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We introduce a Frobenius algebra-valued Kadomtsev-Petviashvili (KP) hierarchy
and show the existence of Frobenius algebra-valued τ-function for this hierarchy. In
addition, we construct its Hamiltonian structures by using the Adler-Dickey-Gelfand
method. As a byproduct of these constructions, we show that the coupled KP hier-
archy, defined by Casati and Ortenzi [J. Geom. Phys. 56, 418-449 (2006)], has at
least n-“basic” different local bi-Hamiltonian structures. Finally, via the construction
of the second Hamiltonian structures, we obtain some local matrix, or Frobenius
algebra-valued, generalizations of classical W -algebras. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4935936]

I. INTRODUCTION

The Kadomtsev-Petviashvili (KP) hierarchy is defined by the set of equations

∂

∂tr
L = [Br ,L], r = 1,2, . . . , (1.1)

where L = ∂ + u1∂
−1 + u2∂

−2 + · · · is a pseudo-differential operator with coefficients u1,u2, . . . be-
ing smooth functions of infinitely many variables t = (t1, t2, . . .), with t1 = x and Br = Lr

+ is the pure
differential part of the operator Lr and ∂ = ∂

∂x
.

A fundamental result, due to Sato, is the existence of a τ-function for the KP hierarchy (see
the survey5). Another fundamental property of this hierarchy is that it has two compatible local
Hamiltonian structures. The first structure was suggested by Watanabe,22 the second by Dickey6

and, shortly after that, Radul18 proved that not only one pair of structures can be built but infinitely
many. Essentially, the construction was a slight modification of the Adler-Gelfand-Dickey (AGD)
method for the nth-Korteweg-deVries (KdV) (GDn) hierarchy in Refs. 1 and 12. We refer to Ref. 8
for a more detailed description.

Recently, there are several types of noncommutative generalizations of the KP hierarchy (see,
for example, Ref. 14 and the references therein). Most of them do not preserve the above two
fundamental properties. For example, the matrix KP3 has two compatible Hamiltonian structures via
the AGD method, on utilizing the matrix trace map, but the second is nonlocal. Furthermore, there is
no τ-function for this hierarchy.

In this paper, we study certain properties of a Frobenius algebra-valued KP hierarchy. The first
motivation stems from the work of Casati and Ortenzi.4 With the use of vertex operator represen-
tations of polynomial Lie algebras, they obtained a class of coupled KP hierarchy formulated as a
“coupled Hirota bilinear equation.” Shortly afterwards, van de Leur in Ref. 15, starting from these
bilinear equations, recovered the corresponding wave functions and Lax equations with aZn-valued
Lax operator L, where Zn = C[Λ]/(Λn) is the maximal commutative subalgebra of gl(n,R) and
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Λ = (δi, j+1) ∈ gl(m,R). A natural problem then arises as to how to construct Hamiltonian structures
for these coupled KP hierarchies. The main problem in using the AGD method is that the bilinear
form constructed using the usual matrix trace ⟨A,B⟩ = trace (AB) for A,B ∈ Zn is degenerate. In
order to solve this, one of the current authors24 introduced a somewhat strange looking trace-type
map trn : gl(n,R) −→ R defined by

trn(A) = trace



*..........
,

1
n

1
n − 1

· · · 1

0
1
n

. . .
1
2

...
...

. . .
...

0 0 · · · 1
n

+//////////
-

A



. (1.2)

We remark that this trace-type map is not symmetric on gl(n,R) but when restricted to the subalge-
braZn, is nondegenerate and symmetric.

Our second motivation is due to the following crucial observation. Let 1n be the identity matrix
and ◦ the matrix multiplication, then {Zn, trn,1n,◦} is a Frobenius algebra. This observation moti-
vates us to study the A-valued KP hierarchy via A-valued Lax operators, where A is a Frobenius
algebra.

This paper is organized as follows. In Section II, we will show the existence of the A-valued
τ-function for the A-KP hierarchy. In Section III, we will construct Hamiltonian structures of the
A-valued KP hierarchy. In Section IV, we will list some similar results for the A-valued disper-
sionless KP hierarchy. Section V is devoted to various conclusions and a discussion of some open
problems.

II. THE FROBENIUS ALGEBRA-VALUED KP HIERARCHY AND ITS τ-FUNCTION

In this section, we will introduce an A-valued KP hierarchy via A-valued Lax operators and
show the existence of anA-valued τ-function for theA-KP hierarchy.

