ) will be the jet bundle J1(LM ), with

the bracket of two 1-jets given by the jet of the local Lie bracket on

Γ(LM ).

(iii) the symplectification of (Σ,H) will be LΣ = TΣ/H, a symplectic

groupoid over LM .

All these have been already explained in [9]. A bit more care is needed

when working with A-paths. Nevertheless, one can use a connection on LM

to write the jet algebroid as LM ⊕R, so that the discussion from Section 3

ANNALES DE L’INSTITUT FOURIER



INTEGRABILITY OF JACOBI AND POISSON STRUCTURES 1213

(where the Lie bracket, the A-paths, and the corresponding equations are

all written componentwise) can be carried out in this setting. In particular,

we have:

Corollary 7.9. — There is a 1-1 correspondence between locally con-

formal contact groupoids over M which are α-simply connected, and inte-

grable locally conformal Jacobi structures on M .

Example 7.10 (De-poissonization). — Inverse to the “poissonization

process” (Section 2), one can obtain Jacobi-type structures out of homoge-

neous Poisson manifolds. The result is also a very good illustration of the

different Jacobi-type structures described in the previous two examples.

More precisely, given a homogeneous Poisson manifold (P, Λ̃) with homo-

geneous vector field Z, assuming that Z is nowhere zero and that the set P̄

of all trajectories of Z admits a manifold structure such that the projection

π : P −→ P̄ is a submersion, then

(i) P̄ has an induced locally conformal Jacobi structure.

(ii) if Z is the infinitesimal generator of a free action of R+ on P , then

P̄ has a canonically induced conformal Jacobi structure.

(iii) under the condition of (ii), if π has a distinguished section, then P̄

has a distinguished Jacobi structure.

Part (i) is explained in [10] (Corollary 2.5), while (ii) and (iii) are just

simpler versions that we explain here independently of (i). For (iii), using

the given section we identify P with P̄ ×R+ with the action on the second

component. Then, completely similar to Section 2, one gets an induced

Jacobi structure on P̄ . For (ii), since the fibers of π are contractible, we

can always find globally defined sections, and consider the induced Jacobi

structures induced from (iii); different choices of sections produce conformal

equivalent Jacobi structures, i.e. it is only the conformal Jacobi structure

that is independent of the choice of the section.

Of course, starting with a symplectic manifold, the quotient will be a (lo-

cally conformal) contact manifold. When looking at a homogeneous sym-

plectic groupoid Σ over P , one can show that the induced quotient Σ̄ in-

herits a groupoid structure, and it is a (locally conformal) contact groupoid

over P̄ . Of course, the quotient of Σs(P ) will coincide with Σc(P̄ ).

Example 7.11 (Sphere bundles). — A particular case of the previous

example comes from duals of Lie algebroids. Relevant here is that, given

a vector bundle A over M , there is a 1-1 correspondence between Pois-

son structures on A∗ and Lie algebroid structures on A (see e.g. [3]). In
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particular, given a Lie algebroid A, the Poisson manifold A∗ will be homo-

geneous with respect to the generator of the (fiberwise linear!) action of

R+: t · a = ta. It follows that the sphere bundle

S(A∗) = (A∗ − {0})/R+

has a conformal Jacobi structure. When A comes equipped with a metric,

S(A∗) takes the more familiar form consisting of vectors of norm 1, and

we will have an induced Jacobi structure on S(A∗) (in (iii) of the previous

example, one uses the obvious section induced by the metric). This applies

in particular to A = TM , when one obtains S(T ∗M) with its canonical

contact structure (or conformal contact if one does not fix a metric).

On the other hand, if A comes from a Lie groupoid G that we assume to

be α-simply connected, one knows that T ∗G is naturally a groupoid over

A∗ which, together with the canonical symplectic form on the cotangent

bundle, becomes a symplectic groupoid (cf. e.g. [9]). Of course, this is the

symplectic monodromy groupoid of A∗. Passing to sphere bundles, S(T ∗G)

together with the canonical (conformal) contact structure and the induced

groupoid structure, becomes the conformal contact groupoid associated to

S(A∗). Interesting particular cases are obtained when A is a Lie algebra,

or a tangent bundle.

Example 7.12 (2-dimensional Poisson case). — It is known that every 2-

dimensional Poisson manifold P is integrable [7]. The main reason is that

each symplectic leaf of P is either a point or 2 dimensional, and in the

former case the isotropy Lie algebra of T ∗P at x is zero. These force that

all monodromy maps ∂s (see Subsection 4.3) are zero, hence, by the main

result of [6], T ∗P must be integrable. Note that the previous discussion also

shows that PΛ,x coincides with the period group Per(ωL), where L is the

symplectic leaf through x and ωL is its symplectic form. Hence, Theorem 2

becomes

Corollary 7.13. — A 2-dimensional Poisson manifold is integrable as

a Jacobi manifold if and only if Per(ωL) are locally uniformly discrete.

Example 7.14 (Non-integrable examples). — Using the previous corol-

lary or Example 7.1, it is easy to produce Poisson manifolds which are

integrable as Poisson manifolds but which are not integrable as Jacobi

manifolds: it suffices to consider a symplectic form whose period group is

dense. We now show that there are also Poisson manifolds which are Ja-

cobi integrable, but which are not Poisson integrable. This exploits one

of the examples of [7] (see Example 3.8 there), which we now recall. Let

Ma = R
3, endowed with the Poisson structure described by the bracket of
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the coordinate functions xi as follows:

{x2, x3} = ax1, {x3, x1} = ax2, {x1, x2} = ax3,

where a = a(r) is a function depending only on the radius r, with the

property that a(r) > 0 for r > 0. The symplectic leaves of Ma are the

spheres Sr centered at the origin (including the degenerated sphere: the

origin itself), and the leafwise symplectic forms are

ωr =
r2

a
(x1dx2dx3 + x2dx3dx1 + x3dx1dx2).

Central to the conclusion is the symplectic area function,

Aa(r) =

∫

Sr

ωr =
4πr

a(r)
.

With these, [7] shows that Ma is Poisson integrable if and only if either

Aa(r) is constant, or Aa has no critical points and limr→0A
′
a(r) 6= 0. One

can do exactly the same type of computations as in [7], but this time for

the algebroid T ∗M ⊕ R. For those familiar with [7] (to which we refer

also for notations), here are the main modifications: the splitting to be

used is (σ, 0), the curvature becomes (Ω, ωr), the monodromy group is

(A
′

a(r)Zn,Aa(r)Z), and the function rN will be Aa
′ + Aa away from the

origin, and +∞ at the origin. The conclusion is that Ma is integrable as a

Jacobi manifold if and only if limr→0A
′
a(r) +Aa(r) 6= 0. It is now easy to

find various non-integrable examples:

(i) For a(r) = rer, Ma is Poisson integrable but it is not Jacobi inte-

grable.

(ii) For a(r) = 1/(sin r+2), Ma is Jacobi integrable but it is not Poisson

integrable.

(iii) For a such that a(r) = reφ(r)r where φ is a smooth function that

equals to 1 near the origin and equals to 0 for r large enough, Ma

is neither Poisson nor Jacobi integrable.
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