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1. Introduction

Integrable and non-integrable spin systems [1] play a very useful role in nonlinear
physics and mathematics. They give rise to important applications in applied magnetism [2]
and nanophysics [3]. The Landau–Lifshitz–Gilbert (LLG) equation [4] in ferromagnetism and
Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation [3] in spin transfer nanomagnetic multilayers
are some of the fundamental equations that play a crucial role in understanding various physical
properties of magnetic materials and the development of new technological innovations, like microwave
generation using the spin transfer effect [5]. The continuum limit of the Heisenberg ferromagnetic spin
system and its various generalizations give rise to some of the important integrable spin systems in
(1 + 1) dimensions [6,7]. They are also intimately related to the nonlinear Schrödinger family of
equations through geometrical (or Lakshmanan equivalence or L-equivalence) and gauge equivalence
concepts and these systems often admit magnetic soliton solutions [1].

Though a straightforward generalization of the (1 + 1)-dimensional Heisenberg spin system to
(2 + 1) dimensions is not integrable [8], inclusion of additional terms corresponding to the interaction of
a scalar potential field makes the spin system integrable. The well-known Ishimori equation [9] and the
Myrzakulov I equation [10] are two of the most interesting integrable spin equations. Their geometrical
and gauge-equivalent counterparts are the Davey–Stewartson and Zakharov–Strachan equations [11],
respectively. They admit (2 + 1)-dimensional localized structures [11,12]. Interestingly, such an
interaction of the spin vector with the scalar potential can be further generalized. One can include
more than one scalar potential and make them interact with the spin vector to generate new integrable
spin equations. Furthermore, one can even introduce the interaction of a vector (unit) potential with the
spin vector. The result is that one can obtain more general integrable (2 + 1)-dimensional spin evolution
equations along with their associated Lax pairs. In this paper, we introduce three such integrable spin
models in (2 + 1) dimensions, namely Myrzakulov–Lakshmanan (ML) II, III and IV equations. We also
point out that equivalent (2 + 1)-dimensional integrable nonlinear Schrödinger–Maxwell–Bloch-type
evolution equations and their Lax pairs can also be identified. From these equations, several interesting
limiting cases of nonlinear evolution equations in (2 + 1) and (1 + 1) dimensions, along with their
Lax pairs, can also be deduced. In this paper, we do not attempt to explicitly solve the initial value
problem associated with the Lax pair and obtain explicit localized solutions, which will be reported in
subsequent works.

The plan of the paper is as follows. In Section 2, we give the basic facts from the theory of the
generalization of the Heisenberg ferromagnetic spin equation in (2 + 1) dimensions. In Section 3, we
investigate the ML-II equation. Next, we study the ML-III equation in Section 4. In Section 5, we
consider the ML-IV equation. Finally, we give our conclusions in Section 6.

2. A Brief Review on Integrable Spin Systems in 2 + 1 Dimensions

There exists a few integrable spin systems in (2 + 1) dimensions in the literature [9–13]. In this
section, we present some basic features of them.
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2.1. The Ishimori Equation

The well-known Ishimori equation has the form [9]

St − S ∧ (Sxx + Syy)− uxSy − uySx = 0, (1)

uxx − α2uyy + 2α2S× (Sx ∧ Sy) = 0, (2)

where ∧ denotes the vector product (or the cross product); α = const; S is the spin vector with unit
length, that is:

S = (S1, S2, S3), S2 = 1, (3)

and u is a scalar real function (potential). The Ishimori equation admits the following Lax
representation [5],

Φx + αSΦy = 0, (4)

Φt − A2Φxx − A1Φx = 0, (5)

where

A2 = −2iS, (6)

A1 = −iSx − iαSyS + uyI − α3uxS. (7)

here

S = Siσi =

(
S3 S−

S+ −S3

)
, (8)

where S2 = I, S± = S1± iS2, [A,B] = AB −BA, I = diag(1, 1) is the identity matrix and the
σi are the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (9)

The Ishimori equation is one of the integrable (2 + 1)-dimensional extensions of the following celebrated
integrable (1 + 1)-dimensional continuum Heisenberg ferromagnetic spin equation (HFE) [6,7],

St − S ∧ Sxx = 0. (10)

Note that the gauge/geometric equivalent counterpart of the Ishimori equation is the
Davey–Stewartson equation [11], which reads as:

iϕt + α2ϕxx +ϕyy − vϕ+ 2|ϕ|2ϕ = 0, (11)

vxx − α2vyy + 4(|ϕ|2)yy = 0. (12)

It is one of the (2 + 1)-dimensional integrable extensions of the nonlinear Schrödinger equation (NSE)

iϕt +ϕxx + 2|ϕ|2ϕ = 0. (13)
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Different properties of the Ishimori and Davey–Stewartson equations are well studied in the
literature [9,11,12]. Furthermore, we can recall that between the HFE (10) and NSE (13), the
Lakshmanan and gauge equivalence takes place [1,6,7].