A. Frobenius algebra

We begin with the definition of a Frobenius algebra.9

Definition 2.1. A Frobenius algebra {A,◦,e,ω} over R satisfies the following conditions:

(i) ◦ : A ×A → A is a commutative, associative algebra with unity e;
(ii) ω ∈ A⋆ defines a non-degenerate inner product ⟨a,b⟩ = ω(a ◦ b) , which is often called a

trace form (or Frobenius form).

Example 2.2 (Ref. 21). Let A be a two-dimensional commutative and associative algebra with
a basis e = e1,e2 satisfying

e1 ◦ e1 = e1, e1 ◦ e2 = e2, e2 ◦ e2 = εe1 + µe2, ε, µ ∈ R, (2.1)

thenZε,µ
2,k B {A,◦,e,ωk}, k = 1,2 are Frobenius algebras, where

ωk(a) = ak + a2(1 − δk,2)δε,0, k = 1, 2, (2.2)

for a = a1e1 + a2e2 ∈ A.

Example 2.3 (Ref. 21). Let A be an n-dimensional nonsemisimple commutative associative
algebraZn over R with a unity e and a basis e1 = e, . . . ,en satisfying

ei ◦ e j =



ei+ j−1, i + j ≤ n + 1,
0, i + j = n + 2.

(2.3)

Taking Λ = (δi, j+1) ∈ gl(m,R), one obtains a matrix representation of A as
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e j → Λ j−1, j = 1, . . . ,n.

Similarly, for any a =
n

k=1

akek ∈ A, we introduce n trace-type forms, called “basic” trace-type

forms, as follows:

ωk−1(a) = ak + an(1 − δk,n), k = 1, . . . ,n. (2.4)

Every trace map ωk induces a nondegenerate symmetric bilinear form onA given by

⟨a,b⟩k B ωk(a ◦ b), a, b ∈ A, k = 0, . . . ,n − 1. (2.5)

Thus, all of {A,◦,e,ωk−1} are nonsemisimple Frobenius algebras, denoted by Zn,k−1 for k =
1, . . . ,n. We remark that the trace-type map trn in (1.2) is exactly a linear combination of n “basic”
trace-type forms as

trn B
n−1
s=0

ωs − (n − 1)ωn−1.

Unless otherwise stated, we assume that {A,◦,e B 1n,ω B tr} is an n-dimensional Frobenius
algebra over R with the basis e1 = 1n,e2· · ·,en.

B. TheA-valued KP hierarchy

Let

L = 1n∂ +U1∂
−1 +U2∂

−2 + · · ·, ∂ =
∂

∂x
(2.6)

be an A-valued pseudo-differential operator (ΨDO) with coefficients U1,U2, . . . being smooth
A-valued functions of an infinite many variables t = (t1, t2, . . .) and t1 = x.

Definition 2.4. TheA-KP hierarchy is the set of equations

∂L
∂tr
= [Br ,L] B Br ◦ L − L ◦ Br , Br = Lr

+, r = 1,2, . . . , (2.7)

where Br is the pure differential part of the operator Lr = L ◦ · · · ◦ L              
r terms

.

Generally, by imposing the constraint (Lm)− = 0, A-KP hierarchy (2.7) reduces to the A-GDm

hierarchy. TheA-KP hierarchy is equivalent to

∂Bl

∂tr
− ∂Br

∂tl
+ [Bl,Br] = 0. (2.8)

Consider a case (r = 2, l = 3), then system (2.8) becomes

U1, t2 = U1,xx + 2U2,x, 2U1, t3 = 2U1,xxx + 3 U2,xx + 3 U2, t2 + 6 U1 ◦U1,x. (2.9)

If we eliminate U2 in (2.9) and rename t2 = y , t3 = t andU = U1, we obtain

(4Ut − 12U ◦Ux −Uxxx)x − 3Uy y = 0. (2.10)

All this follows, the scalar case verbatim. But as the following example shows, when written in
terms of a specific basis, this structure is broken and the underlying Frobenius algebra is hidden.

Example 2.5. Suppose that A is the Zε,µ
2,2 algebra and U = ve1 + we2. Then, system (2.10) in

component form is




(4vt − 12vvx − vxxx − 12ε wwx)x − 3vy y = 0,
(4wt − 12(vw)x − wxxx − 12µ wwx)x − 3wy y = 0.

(2.11)

When ε = µ = 0, system (2.11) reduces to the coupled KP equation (e.g., Refs. 4 and 24). Further-
more, if vy = wy = 0, the coupled KP equation reduces to the coupled KdV equation11,16,13
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


4vt − 12vvx − vxxx = 0,
4wt − 12(vw)x − wxxx = 0.

