
PHYSICAL REVIEW E 90, 032912 (2014)

Integrable discrete PT symmetric model

Mark J. Ablowitz1 and Ziad H. Musslimani2
1Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526, USA

2Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
(Received 5 June 2014; published 12 September 2014)

An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable
Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is
constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique
features such as power oscillations and singularity formation. The proposed model can be viewed as a
discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
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I. INTRODUCTION

Discrete nonlinear models play a central role in many
branches of sciences [1]. A prototypical example is the dis-
crete nonlinear Schrödinger (DNLS) equation iu̇n = un+1 +
un−1 + |un|2un where dot stands for time derivative and un is
a time-dependent function of the integer n. It is a valuable
model describing many important physical and biological
phenomena. For example, in the context of nonlinear optics
it describes wave propagation in coupled waveguide arrays.
In this regard the DNLS model was first proposed in Ref. [2]
and used to find localized solitary waves. Subsequently such
discrete nonlinear modes were experimentally observed [3,4].
The DNLS equation is also an effective model of certain
biophysical systems [5], molecular crystals [6], and atomic
chains [7]. It also explains recent observations related to
PT symmetric arrays of linearly and/or nonlinearly coupled
optical waveguides [8–14]. In this regard, several PT invariant
DNLS-like models with gain and/or loss have been recently
proposed [15–18].

In 1975–1976 Ablowitz and Ladik [19,20] showed that if
one replaces the nonlinear term |un|2un in the DNLS equation
by |un|2(un+1 + un−1)/2 then the resulting equation iu̇n =
un+1 + un−1 + |un|2(un+1 + un−1)/2 (IDNLS) is integrable:
It is solvable via the inverse scattering transform, has soliton
solutions, possesses an infinite number of conserved quantities,
a Hamiltonian structure, as well as other interesting properties
related to integrable systems.

In this paper, the following integrable nonlocal discrete
nonlinear Schrödinger equation is introduced and investigated
in detail

i
dQn

dt
= Qn+1 − 2Qn + Qn−1 ± QnQ

∗
−n(Qn+1 + Qn−1),

(1)
where ∗ denotes complex conjugation and Qn is a complex
function and n is an integer. Equation (1) admits a linear
(Lax) pair formulation and possesses an infinite number of
conservation laws, hence it is an integrable system. It is
a discretization of a recently obtained integrable nonlocal
nonlinear Schrödinger equation [21]. Corresponding to a
rapidly decaying initial data one can exactly linearize Eq. (1)
using the inverse scattering transform and obtain solutions
including pure solitons. Below, some of the important proper-
ties of Eq. (1) are contrasted with the IDNLS model where
the nonlocal nonlinear term QnQ

∗
−n is replaced by |Qn|2.

Indeed we note that both equations share the symmetry that
when n → −n, t → −t and a complex conjugate is taken,
then the equation remains invariant. Thus, the new nonlocal
equation is PT symmetric [22], which, in the case of classical
optics, amounts to the invariance of the so-called nonlinear
self-induced potential cf. Ref. [23] Vn = QnQ

∗
−n under the

combined action of parity and time reversal symmetry.
Importantly, PT symmetry breaking in coupled waveguide
arrays has been experimentally observed in classical optics
[11–13].

II. LINEAR PAIR AND THE NONLOCAL DNLS EQUATION

We begin our analysis by considering the so-called
Ablowitz-Ladik scattering problem [19]

vn+1 =
(

z Qn

Rn z−1

)
vn, (2)

dvn

dt
=

(
An Bn

Cn Dn

)
vn, (3)

where vn = (v(1)
n ,v(2)

n )T , Qn and Rn vanish rapidly as
n → ±∞, z is a complex spectral parameter, An =
iQnRn−1 − i

2 (z − z−1)2, Bn = −i(zQn − z−1Qn−1),Cn =
i(z−1Rn − zRn−1), and Dn = −iRnQn−1 + i

2 (z − z−1)2. The
discrete compatibility condition d

dt
vn+1 = ( d

dt
vm)m=n+1 yields

i
d

dt
Qn = �nQn − QnRn(Qn+1 + Qn−1), (4)

−i
d

dt
Rn = �nRn − QnRn(Rn+1 + Rn−1), (5)

where �nFn ≡ Fn+1 − 2Fn + Fn−1. Equation (1) is then
obtained from system (4) and (5) using the symmetry reduction

Rn = ∓Q∗
−n. (6)

The discrete symmetry constraint (6) is new and, as we shall
see, leads to interesting physical behavior as well as rich
mathematical structure.