Both Ishimori and DSequations admit Lax pairs and, so, are linearizable. They admit a zero-curvature
representation and, so, are integrable in the Lax sense. The Riemann–Hilbert problems associated
with the linear eigenvalue problems have been analyzed [14,15] to solve the initial value problems for
appropriate boundary conditions. The resulting solutions in the form of solitons, exponentially-localized
dromions, etc., have been given [16], and Hirota bilinearization has been effected. Furthermore, the
associated infinite number of involutive integrals of motion has been obtained. In this sense, both
Ishimori and the D-Sequation are considered to be integrable (2 + 1)-dimensional nonlinear evolution
equations [11,16].

2.2. The Myrzakulov-I Equation

As the second example of the integrable spin systems in (2 + 1) dimensions, we here present some
details of the Myrzakulov-I equation (M-I) [13]. It reads as

St − S ∧ Sxy − uSx = 0, (14)

ux + S× (Sx ∧ Sy) = 0. (15)

Often, we write this equation in the following form

St − (S ∧ Sy + uS)x = 0, (16)

ux + S× (Sx ∧ Sy) = 0. (17)

The M-I equation has the following Lax representation

Φx −
i

2
λSΦ = 0, (18)

Φt − λΦy − λZΦ = 0, (19)

where
Z =

1

4
([S, Sy] + 2iuS). (20)

Note that for this equation, the eigenvalue satisfies the equation

λt = 2λλy. (21)

Some properties of the M-I equation were studied, for example, in [10,12,17,18]. Like the Ishimori
equation, the M-I equation is one of the (2 + 1)-dimensional extensions of the (1 + 1)-dimensional
HFE (10). The gauge/geometric equivalent counterpart of the M-I equation has the form [13]

iϕt +ϕxy − vϕ = 0, (22)

vx + 2(|ϕ|2)y = 0, (23)

which is nothing but one of the (2 + 1)-dimensional extensions of the NSE (13) [12]. This equation is
known as the Zakharov–Strachan equation (see [19–21]).
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Additionally, here, we can note that Lax representations involving linear problems where the
eigenvalue evolves as a function of time (and even as a function of x) are already well known [22–28]
in the case of the (1 +1)-dimensional Heisenberg ferromagnetic spin evolution equation with linearly
x-dependent terms, the gauge-equivalent nonlinear Schrödinger equation with linearly x-dependent
terms and their inverse scattering analysis, and an infinite number of conserved quantities has been
established. However, we note here that in the case of the present (2 + 1)-dimensional problem, for
Equation (21), λ(t) = λ0 = const is also a solution, so that the associated Riemann–Hilbert problem
is similar to the already studied integrable cases. However, the existence of a more general evolution
Equation (21) for the eigenvalue implies that an even richer structure of solutions exists, which remains
to be fully explored.

2.3. The Myrzakulov–Lakshmanan I Equation

Another example of the integrable spin systems in (2 + 1) dimensions is the so-called
Myrzakulov–Lakshmanan I (ML-I) equation [29], which reads as

St − S ∧ (αSxx + βSxy)− uSx = 0, (24)

ux + S× (Sx ∧ Sy) = 0. (25)

It has the following Lax representation

Φx −
i

2
λSΦ = 0, (26)

Φt − λβΦy −BΦ = 0, (27)

where
B = α(

1

2
iλ2S +

1

4
[S, Sx]) + βλZ. (28)

The Myrzakulov–Lakshmanan I equation is another integrable (2 + 1)-dimensional extension of the
(1 + 1)-dimensional Heisenberg ferromagnet equation (10). The ML-I equation admits the well-known
two integrable reductions: the HFE (10) as α = 1, β = 0 and the M-I Equations (14) and (15) as
α = 0, β = 1. As for its reductions, HFE and M-I equations, for the ML-I equation, we
can also mention the existence of Hirota bilinearization, soliton and dromion solutions and other
ingredients of integrable systems (see [10,12,13]). Finally, note that the equivalent counterpart of the
Myrzakulov–Lakshmanan I equation is the evolution equation

iϕt + αϕxx + βϕxy + vϕ = 0, (29)

vx − 2[α(|ϕ|2)x + β(|ϕ|2)y] = 0, (30)

which is also one of the integrable (in the Lax representation sense) (2 + 1)-dimensional extensions of
the nonlinear Schrödinger equation (13). This equation admits two integrable reductions: the famous
NSE (13) as α = 1, β = 0 and the Zakharov–Strachan Equations (23) and (24) as α = 0, β = 1.
The Lax representation of the Equations (29) and (30) is given by

Ψx = U2Ψ, (31)

Ψt = λβΨy + V2Ψ, (32)
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where

U2 =
iλ

2
σ3 +G, G =

(
0 ϕ∗

ϕ 0

)
, V2 =

iλ2

2
ασ3 + αλG+ V0. (33)

here

V0 =

(
αi|ϕ|2 + iβ∂−1

x |ϕ|2y −iβϕ∗
y − iαϕ∗

x

iβϕy + αiϕx −[αi|ϕ|2 + iβ∂−1
x |ϕ|2y]

)
. (34)

Note that in this case, the spectral parameter λ obeys the equations:

λt = βλλy, λx = 0 (35)

that is is the function of y and t.