(2.12)

Thus, certain multicomponent examples that have appeared in the literature are best viewed as a
single A-valued equation: writing them in terms of basis-dependent component fields obscures the
underlying algebraic structure.

C. The τ-function

Let us represent theA-valued Lax operator L in (2.6) in a dressing form

L = Φ−1 ◦ 1n∂ ◦ Φ, Φ =
∞
i=0

Wi∂
−i, with W0 = 1n, (2.13)

where the A-valued dressing operator Φ is determined up to a multiplication on the right by

1n +

∞
k=1

Ck∂
−k, with arbitrary constant elements Ck ∈ A. Then, using (2.7), we obtain

∂rΦ = −Lr
− ◦ Φ, ∂r =

∂

∂tr
. (2.14)

For simplicity, let ξ(t, z) =
∞
k=1

tkzk and W (t, z) =
∞
i=0

Wizi, where z ∈ C is a parameter. The wave

function ofA-KP hierarchy (2.7) is defined by theA-valued function

W (t, z) B Φeξ(t,z) = W (t, z)eξ(t,z). (2.15)

Similarly, the adjoint wave function is given by

W (t, z) B (Φ−1)∗e−ξ(t,z) = ̃W (t, z)eξ(t,z). (2.16)

Lemma 2.6. The following identities hold:

(1) resz
�
∂
i1
1 · · · ∂

ik
k

W (t, z)� ◦ W (t, z) = 0, i j ∈ Z≥0, (2.17)

(2) W (t, z)−1 = G(z)[ ̃W (t, z)], (2.18)

(3) ∂ ln W (t, z) = W1(t) − G(z)[W1(t)], (2.19)

where G(z) is a shift operator defined by

G(z)[ f (t; z, s)] = f (t1 −
1
z
, t2 −

1
2z2 , . . . ; z, s). (2.20)

Identity (2.17) is called theA-valued bilinear identity.

Proof. (1) By definitions,

Lr ◦W (t, z) = (Φ ◦ ∂Φ−1)r ◦ Φeξ(t,z) = zrW (t, z). (2.21)

Using (2.14) and (2.18), we have

∂rW (t, z) = ∂r(Φeξ(t,z)) = (∂rΦ)eξ(t,z) + Φ(∂reξ(t,z)) = Lr
+W (t, z). (2.22)

With (2.19), it suffices to consider only the case when all i j for j > 1 vanish. Then,

resz
�
∂iW (t, z)� ◦ W (t, z) = resz

�
∂i
Φexz

�
◦

�(Φ−1)∗e−xz�
= res∂∂i

Φ ◦ Φ−1 = 0.

In the second step, we use a simple formula resz
�
Pexz

�
◦

�
Qe−xz

�
= res∂P ◦Q∗, where P and Q are

twoA-valued ΨDOs.
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(2) Bilinear identity (2.17) implies

reszW (t, z) ◦ G(ζ)[W (t, z)] = 0. (2.23)

Using (2.23) and the identity e
∞
k=1

zk

kζk = (1 − z
ζ
)−1, we obtain

0 = resz W (t, z) ◦ G(ζ)[ ̃W (t, z)](1 − z
ζ
)−1 = ζ

� W (t, ζ) ◦ G(ζ)[ ̃W (t, z)] − 1n
�

which yields identity (2.18).
(3) Similarly, from bilinear identity (2.17), we have

resz∂W (t, z) ◦ G(ζ)[W (t, z)] = 0.

So using (2.18), we get

0 = resz∂ W (t, z) ◦ G(ζ)[ ̃W (t, z)](1 − z
ζ
)−1

=
�
∂ W (t, ζ) + ζ W (t, ζ)� ◦ G(ζ)[ ̃W (t, ζ)] − 1nζ −W1(t) + G(ζ)[W1(t)]

= ∂ W (t, ζ) ◦ W (t, ζ)−1 −W1(t) + G(ζ)[W1(t)]
which implies identity (2.19). �

We are now in a position to state the main theorem in this section, which can be regarded as an
A-valued counterpart of Sato’s theorem5,7,8,19 for the scalar KP hierarchy.

Theorem 2.7. There is anA-valued function τ = τ(t) such that

W (t, z) = G(z)[τ(t)] ◦ τ(t)−1. (2.24)

The A-valued τ-function is determined up to a multiplication by C0 ◦ e
∞
k=1Ck tk, with arbitrary

constant elements Ck ∈ A, k ∈ N and arbitrary invertible constant element C0 ∈ A.