III. INFINITE NUMBER OF CONSERVED QUANTITIES
AND HAMILTONIAN STRUCTURE

The infinite number of conserved quantities of (1) can be
derived either directly or using scattering theory. The first few
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conserved quantities are listed below

C1 = ∓
+∞∑

n=−∞
QnQ

∗
1−n, (7)

C2 = ∓
+∞∑

n=−∞

[
QnQ

∗
2−n ± 1

2
(QnQ

∗
1−n)2

]
, (8)

C3 =
+∞∏

n=−∞
(1 ± QnQ

∗
−n). (9)

Importantly, Eq. (1) is a Hamiltonian dynamical system with
Qn and Q∗

−n playing the role of coordinates and conjugate
momenta respectively. The corresponding Hamiltonian and
the non canonical brackets are given by

H = ±
+∞∑

n=−∞
Q∗

−n(Qn+1 + Qn−1)

−2
+∞∑

n=−∞
log(1 ± QnQ

∗
−n), (10)

{Qm,Q∗
−n} = ∓i(1 ± QnQ

∗
−n)δn,m, (11)

{Qn,Qm} = {Q∗
−n,Q

∗
−m} = 0. (12)

With this in mind one can rewrite Eq. (1) in the form

i
dQn

dt
= {Qn,H }. (13)

IV. DIRECT SCATTERING PROBLEM

Since the potentials Qn and Rn rapidly vanish as n → ±∞
solutions of the scattering problem (2) can be defined in terms
of the following boundary conditions

lim
n→−∞ φn(z) = znê1, lim

n→−∞ φn(z) = z−nê2,

lim
n→+∞ ψn(z) = z−nê2, lim

n→+∞ ψn(z) = znê1,
(14)

where ê1 = (1,0)T and ê2 = (0,1)T . In terms of the
functions Mn(z) = z−nφn(z), Mn(z) = znφn(z), and Nn(z) =
znψn(z), Nn(z) = z−nψn(z) satisfying constant boundary
conditions induced from (14) one can then obtain a recursive
relations for the above functions and show that Mn(z),Nn(z)
are analytic outside the unit circle (in the complex z plane;
|z| > 1) whereas Mn(z),Nn(z) are analytic inside the unit
circle (|z| < 1). The solutions φn(z) and φn(z) of the scattering
problem (2) with the boundary conditions (14) are, in general,
linearly independent. This follows from the fact that the
Wronskian, W (vn,wn) = v(1)

n w(2)
n − v(2)

n w(1)
n of two solutions

vn and wn to (2) is not equal to zero for all n. Similar arguments
hold for ψn(z) and ψn(z). Therefore because the scattering
problem (2) is a second-order linear difference equation, the
pairs {φn,φn} and {ψn,ψn} are linearly dependent and one can
express one set of eigenfunctions in terms of the other:

�n(z) = SL(z)�n(z), (15)

where �n(z) ≡ [φn(z), φn(z)], �n(z) ≡ [ψn(z), ψn(z)], and
SL(z) is the so-called left scattering matrix

SL(z) =
(

a(z) b(z)

b(z) a(z)

)
. (16)

The scattering data are thus expressed as a(z) = cnW (φn(z),
ψn(z)),a(z) = cnW (ψn(z),φn(z)),b(z) = cnW (ψn(z), φn(z)),
b(z) = cnW (φn(z),ψn(z)) where cn ≡ cn(Qk,Rk) =∏+∞

k=n(1 − QkRk). Moreover, it can be shown that a(z),a(z)
are respectively analytic functions outside/inside the unit
circle in the z complex plane. In general, b(z),b(z) are defined
only on the unit circle. As mentioned above, the nonlocal
discrete NLS equation (1) is a special case of the system (4)
and (5) under the symmetry reduction Rn = ∓Q∗

−n. This
symmetry in the potential induces an important symmetry
in the eigenfunctions that in turn imposes restrictions on
the scattering data. Indeed, if [φ(1)

n (z),φ(2)
n (z)]T satisfies

Eq. (2) and the symmetry (6) holds, then one can show
that g∓∗

−n[φ(2)∗
1−n(z∗), ± φ

(1)∗
1−n(z∗)]T also satisfies the scattering

problem (2) with g∓
n ≡ ∏n

k=−∞
1

(1±QkQ
∗
−k) . A similar symmetry

result holds for φn(z). Because the solutions of the scattering
problem (2) are uniquely determined by their respective
boundary conditions (14) we obtain the important symmetry
relations valid for Rn = ∓Q∗

−n which in turn leads to

Nn−1(z) = g∓∗
−n�M∗

1−n(z∗),

Nn−1(z) = g∓∗
−n�M

∗
1−n(z∗),

(17)

where � is a 2 × 2 matrix with zeros on the main diagonal
and ±1 on the upper and one one the lower diagonal.
From the Wronskian representations for the scattering data
it follows a(z) = e2iθ∓

a∗(z∗), a(z) = e2iθ∓
a∗(z∗) and b(z) =

∓e2iθ∓
b∗(z∗) where θ∓ ≡ arg(c∓

−∞). These relations imply
that if zj is a zero (eigenvalue) of a(z) with |zj | > 1 then
z∗
j is a zero of a(z). Similarly, if zj is a zero of a(z) with

|zj | < 1 so is z∗
j . For simplicity we shall assume below that

the eigenvalues z
,z
 are all real.