2.4. The (2 + 1)-Dimensional Heisenberg Ferromagnet Equation

The physically-important (2 + 1)-dimensional Heisenberg ferromagnet equation can be written as

St = S ∧ (Sxx + Syy). (36)

It is a very important system from a physical application point of view. However, unfortunately, this
equation is not integrable [8].

3. The Myrzakulov–Lakshmanan II Equation

In this and the next two sections, we will present a new class of integrable spin systems in (2 + 1)
dimensions by introducing a vector potential interacting with the spin field self-consistently in addition
to the scalar potential considered in Section 2. We will give their Lax representations, equivalent
counterparts and some reductions. We start from the so-called Myrzakulov–Lakshmanan II equation
(ML-II), which has the form

St − S ∧ Sxy − uSx −
1

ω
S ∧W = 0, (37)

ux + S× (Sx ∧ Sy) = 0, (38)

Wx −ωS ∧W = 0 (39)

or equivalently

iSt +
1

2
[S, Sxy] + iuSx +

1

ω
[S,W ] = 0, (40)

ux −
i

4
tr(S[Sx, Sy]) = 0, (41)

iWx +ω[S,W ] = 0. (42)

here, S = Siσi, W = Wiσi, i = 1, 2, 3 and ω is a constant parameter. The vector W = (W1,W2,W3)

may be considered as a vector potential. The ML-II equation is linearizable, possesses a Lax pair and, so,
is expected to be integrable like the previous equations. In the next subsections, we give some important
information on this equation.
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3.1. Reductions

Some comments on the reduction of the ML-II equation are in order. First, we note that if we put
W = 0, then the ML-II Equations (37)–(39) reduce to the M-I Equations (14) and (15). If we consider
the case y = x, then the ML-II Equations (37)–(39) transform to the following M-XCIX equation [30],

iSt +
1

2
[S, Sxx] +

1

ω
[S,W ] = 0, (43)

iWx +ω[S,W ] = 0. (44)

Therefore, the ML-II equation is one of the potential (2 + 1)-dimensional integrable extensions of the
M-XCIX equation.

3.2. Lax Representation

The ML-II Equations (37)–(39) are integrable in the sense that they can be associated with a linear
eigenvalue problem and that they admit a Lax representation. The corresponding Lax representation can
be written in the form

Φx = UΦ, (45)

Φt = 2λΦy + V Φ. (46)

here, the matrix operators U and V have the forms

U = −iλS, (47)

V = λV1 +
i

λ+ω
W − i

ω
W, (48)

where

V1 = 2Z =
1

2
([S, Sy] + 2iuS), (49)

W =

(
W3 W−

W+ −W3

)
. (50)

We also note that here, also, the spectral parameter obeys the equation λt = 2λλy, that is, we
can associate a nonisospectral problem. As noted above, any constant solution of this equation
λ = λ0 = constant should act as an eigenvalue parameter for the corresponding Lax representation.
However, its non-constant solutions can also serve as the spectral parameter and can be bring out the rich
nature of solutions. For example, this equation for the spectral parameter has the following particular
solution: λ = (β1 + β2y)(β3 − 2β1t)

−1, where βj , j=1,2,3 are in general some complex constants. It
is interesting to note that this variable form of the spectral parameter gives us the physically-interesting
solution, the so-called shock wave solution of the original nonlinear evolution equation. Here, we can
note that the above presented equation is in fact the well-known Riemann equation for shock waves.
Lastly, we wish to recall the fact that the occurrence of the variable spectral parameters or, in other words,
nonisospectral parameters (that is, the λ is some function of (t), (t, x), (t, y) or (t, x, y)) have been
well appreciated in soliton theory from long ago (see the seminal papers [23,24,31,32]). Using such a
nonisospectral parameter approach, recently, several physically-interesting nonlinear evolution equations
with external potentials were constructed by Sakhnovich [33].
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3.3. Gauge Equivalent Counterpart of the ML-II Equation

Let us find the gauge equivalent counterpart of the ML-II Equations (37)–(39). It is not difficult (see
Appendix A) to verify that the gauge-equivalent counterpart of the ML-II equation is given by

qt +
κ

2i
qxy + ivq − 2p = 0, (51)

rt −
κ

2i
rxy − ivr − 2k = 0, (52)

vx +
κ

2
(rq)y = 0, (53)

px − 2iωp− 2ηq = 0, (54)

kx + 2iωk − 2ηr = 0, (55)

ηx + rp+ kq = 0, (56)

where q, r, p, k are some complex functions; v,η are potential functions and κ is a constant
parameter. We call this set of equations the (2 + 1)-dimensional nonlinear Schrödinger–Maxwell–Bloch
equation (NSMBE) due to the fact that in 1 + 1 dimensions, it reduces to the (1 + 1)-dimensional
nonlinear Schrödinger–Maxwell–Bloch equation (see, e.g., [34,35] and the references therein). Of
course, this equation is also integrable in the Lax sense. The corresponding Lax representation to
Equations (51)–(56) reads as