Proof. With bilinear identity (2.17), we get

reszW (t, z) ◦ G(ζ1)[G(ζ2)[W (t, z)]] = 0

and

resz W (t, z) ◦ G(ζ1)[G(ζ2)[ ̃W (t, z)]](1 − z
ζ1
)−1(1 − z

ζ2
)−1 = 0. (2.25)

It follows from (2.25) that

W (t, ζ1) ◦ G(ζ2)[G(ζ1)[ ̃W (t, ζ1)]] = W (t, ζ2) ◦ G(ζ1)[G(ζ2)[ ̃W (t, ζ2)]],
which becomes, using (2.18),

W (t, ζ1) ◦ G(ζ2)[W (t, ζ1)−1] = W (t, ζ2) ◦ G(ζ1)[W (t, ζ2)−1]. (2.26)

Letting µ(t, z) = ln W (t, z) and taking into account (2.26), we have

µ(t, ζ1) − G(ζ2)[µ(t, ζ1)] = µ(t, ζ2) − G(ζ1)[µ(t, ζ2)]. (2.27)

For simplicity, we denote

N(z) B ∂

∂z
−
∞
k=1

z−k−1∂k, Bi B reszziN(z)µ(t, z).

Applying the operator to (2.27) after renaming ζ1 = z and ζ2 = ζ , we get

N(z)µ(t, z) − G(ζ)[N(z)µ(t, z)] = −
∞
k=1

z−k−1∂kµ(t, ζ). (2.28)

Multiplying by zi on both sides of (2.28) and taking the residues resz, we obtain

Bi = G(ζ)[Bi] − ∂iµ(t, z) (2.29)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  130.209.115.106 On: Fri, 15 Jan 2016 12:01:04



113509-6 I. A. B. Strachan and D. Zuo J. Math. Phys. 56, 113509 (2015)

and furthermore,

∂jBi − ∂iBj = G(ζ)[∂jBi − ∂iBj] (2.30)

which yields ∂jBi − ∂iBj = const ∈ A. The left side of (2.30) is a differential polynomial in Wi(t)
without constant terms, we thus have ∂jBi = ∂iBj. So, there is an A-valued function τ = τ(t) such
that Bi = ∂i ln τ. By using (2.29), we get

∂iµ(t, z) = ∂i(G(ζ)[ln τ] − ln τ)
which yields (2.24). The rest of the theorem is obvious. �

Corollary 2.8. For any i ∈ N, the following identity holds:

res Li =
∂

∂ti
(τx ◦ τ−1). (2.31)

Proof. Equating the residue on both sides of (2.14), we have

res Li = −∂iW1(t). (2.32)

Observe that reszziN(z)µ(t, z) = Bi = ∂i ln τ and µ(t, z) = ln W (t, z), then we get
∂

∂ti
(τx ◦ τ−1) = ∂∂i ln τ = reszziN(z)∂ ln W (t, z) using (2.19)

= reszziN(z)�W1(t) − G(z)[W1(t)]� = reszziN(z)W1(t)

= reszzi
∞
k=1

z−k−1∂kW1(t) = −∂iW1(t).

Taking into account (2.32), we obtain desired formula (2.31). �

Example 2.9. Let A ∈ A be a constant element, then

τ = 1n + exp(2Ax + 2A3t)
is anA-valued τ-function of theA-valued KdV equation 4Ut − 12U ◦Ux −Uxxx = 0.

Taking A to be the Frobenius algebra Z2, the A-valued KdV equation is exactly coupled KdV
equations (2.12). By choosing A =

(
a 0
b a

)
∈ A, we then have

τ = *
,

1 + exp(2ax + 2a3t) 0
(2bx + 2b3t) exp(2ax + 2a3t) 1 + exp(2ax + 2a3t)

+
-
B *

,

τ0 0
τ1 τ0

+
-

and

*
,

v 0
w v

+
-
= U = ∂

∂x
(τxτ−1) = *..

,

(log τ0)xx 0(
τ1

τ0

)
xx

(log τ0)xx
+//
-
.

Thus, we obtain a solution of couple KdV equation (2.12) given by

v = (log τ0)xx, w =

(
τ1

τ0

)
xx

. (2.33)

We remark that variable transformation (2.33) has been used to derive the coupled KdV equation
from the Hirota equation in Ref. 4. The form of this (i.e., Equation (2.33)) may thus be traced back
to the nilpotent elements that appear in the Frobenius algebraA.

III. HAMILTONIAN STRUCTURES OF THEA-VALUED KP HIERARCHY

In this section, we will use the AGD-scheme (e.g., Refs. 1, 12, and 8) to construct Hamiltonian
structures of the A-KP hierarchy. For the clarity, let P =


i

Pi∂
i be an A-valued ΨDO, in what

follows, we denote P+ the pure differential part of the operator P and
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P− = P − P+, res(P) = P−1, P∗ =

i

(−1)i∂iPi.

Lemma 3.1. Suppose A and B are twoA-valued ΨDOs, then

tr


res A ◦ B dx = tr


res B ◦ A dx. (3.1)

Proof. We first show that

res [A,B] = ∂h(x, t)
∂x

, (3.2)

where h(x, t) is a certain A-valued function. By linearity, it is sufficient to prove (3.1) for any two
A-valued monomials A = Ai∂

i, B = Bj∂
j. If i, j ≥ 0 or i + j < 1, then res [A,B] = 0 and so, h = 0.

We thus only need consider the case i ≥ 0, j < 0 and i + j ≥ 1. A direct computation gives

res [A,B] = Ci+ j+1
i

(
Ai ◦ B(i+ j+1)

j + (−1)i+ jBj ◦ A(i+ j+1)
i

)
=

∂

∂x
*
,
Ci+ j+1
i

i+ j
s=0

(−1)sA(s)
i ◦ Bi+ j−s

j
+
-
B

∂

∂x
h.

Obviously, h is A-valued. Furthermore, taking the trace form tr on both sides of (3.2), we obtain
tr res [A,B] = tr ∂h

∂x
. With this, identity (3.1) follows immediately. �

A. Case U0 , 0, i.e., Vm−1 , 0

Let L = 1n∂ +U0 +U1∂
−1 +U2∂

−2 + · · · be an A-valued ΨDO with an additional term U0.
Denoting

L B Lm = 1n∂
m + Vm−1∂

m−1 + Vm−2∂
m−2 + · · ·, Vi =

n
q=1

v[i]qeq. (3.3)

In the following, our Hamiltonian structures will be established in terms of the “dynamical coordi-
nates” {v[i]q}.

We denote by D the differential algebra of polynomials in formal symbols

v
( j)
[i]q


, where

v
( j)
[i]q =

∂ jv[i]q
∂x j for q = 1, . . . ,n and j = 0,1, . . .. We consider a subalgebra D of D with the element

of the form tr F(V ), where F(V ) is an A-valued differential polynomial with respect to its argu-
ments Vi. We denote the space of functionals by

D =


f̃ =


tr F(V )dx
�����

tr F(V ) ∈ D

.

The variational derivative with respect to an algebra-valued field has been discussed in Ref. 17.

In the present context, for V =
n

q=1

vqeq, the variational derivative δF
δV

is defined by

f̃ (v + δv) − f̃ (v) =


tr
(
δF
δV
◦ δV + o(δV )

)
dx =

 n
q=1

(
δ f
δvq

δvq + o(δv)
)

dx, (3.4)

where f (v) = tr F(V ), δV =
n

q=1

δvqeq ∈ A, and δ f
δvq
=

∞
j=0

(−∂) j ∂ f

∂v
( j)
q

. Without confusion, we use

the notation δ f
δV

instead of δF
δV

.
Suppose a = (am−1,am−2, . . .) with elements

ai =

n
q=1

a[i]qeq ∈ A, i = m − 1,m − 2, . . . .
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We define a vector field associated to a by the formula

∂a =

m−1
i=−∞

∞
j=0

n
q=1

a( j)
[i]q

∂

∂v
( j)
[i]q

. (3.5)

Obviously, ∂a and ∂ commute, i.e.,

∂∂a f = ∂a∂ f , for f ∈ D . (3.6)

The set of all vector fields ∂a will be denoted by V , which is a Lie algebra with respect to the
commutator [∂a, ∂b] = ∂∂ab−∂ba. Let Ω1 be the dual space of V consisting of formal A-valued
integral operators

X =
m−1
i=−∞

∂−i−1Xi, Xi ∈ A

with the pairing

⟨∂a,X⟩ = ⟨a,X⟩ = tr


res (a ◦ X)dx. (3.7)

With the use of formulae (3.4) and (3.6), the action ofV onD can be transferred to D,

∂a f̃ = ∂a


f dx =


∂a f dx =

m−1
i=−∞

n
q=1


δ f
δv[i]q

a[i]qdx = tr
 m−1

i=−∞
ai ◦

δ f
δVi

dx.