Ψx = AΨ, (57)

Ψt = κλΨy +BΨ, (58)

where the spectral parameter λ obeys the evolution equation λt = κλλy and

A = −iλσ3 + A0, (59)

B = B0 +
i

λ+ω
B−1. (60)

here

A0 =

(
0 q

−r 0

)
, (61)

B0 = − i
2
vσ3 −

κ

2i

(
0 qy

ry 0

)
, (62)

B−1 =

(
η −p
−k −η

)
. (63)

Next, we consider the reduction r = δq∗, k = δp∗ with κ = 2, where ∗ means the complex
conjugate. Then, System (51)–(56) takes the form

iqt + qxy − vq − 2ip = 0, (64)

vx + 2δ(|q|2)y = 0, (65)

px − 2iωp− 2ηq = 0, (66)

ηx + δ(q∗p+ p∗q) = 0, (67)
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where we have assumed that δ = ±1. We note that in (1 + 1) dimensions, that is if y = x, the last system
takes the form

iqt + qxx + 2δ|q|2q − 2ip = 0, (68)

px − 2iωp− 2ηq = 0, (69)

ηx + δ(q∗p+ p∗q) = 0, (70)

which is nothing but the well-known (1 + 1)-dimensional nonlinear Schrödinger–Maxwell–Bloch
equation (see, e.g., [34,35] and the references therein). Its Lax pair has the form

Ψx = AΨ, (71)

Ψt = 2λAΨ +BΨ, (72)

where A and B have the form (59)–(60) with

A0 =

(
0 q

−δq∗ 0

)
, (73)

B0 = iδ|q|2σ3 + i

(
0 qx

δq∗x 0

)
, (74)

B−1 =

(
η −p
−δp∗ −η

)
. (75)

Note that the spin-equivalent counterpart of System (68)–(70) is given by

iSt +
1

2
[S, Sxx] +

1

ω
[S,W ] = 0, (76)

iWx +ω[S,W ] = 0. (77)

It is nothing but the (1 + 1)-dimensional M-XCIX equations (43) and (44), which is well known to be
integrable [30].

3.4. Integral of Motion

Note that the (2 + 1)-dimensional SMBE (63)–(65) admits the following integral of motion

I1 =

∫ ∫
|q|2dxdy. (78)

In fact, from System (63)–(65), it follows that

(|q|2)t = −1

2
i(q∗yq − q∗qy −

2i

δ
η)x −

1

2
i(q∗xq − q∗qx)y. (79)

or:

(|q|2)t = divj. (80)

here, the vector j is given by

j ≡ (j1, j2) =

(
−1

2
i(q∗yq − q∗qy −

2i

δ
η), −1

2
i(q∗xq − q∗qx)

)
. (81)
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This result with the gauge equivalence gives us the following integral of motion of the ML-II equation

J1 =
1

8

∫ ∫
tr(S2

x)dxdy. (82)

that follows from the relation
1

8
tr(S2

x) = |q|2. (83)

4. The Myrzakulov–Lakshmanan III Equation

Now, we want to present another new integrable spin system in 2 + 1dimensions, namely the so-called
the Myrzakulov–Lakshmanan III (ML-III) equation, which contains a vector and two scalar potentials.
Its form is given as

iSt + iε2(Sxy + [Sx, Z])x + (wS)x +
1

ω
[S,W ] = 0, (84)

ux −
i

4
tr(S × [Sx, Sy]) = 0, (85)

wx −
i

4
ε2[tr(S

2
x)]y = 0, (86)

iWx +ω[S,W ] = 0, (87)

whereω is a constant parameter and

Z =
1

4
([S, Sy] + 2iuS). (88)

here, w is another scalar potential function.

4.1. Lax Representation

As an integrable equation, the ML-III equation admits a Lax representation. It is given by

Φx = UΦ, (89)

Φt = 4ε2λ
2Φy + V Φ, (90)

where

U = −iλS, (91)

V = 4ε2λ
2Z + λV1 +

i

λ+ω
W − i

ω
W (92)

with

V1 = wS + iε2(Sxy + [Sx, Z]), (93)

W =

(
W3 W−

W+ −W3

)
. (94)

Finally, we note that for the ML-III equation, the spectral parameter satisfies the following nonlinear
evolution equation λt = 4ε2λ

2λy.
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4.2. Reductions

Let us now consider some reductions of the ML-III Equation (84)–(87).