If we set

δ f
δL
=

m−1
i=−∞

∂−i−1 δ f
δVi

(3.8)

and identify the vector a = (an−1,an−2, . . .) with theA-valued ΨDO a =
m−1
i=−∞

ai∂
i,we then have

∂a f̃ = tr


res (a ◦ δ f
δL

) dx, (3.9)

which follows

⟨∂a,
δ f
δL

⟩ = ∂a f̃ = ⟨∂a,d f̃ ⟩, d f̃ =
δ f
δL
∈ Ω1. (3.10)

Lemma 3.2. The mapping H : Ω1 → V defined by H (X) = ∂A(z)(X ) is a Hamiltonian mapp-
ing,28 where

A(z)(X) = ( L ◦ X)+ ◦ L − L ◦ (X ◦ L)+ (3.11)

and L = L − z and z is an arbitrary parameter.

Proof. When the Frobenius algebra A is taken to be R, this mapping is the famous Adler
mapping which is a Hamiltonian mapping. For a general commutative Frobenius algebra, its trace
form is nondegenerate and symmetric. We thus follow the same ideas as used in Ref. 6 to obtain the
proof by replacing the scalar operators byA-valued operators. �

We rewrite A(z)(X) in (3.11) as

A(z)(X) = Hm(0)(X) + z Hm(∞)(X),
that is to say,

Hm(0)(X) = (L ◦ X)+ ◦ L − L ◦ (X ◦ L)+, Hm(∞)(X) = [L−,X+]− − [L+,X−]+. (3.12)

By using Lemma 3.2, Hm(0) and Hm(∞) are Hamiltonian mappings. We thus get two compatible
Poisson brackets of theA-KP hierarchy associated with L B Lm are given by
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�
f̃ , g̃

	m(∞)
= tr


res Hm(∞)

(
δ f
δL

)
◦ δg

δL
dx (3.13)

= tr


res
( 
L−,

(
δ f
δL

)
+



−
−


L+,

(
δ f
δL

)
−



+

)
◦ δg

δL
dx

and
�

f̃ , g̃
	m(0)

= tr


res Hm(0)
(
δ f
δL

)
◦ δg

δL
dx (3.14)

= tr


res
((
L ◦ δ f

δL

)
+

◦ L − L ◦
(
δ f
δL
◦ L

)
+

)
◦ δg

δL
dx,

where f̃ , g̃ are two functionals. Furthermore, we have the following.

Theorem 3.3. The A-KP hierarchy ∂L
∂tr
= [Br ,L] admits a bi-Hamiltonian representation

given by

∂L
∂tr
= Hm(0)

(
δhr

δL

)
= Hm(∞)

(
δgr
δL

)
, (3.15)

with the Hamiltonians

h̃r =
m
r

tr


res Lr dx and g̃r = −
m

r + m
tr


res Lm+r dx.

Proof. Observe that theA-KP hierarchy ∂L
∂tr
= [Br ,L] is equivalent to ∂L

∂tr
= [Br ,L]. By defini-

tion in (3.4), one obtains
δ

δL
tr


res Lrdx =
r
m

Lr−m.

With the help of (3.12), one thus gets

Hm(0)( δhr

δL
) = Hm(0)(Lr−m) = [Br ,L]

and

Hm(∞)( δgr
δL

) = −Hm(∞)(Lr) = [L+,Lr
−]+ − [L−,Lr

+]−
= [L,Lr

−]+ − [L,Lr
+]− = [Br ,L],

which yields this theorem. �

B. Case U0 = 0, i.e., Vm−1 = 0

If we restrict to Vm−1 = 0, it is easy to check that the first Hamiltonian structure automatically
reduces to this submanifold, but the second one is reducible if and only if

res [L, δ f
δL

] = 0 (3.16)

which is equivalent to the condition

Xm−1 =
1
m

m−2
i=−∞

*.
,

*
,

−i − 1
m − i

+
-

X (m−i−1)
i +

m−1
j=i+1

*
,

−i − 1
j − i

+
-
(Xi ◦ Vj)( j−i−1)+/

-
, (3.17)

where Xi =
δ f
δVi
∈ A. We denote the corresponding reduced brackets by { , }m(∞) and { , }m(0)

D .

Corollary 3.4. The coupled KP hierarchy defined in Ref. 4 has at least n “basic” different local
bi-Hamiltonian structures.

Proof. As explained in the Introduction, the coupled KP hierarchy defined in Refs. 4 and 15
is exactly the Zn-KP hierarchy. According to Example 2.3, the algebra Zn has at least n-“basic”
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different ways to be realized as the Frobenius algebra. With this, the corollary follows immediately
from Theorem 3.3. �

Definition 3.5. In terms of the basis {v[i]q}, the second Poisson bracket { , }m(0) for Lm in
(3.3) and the reduced bracket { , }m(0)

D for Lm with the constraint Vm−1 = 0 will provide two kinds
of local W-type algebras, we call them the W(n,m)

AKP -algebra and the W(n,m)
∞ -algebra, respectively.

Under the reduction Lm
− = 0, the corresponding algebras are called the W(n,m)

AGD-algebra and the
W(n,m)-algebra, respectively.

With the use of (3.3) and (3.17), one knows that all of them are local matrix generalizations of
W -algebras. To conclude this section, two examples will be given to illustrate our construction.

Example 3.6. Consider the A-KdV hierarchy with the Lax operator L2 = 1n∂
2 + V, i.e., L2

− =
0. We denote X = ∂−2X1 + ∂−1X0 and Y = ∂−2Y1 + ∂−1Y0. Condition (3.16) becomes X1 =

1
2 X ′0, then

we have

H2(∞) = [X,L2]+ = −2X ′0
and

H2(0)(X) = (L2 ◦ X)+ ◦ L2 − L2 ◦ (X ◦ L2)+ = 2V ◦ X ′0 + X0 ◦ V ′ +
1
2

X ′′′0 .

Thus, two compatible Poisson brackets of theA-KdV hierarchy25 are given by
�

f̃ , g̃
	2(∞)

= 2 tr


δ f
δV
◦ ∂

∂x
δg

δV
dx

and
�

f̃ , g̃
	2(0)
D
= −1

2
tr


δ f
δV
◦

(
1n

∂3

∂x3 + 2V
∂

∂x
+ 2

∂

∂x
V
)
◦ δg

δV
dx.

In particular, if one chooses the algebra A to be the algebra Z2 defined in Example 2.3, one
obtains theZ2-KdV equation for V = ve1 + we2 given by

4vt − 12vvx − vxxx = 0, 4wt − 12(vw)x − wxxx = 0. (3.18)

According to Corollary 3.4, system (3.18) can be written as

*
,

v

w
+
-t
= *

,

0 ∂

∂ 0
+
-

*...
,

δH2

δv
δH2

δw

+///
-

= *
,

0 J0

J0 J1

+
-

*...
,

δH1

δv
δH1

δw

+///
-

with Hamiltonians

H1 =


S1
vwdx, H2 =


S1
(3
2
v2w +

1
4
vwxx)dx

and

*
,

v

w
+
-t
= *

,

0 ∂

∂ −∂
+
-

*....
,

δ H2

δv
δ H2

δw

+////
-

= *
,

0 J0

J0 J1 − J0

+
-

*....
,

δ H1

δv
δ H1

δw

+////
-

with Hamiltonians

H1 =


S1
(1
2
v2 + vw)dx, H2 =


S1
(3
2
v2w +

1
4
vwxx +

1
2
v3 +

1
8
vvxx)dx,

where J0 =
1
4∂

3 + v∂ + ∂v and J1 = w∂ + ∂w.

Example 3.7 (TheA-Boussinesq hierarchy). In this case, we have L = Im∂3 + V1∂ + V0. Let us
take f̃ , g̃ ∈ D and denote

X j =
δ f
δVj

, Yj =
δg

δVj
, j = 0, 1.
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Using condition (3.17), we have
δ f
δL
= ∂−3X2 + ∂−2X1 + ∂−1X0,

δg

δL
= ∂−3Y2 + ∂−2Y1 + ∂−1Y0,

where X2 = X ′1 −
1
3 X ′′0 −

1
3 X0V1 and Y2 = Y ′1 −

1
3Y ′′0 −

1
3Y0V1.

A direct calculation gives two Poisson brackets of theA-Boussinesq hierarchy
�

f̃ , g̃
	3(∞)

= 3 tr


(X1Y ′0 + X0Y ′1 )dx

and
�

f̃ , g̃
	3(0)
D
= tr

 (
2
3

X0Y
(5)

0 − X0Y
(4)

1 + X1Y
(4)

0 − 2X1Y
(3)

1

)
dx

+ tr
 (

1
3

X0Y ′0 −
1
3

X ′0Y0

)
V 2

1 dx

+ tr
 (

2
3

X0Y
(3)

0 −
2
3

X (3)
0 Y0 + X ′′1 Y0 − X0Y ′′1 + X ′1Y1 − X1Y ′1

)
V1 dx

+ tr
 �

X0Y ′′0 − X ′′0 Y0 + 2X ′1Y0 − X1Y ′0 + X ′0Y1 − 2X0Y ′1
�
V0 dx.