4.2.1. Case I: ε2 = 0

In this case, the ML-III equation reduces to the following principal chiral equation (see, e.g., [36])

iSt +
1

ω
[S,W ] = 0, (95)

iWx +ω[S,W ] = 0. (96)

It is integrable in the sense that it admits the Lax representation. The corresponding Lax representation
follows from Equations (89) and (90) as ε2 = 0, so that we get

Φx = UΦ, (97)

Φt = V Φ, (98)

where

U = −iλS, (99)

V =
i

λ+ω
W − i

ω
W (100)

with

W =

(
W3 W−

W+ −W3

)
. (101)

4.2.2. Case II: W = 0

In this case, we get the following integrable equation

iSt + iε2(Sxy + [Sx, Z])x + (wS)x = 0, (102)

ux −
i

4
tr(S × [Sx, Sy]) = 0, (103)

wx −
i

4
ε2[tr(S

2
x)]y = 0. (104)

4.2.3. Case III: y = x

This case corresponds to the M-LXIV equation, which reads as (see, e.g., [30])

iSt + iε2Sxxx +
i

4
ε2(tr(S

2
x)S)x +

1

ω
[S,W ] = 0, (105)

iWx +ω[S,W ] = 0. (106)
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4.3. Equivalent Counterpart of the ML-III Equation

It is not difficult to verify that the gauge-equivalent counterpart of the ML-III equation has the form

iqt + iε2qxxy − vq + (wq)x − 2ip = 0, (107)

irt + iε2rxxy + vr + (wr)x − 2ik = 0, (108)

vx − 2iε2(rxyq − rqxy) = 0, (109)

wx − 2iε2(rq)y = 0, (110)

px − 2iωp− 2ηq = 0, (111)

kx + 2iωk − 2ηr = 0, (112)

ηx + rp+ kq = 0. (113)

This equation can be considered as the general (2 + 1)-dimensional complex modified Korteweg–de
Vries–Maxwell–Bloch equation (cmKdVMBE), as it is one of the (2 + 1)-dimensional generalizations
of the (1 + 1)-dimensional cmKdVMB equation (see, e.g., [34,35]). Of course, Equations (107)–(113)
are also integrable in the Lax sense and due to the gauge equivalence with System (84)–(88). The
corresponding Lax representation reads as

Ψx = AΨ, (114)

Ψt = 4ε2λ
2Ψy +BΨ, (115)

where

A = −iλσ3 + A0, (116)

B = λB1 +B0 +
i

λ+ω
B−1 (117)

and the spectral parameter satisfies the following equation λt = 4ε2λ
2λy, which has the same form as

for the ML-III equation. Here

B1 = wσ3 + 2iε2σ3A0y, (118)

A0 =

(
0 q

−r 0

)
, (119)

B0 = − i
2
vσ3 +

(
0 −ε2qxy + iwq

ε2rxy − iwr 0

)
, (120)

B−1 =

(
η −p
−k −η

)
. (121)

Now, we assume that r = δq∗, k = δp∗, where δ = ±1. Then, the system (107)–(113) takes
the form

iqt + iε2qxxy − vq + (wq)x − 2ip = 0, (122)

vx − 2iε2δ(q
∗
xyq − q∗qxy) = 0, (123)

wx − 2iε2δ(|q|2)y = 0, (124)

px − 2iωp− 2ηq = 0, (125)

ηx + δ(q∗p+ p∗q) = 0. (126)
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The above set of Equations (122)–(126) is the reduced form of the (2 + 1)-dimensional cmKdVMB
equation. It admits the following integrable reduction, if ε2 − 1 = p = η = 0:

iqt + iqxxy − vq + (wq)x = 0, (127)

vx − 2iδ(q∗xyq − q∗qxy) = 0, (128)

wx − 2iδ(|q|2)y = 0. (129)

It is the usual (2 + 1)-dimensional cmKdV equation.
In (1 + 1) dimensions, that is if y = x, the cmKdVMBE (122)–(126) reduces to the

(1 + 1)-dimensional cmKdVHMBE, which has the form (see, e.g., [34,35])

qt + ε2(qxxx + 6δ|q|2qx)− 2p = 0, (130)

px − 2iωp− 2ηq = 0, (131)

ηx + δ(q∗p+ p∗q) = 0. (132)

Its Lax representation reads as

Ψx = AΨ, (133)

Ψt = (4ε2λ
2A+B)Ψ, (134)

where

A = −iλσ3 + A0, (135)

B = λB1 +B0 +
i

λ+ω
B−1. (136)

here

B1 = 2iε2δ|q|2σ3 + 2iε2σ3A0y, (137)

A0 =

(
0 q

−r 0

)
, (138)

B0 = ε2δ(q
∗
xq − q∗qx)σ3 +B01, (139)

B01 =

(
0 −ε2qxx − 2ε2δ|q|2q

ε2rxx + 2ε2δ|q|2r 0

)
, (140)

B−1 =

(
η −p
−k −η

)
. (141)

Note that the (1 + 1)-dimensional cmKdVMBE (130)–(132) itself admits the following
integrable reductions.

(i) The (1 + 1)-dimensional complex mKdV equation is obtained when ε2 − 1 = p = η = 0:

qt + qxxx + 6δ|q|2qx = 0. (142)

(ii) The following (1 + 1)-dimensional equation arises when ε2 = 0:

qt − 2p = 0, (143)

px − 2iωp− 2ηq = 0, (144)

ηx + δ(q∗p+ p∗q) = 0. (145)
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or:
1

2
qxt − iωqt − 2ηq = 0, (146)

2ηx + δ(|q|2)t = 0. (147)

(iii) On the other hand, the following (1 + 1)-dimensional equation results for δ = 0:

qt + ε2qxxx − 2p = 0, (148)

px − 2iωp− 2η0q = 0, (149)

where η0 is a constant. Again, we note that all of these reductions are integrable in the Lax sense. The
corresponding Lax representations can be obtained from the Lax representation (133) and (134) as the
associated reductions.

5. The Myrzakulov–Lakshmanan IV Equation

Our third new integrable spin system is the Myrzakulov–Lakshmanan IV (ML-IV) equation, which is
a higher order spin evolution equation,

iSt + 2ε1Zx + iε2(Sxy + [Sx, Z])x + (wS)x +
1

ω
[S,W ] = 0, (150)

ux −
i

4
tr(S × [Sx, Sy]) = 0, (151)

wx −
i

4
ε2[tr(S

2
x)]y = 0, (152)

iWx +ω[S,W ] = 0, (153)

where, again, Z is defined by Equation (88). This equation is also integrable in the Lax pair sense.
Below, we present some salient features on the ML-IV equation.

5.1. Lax Representation

First let us present the corresponding Lax representation of the ML-IV Equations (150)–(153). It has
the form

Φx = UΦ, (154)

Φt = (2ε1λ+ 4ε2λ
2)Φy + V Φ (155)

with

U = −iλS, (156)

V = (2ε1λ+ 4ε2λ
2)Z + λV1 +

i

λ+ω
W − i

ω
W, (157)

where

V1 = wS + iε2(Sxy + [Sx, Z]), (158)

W =

(
W3 W−

W+ −W3

)
, (159)
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so that compatibility condition Φxt = Φtx gives the LM-IV Equations (150)–(153). Here, λ evolves as

λt = (2ε1λ+ 4ε2λ
2)λy. (160)

5.2. Reductions

Now, we present some reductions of the LM-IV Equations (150)–(153).

5.2.1. Case I: ε1 = ε2 = 0

Let us put ε1 = ε2 = 0. Then, the LM-IV equation reduces to the form

iSt +
1

ω
[S,W ] = 0, (161)

iWx +ω[S,W ] = 0. (162)

It is nothing but the principal chiral equation noted previously, which is integrable.

5.2.2. Case II: ε1 6= 0, ε2 = 0

Next, we consider the case ε1 6= 0, ε2 = 0. Then, we get

iSt + 2ε1([S, Sy] + 2iuS)x +
1

ω
[S,W ] = 0, (163)

ux −
i

4
tr(S × [Sx, Sy]) = 0, (164)

iWx +ω[S,W ] = 0. (165)

It is the ML-II Equations (37)–(39).

5.2.3. Case III: ε1 = 0, ε2 6= 0

Our next example is the case ε1 = 0, ε2 6= 0. In this case, the ML-IV equation takes the form

iSt + iε2(Sxy + [Sx, Z])x + (wS)x +
1

ω
[S,W ] = 0, (166)

ux −
i

4
tr(S × [Sx, Sy]) = 0, (167)

wx −
i

4
ε2[tr(S

2
x)]y = 0, (168)

iWx +ω[S,W ] = 0. (169)

It is nothing but the ML-III Equations (84)–(87).

5.2.4. Case IV: W = 0

Now, we put W = 0. Then, we have

iSt + 2ε1Zx + iε2(Sxy + [Sx, Z])x + (wS)x = 0, (170)

ux −
i

4
tr(S × [Sx, Sy]) = 0, (171)

wx −
i

4
ε2[tr(S

2
x)]y = 0. (172)
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5.2.5. Case V: y = x

The last example is the case y = x, that is the (1 + 1)-dimensional case. This case corresponds to
the equation

iSt +
1

2
ε1[S, Sxx] + iε2(Sxx + 6tr(S2

x)S)x +
1

ω
[S,W ] = 0, (173)

iWx +ω[S,W ] = 0. (174)

It is the M-XCIV equation (see, e.g., [30,37]).

5.3. Equivalent Counterpart of the ML-IV Equation

The gauge equivalent counterpart of the ML-IV Equations (150)–(153) has the form

iqt + ε1qxy + iε2qxxy − vq + (wq)x − 2ip = 0, (175)

irt − ε1rxy + iε2rxxy + vr + (wr)x − 2ik = 0, (176)

vx + 2ε1(rq)y − 2iε2(rxyq − rqxy) = 0, (177)

wx − 2iε2(rq)y = 0, (178)

px − 2iωp− 2ηq = 0, (179)

kx + 2iωk − 2ηr = 0, (180)

ηx + rp+ kq = 0. (181)

We designate this set of equations as the (2 + 1)-dimensional Hirota–Maxwell–Bloch equation
(HMBE) for the reason that when y = x, it gives the (1 + 1)-dimensional Hirota–Maxwell–Bloch
equation (HMBE) (see, e.g., [34,35]). The set of Equations (175)–(181) is also integrable as it admits
the Lax representation. The corresponding Lax representation reads as