More specifically, by analogy to the classical W-algebra in Refs. 2 and 10, we set

W2 = V1, W3 = V0 −
1
2

V ′1 ,

then for any twoA-valued test functions F and G, we have
tr


FW2dx , tr


GW2dx
3(0)

D

= tr
 (

2F(3) + 2W2F ′ +W ′
2F

)
G dx,

tr


FW2dx , tr


GW3dx
3(0)

D

= tr
 �

3W3F ′ +W ′
3F

�
G dx,

and 
tr


FW3dx , tr


GW3dx
3(0)

D

=
1
6

tr
 �(2 FG′ − 2 F ′G)W 2

2

+ FG(5)) dx +
1

12
tr
 (

2 FG(3) − 2 F(3)G + 3F ′′G′ − 3F ′G′′
)

W2dx.

We thus confirm that Wk for k = 2,3 are spin-k conformally primary A-valued fields. But notice
that the equation tr FW 2

2 = (tr FW2)2 has noA-valued non-zero solution, which means the classical
W3-algebra is not a subalgebra of the W(n,3)-algebra for dimA = n > 1.

IV. THE DISPERSIONLESSA-KP HIERARCHY

Because of the similarities in the theories of dispersionless and dispersive KP equations (see
Refs. 20 and 23), we list here the analogous results for theA-dKP hierarchy without proofs. We will
use the following notation in this part. For anA-valued Laurent series of the form A =


i

Aipi, we

denote by A+ the polynomial part of the Laurent series A and A− = A − A+, res (A) = a−1. Let

L = 1np +U1p−1 +U2p−2 + · · · (4.1)

be anA-valued Laurent series.

Definition 4.1. TheA-dKP hierarchy is the set of equations of motion

∂L
∂tr
= {Lr

+,L}, (4.2)

where { , } is defined by {A,B} = ∂A
∂p
◦ ∂B

∂x
− ∂A

∂x
◦ ∂B

∂p
.
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Let us assume that Lm, m ∈ N, is of the form

L B Lm = 1npm + Vm−1pm−1 + · · ·. (4.3)

Taking a dispersionless limit of Hamiltonian structures for the A-KP hierarchy, we get the first and
the second Poisson brackets of theA-dKP hierarchy associated with L in (4.3) as follows:

�
f̃ , g̃

	m(∞)
= tr


res

(
L−, ( δ f

δL
)+


−
−


L+, ( δ f

δL
)−


+

)
◦ δg

δL
dx (4.4)

and

�
f̃ , g̃

	m(0)
= tr


res

(
(L ◦ δ f

δL
)+ ◦ L − L ◦ ( δ f

δL
◦ L)+

)
◦ δg

δL
dx, (4.5)

where f̃ , g̃ ∈ D̃ are two functionals. The variational derivative δ f
δL is given by

δ f
δL
=

m−1
i=−∞

δ f
δVi

p−i−1, (4.6)

where δ f
δVi

is defined in (3.4). When we restrict these to the submanifold Vm−1 = 0, the first Hamilto-
nian structure automatically reduces to this submanifold, but the second one is reducible if and only
if

res

L, δ f

δL


= 0. (4.7)

Similarly, in terms of the basis {v[i]q}, the second Poisson bracket { , }m(0) for Lm in (4.3) and the
reduced bracket { , }m(0)

D for Lm with the constraint Vm−1 = 0 will provide two kinds of local w-type
algebras.

V. CONCLUSIONS

In summary, we have introduced the Frobenius algebra-valued KP hierarchy and studied the
existence of τ-functions and Hamiltonian structures. Regarding scalar fields as components of a
more basic A-valued field is a more elegant approach: it is not basis dependent and it automati-
cally stresses the algebraic properties more clearly. Other properties can then be traced back, for
example, to the freedom in the definition of the Frobenius form. Via the properties of the second
Hamiltonian structures, we have obtained some local matrix generalizations of W -algebras. An
interesting byproduct is that the coupled KP hierarchy in Ref. 4 has at least n-“basic” different local
bi-Hamiltonian structures. The methods in the paper may clearly be applied to other theories of a
similar type which have an underlying Lax equation, for example, Toda-hierarchies and reductions
of these theories.26,27

In a separate paper, A-valued Frobenius manifolds, topological quantum field theories, and
bi-Hamiltonian structures are constructed.21 These constructions are different in character to those
in this paper: they are developed without any use of Lax equations, relying on a “lifting” construc-
tion from scalar to algebra-valued fields. There will, clearly, be an overlap, with the theory of
A-valued KdV and dKdV equations being the most obvious example.
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