Ψx = AΨ, (182)

Ψt = (2ε1λ+ 4ε2λ
2)Ψy +BΨ, (183)

where

A = −iλσ3 + A0, (184)

B = λB1 +B0 +
i

λ+ω
B−1. (185)

here, the spectral parameter satisfies the following evolution equation λt = (2ε1λ+ 4ε2λ
2)λy and

B1 = wσ3 + 2iε2σ3A0y, (186)

A0 =

(
0 q

−r 0

)
, (187)

B0 = − i
2
vσ3 +

(
0 iε1qy − ε2qxy + iwq

iε1ry + ε2rxy − iwr 0

)
, (188)

B−1 =

(
η −p
−k −η

)
. (189)
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Now, we assume that r = δq∗, k = δp∗, where δ = ±1. Then, the system (175)–(181) takes the form

iqt + ε1qxy + iε2qxxy − vq + (wq)x − 2ip = 0, (190)

vx + 2ε1δ(|q|2)y − 2iε2δ(q
∗
xyq − q∗qxy) = 0, (191)

wx − 2iε2δ(|q|2)y = 0, (192)

px − 2iωp− 2ηq = 0, (193)

ηx + δ(q∗p+ p∗q) = 0. (194)

It is the (2 + 1)-dimensional HMBE (compare with the HMBE from [34,35]). This equation admits
the following integrable reductions.

(i) For the case ε1 − 1 = ε2 = p = η = 0, we get

iqt + qxy − vq = 0, (195)

vx + 2δ(|q|2)y = 0 (196)

which is the well-known (2 + 1)-dimensional nonlinear Schrödinger equation [10].
(ii) The (2 + 1)-dimensional complex mKdV equation is obtained for the choice ε1 = ε2 − 1 = p =

η = 0:

iqt + iε2qxxy − vq + (wq)x = 0, (197)

vx − 2iε2δ(q
∗
xyq − q∗qxy) = 0, (198)

wx − 2iε2δ(|q|2)y = 0. (199)

(iii) The (2 + 1)-dimensional Schrödinger–Maxwell–Bloch equation results when ε1 − 1 = ε2 = 0:

iqt + qxy − vq + (wq)x − 2ip = 0, (200)

vx + 2δ(|q|2)y = 0, (201)

px − 2iωp− 2ηq = 0, (202)

ηx + δ(q∗p+ p∗q) = 0. (203)

(iv) The (2 + 1)-dimensional complex mKdV-Maxwell–Bloch equation is obtained for ε1 = ε2 − 1 = 0

(see, for example, Equations (122)–(126)).
(v) The following (2 + 1)-dimensional equation is obtained for δ = 0:

iqt + ε1qxy + iε2qxxy − 2ip = 0, (204)

px − 2iωp− 2η0q = 0, (205)

where η0 = 0. Again, we note that all of these reductions admit the Lax representations and, in this sense,
are integrable. The corresponding Lax representations are obtained from the Lax representation (182)
and (183) as the corresponding reductions. In (1 + 1) dimensions, that is if y = x, this system reduces to
the (1 + 1)-dimensional HMBE, which has the form (see, e.g., [34,35])

iqt + ε1(qxx + 2δ|q|2q) + iε2(qxxx + 6δ|q|2qx)− 2ip = 0, (206)

px − 2iωp− 2ηq = 0, (207)

ηx + δ(q∗p+ p∗q) = 0. (208)
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Its Lax representation reads as

Ψx = AΨ, (209)

Ψt = ((2ε1λ+ 4ε2λ
2)A+B)Ψ, (210)

where

A = −iλσ3 + A0, (211)

B = λB1 +B0 +
i

λ+ω
B−1. (212)

here

B1 = 2iε2δ|q|2σ3 + 2iε2σ3A0y, (213)

A0 =

(
0 q

−r 0

)
, (214)

B0 = (iε1δ|q|2 + ε2δ(q
∗
xq − q∗qx))σ3 +B01, (215)

B01 =

(
0 iε1qx − ε2qxx − 2ε2δ|q|2q

iε1rx + ε2rxx + 2ε2δ|q|2r 0

)
, (216)

B−1 =

(
η −p
−k −η

)
. (217)

Note that the (1 + 1)-dimensional HMBE (206)–(208) admits the following integrable reductions.

(i) The NSLE for ε1 − 1 = ε2 = p = η = 0:

iqt + qxx + 2δ|q|2q = 0. (218)

(ii) The (1 + 1)-dimensional complex mKdV equation for ε1 = ε2 − 1 = p = η = 0:

qt + qxxx + 6δ|q|2qx = 0. (219)

(iii) The (1 + 1)-dimensional Schrödinger–Maxwell–Bloch equation for ε1 − 1 = ε2 = 0:

iqt + qxx + 2δ|q|2q − 2ip = 0, (220)

px − 2iωp− 2ηq = 0, (221)

ηx + δ(q∗p+ p∗q) = 0. (222)

(iv) The (1 + 1)-dimensional complex mKdV-Maxwell–Bloch equation for ε1 = ε2 − 1 = 0 (see
Equations (130)–(132)).

(v) The following (1 + 1)-dimensional equation is obtained for ε1 = ε2 = 0:

qt − 2p = 0, (223)

px − 2iωp− 2ηq = 0, (224)

ηx + δ(q∗p+ p∗q) = 0. (225)
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It can be rewritten in the following form

1

2
qxt − iωqt − 2ηq = 0, (226)

2ηx + δ(|q|2)t = 0. (227)

(vi) The following (1 + 1)-dimensional equation is obtained for δ = 0:

iqt + ε1qxx + iε2qxxx − 2ip = 0, (228)

px − 2iωp− 2η0q = 0, (229)

where η0 = 0. Again, we note that all of these reductions are integrable, as they admit
Lax representations. The corresponding Lax representations can be obtained from the Lax
representation (209) and (210) as appropriate reductions.

6. Conclusions

Spin systems are fascinating nonlinear dynamical systems. In particular, integrable spin
systems have much relevance in applied ferromagnetism and nanomagnetism. More interestingly,
integrable spin systems have a close connection to the nonlinear Schrödinger family of equations.
In this paper, we have introduced three specific cases of (2 + 1)-dimensional integrable spin
systems, which we designated as the Myrzakulov–Lakshmanan II, III and IV equations, where
additional scalar potentials or vector potentials interact in specific ways with the spin fields.
Through appropriate gauge or geometric equivalence, we have identified the three equivalent
(2 + 1)-dimensional nonlinear Schrödinger family of equations along with their Lax pairs. These
equations, in turn, encompass a large class of the interesting (2 + 1)-dimensional family of NLSequations.
Regarding both the (2 + 1)-dimensional spin and NLS family of equations, an extremely interesting
question is to investigate what the the physical applications of these new equations are, for example
in nonlinear optics (for their (1 + 1)-dimensional analogues, see, e.g., [35–38]). It will be
also interesting to investigate the other associated integrability properties, like the infinite number
of conservation laws, the involutive integrals of motion, soliton solutions, exponentially-localized
dromion solutions, etc. In particular, it is interesting to investigate the relation between the above
presented integrable spin systems with self-consistent potentials and the geometry of curves and
surfaces (see, e.g., [29,39–55]). Work is in progress along these lines, and the results will be
reported separately.
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Appendix A: Gauge Equivalence

In the previous sections, we presented some new integrable spin systems in 2 + 1 dimensions.
Furthermore, we presented their equivalent counterparts in terms of the NLS family of equations.
Here, in this Appendix, we want to demonstrate that between the former and latter systems, a gauge
equivalence takes place. As an example, we consider the ML-IV equation, as the other two systems are its
particular cases. Let Φ(t, x, λ) be the solution of System (154) and (155) and Ψ(t, x, λ) be the solution
of System (182) and (183). Then, it is not difficult to verify that these functions are related by
the tranformation

Ψ = gΦ, (A1)

where g(t, x) = Ψ(t, x, 0). This means that between the ML-IV Equations (150)–(153) and the nonlinear
Schrödinger-type System (175)–(181), the gauge equivalence takes place. Hence, in particular, some
relations follow between W and its mirrors p, k and η. The vector potential W = (W1,W2,W3) or its
matrix form W obeys the condition

W 2 = (W 2
3 +W+W−)I = C(t)I. (A2)

where in the standard spin cases, we set C(t) = constant. On the other hand, from the
Equations (179)–(181), it follows that

η2 + pk = C(t) (A3)

so that we have

W 2 = (η2 + pk)I (A4)

or

W 2
3 +W+W− = η2 + pk = C(t). (A5)

Appendix B: Nonisospectral Problem

Finally, we would like to note that the nonlinear equations considered in this paper correspond to
the nonisospectral problem. In fact, for example, for the more general ML-IV equation, the spectral
parameter obeys the equation

λt = (2ε1λ+ 4ε2λ
2)λy. (B1)

Let us in more detail consider the case when ε1 = 1, ε2 = 0. Then, Equation (B1) takes the form

λt = 2λλy. (B2)
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Here, some comments are in order.

(i) This last equation has, for example, the following particular solution:

λ = (β1 + β2y)(β3 − 2β2t)
−1, (B3)

where βj are in general some complex constants.
(ii) In the more general case, Equation (B2) admits the solution

λ = f(y − 1

2
5tλ), (B4)

where f is some arbitrary function. Such types of solutions are breaking waves [56].
(iii) Equation (B2) is in fact the dispersionless KdV equation, where the KdV equation itself has

the form

λt = 2λλy + λyyy. (B5)

(iv) Equation (B2) is sometimes called the Riemann equation [57].
(v) Equation (B2) is integrable. The corresponding Lax representation is given by (see, e.g., [56])

Lt = {L,M}, (B6)

where

L = p2 + λ, M = p3 + 2λp. (B7)

here, the bracket {, } has the form

{A,B} =
∂A

∂p

∂B

∂x
− ∂B

∂p

∂A

∂x
. (B8)
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