V. INVERSE SCATTERING PROBLEM:
LEFT-RIGHT RH APPROACH

The inverse problem consists of constructing the poten-
tial functions Rn and Qn from the scattering data (reflec-
tion coefficients) ρ(z,t) = e2iω(z)t b(z,0)/a(z,0) and ρ(z,t) =
e−2iω(z)t b(z,0)/a(z,0) where ω(z) = (z − z−1)2/2 defined on
|z| = 1 as well as the eigenvalues zj ,zj and norming constants
(in n) Cj (t),Cj (t). Hereafter, for ease of notation, we suppress
the time dependence. It can be shown that the large z

asymptotic of Nn(z) depends on cn. However, the potentials
Qn and Rn are unknown in the inverse problem. To overcome
this difficulty, we introduce the new functions N ′

n(z) =
JnNn(z),N

′
n(z) = JnNn(z),M ′

n(z) = JnMn(z) and M
′
n(z) =

JnMn(z) where Jn ≡ diag(1,cn). The symmetry relation (17)
in turn induces a symmetry between these new modified
functions and is given by

N ′
n(z) =

(
0 ±g∓∗

∞
±(QnQ

∗
−n ± 1) 0

)
M

′∗
−n(z∗), (18)
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with similar symmetry expression relating N
′
n(z) to M

′
n(z).

Using the RH approach, from Eq. (15) one can find equations
governing the eigenfunctions N

′
n(z),N ′

n(z)

N
′
n(z) =

(
1

0

)
+

J∑
j=1

Cjz
−2n
j

[
N ′

n(zj )

z − zj

+ N ′
n(−zj )

z + zj

]

− lim
ζ→z
|ζ |<1

1

2πi

∮
|w|=1

w−2nρ(w)N ′
n(w)

w − ζ
dw, (19)

N ′
n(z) =

(
0

1

)
+

J∑
j=1

Cjz
2n
j

[
N

′
n(zj )

z − zj

+ N
′
n(−zj )

z + zj

]

+ lim
ζ→z
|ζ |>1

1

2πi

∮
|w|=1

w2nρ(w)N
′
n(w)

w − ζ
dw. (20)

The time evolution of the norming constants is given by
Cj (t) = Cj (0)e2iω(zj )t , Cj (t) = Cj (0)e−2iω(z̄j )t . To close the
system we evaluate Eq. (19) at the eigenvalues ±zj and (20) at
±zj and obtain a linear algebraic integral system of equations
that solve the inverse problem for the eigenfunctions N ′

n and
N

′
n. To account for the symmetry condition (6), we view

system (15) as a left scattering problem and supplement it
with the right scattering problem

�n(z) = SR(z)�n(z), (21)

where

SR(z) =
(

α(z) β(z)

β(z) α(z)

)
. (22)

In the same way as for the left RH above, we can formulate
the corresponding RH problem on the right and find the
following linear integral equations which govern the functions
M ′

n(z),M
′
n(z):

M
′
n(z) =

(
0

c−∞

)
+

J∑
j=1

Bjz
2n
j

[
M ′

n(zj )

z − zj

+ M ′
n(−zj )

z + zj

]

− lim
ζ→z
|ζ |<1

1

2πi

∮
|w|=1

w2nR(w)M ′
n(w)

w − ζ
dw, (23)

M ′
n(z) =

(
1

0

)
+

J∑
j=1

Bjz
−2n

j

[
M

′
n(zj )

z − zj

+ M
′
n(−zj )

z + zj

]

+ lim
ζ→z
|ζ |>1

1

2πi

∮
|w|=1

w−2nR(w)M
′
n(w)

w − ζ
dw. (24)

where R(z) = β(z)/α(z) and R(z) = β(z)/α(z) are the re-
flection coefficients. The time evolution of the norming
constants (in n) are given by Bj (t) = Bj (0)e−2iω(zj )t , Bj (t) =
Bj (0)e2iω(z̄j )t . Using the relation between the two scattering

matrices, i.e., SR(z) = S−1
L (z) we find R∗(z∗) = ±ρ(z) and

R
∗
(z∗) = ±ρ(z),|z| = 1. To close the system we evaluate Eq.

(23) at the eigenvalues ±zj and (24) at ±zj and obtain a linear
algebraic integral system of equations that solve the inverse
problem for the eigenfunctions M ′

n and M
′
n.

VI. RECOVERY OF THE POTENTIALS

To reconstruct the potentials Qn and Rn we use the
method to obtain potentials (cf. [24,25]) and find the following
expressions for the potentials Qn and Rn

Rn = 2
J∑

j=1

Cjz
−2(n+1)
j N ′(2)

n (zj )

+ 1

2πi

∮
|w|=1

w−2(n+1)ρ(w)N ′(2)
n (w)dw. (25)

Qn−1 = −2
J∑

j=1

Cjz
2(n−1)
j N

′(1)
n (zj )

+ 1

2πi

∮
|w|=1

w2(n−1)ρ(w)N
′(1)
n (w)dw. (26)

VII. SOLITON SOLUTIONS

For simplicity we consider the case where the scattering
data is only comprised of real eigenvalues zj > 1,0 < zj < 1
and ρ(z) = 0, ρ(z) = 0 for all z. Then the inverse scattering
system (19), (20) with (23), (24) subject to the symmetry
relations (17) reduces to finite-dimensional linear algebraic
equations for N ′

n(zj ),N
′
n(zj ) and M ′

n(zj ),M
′
(zj ). Recall that,

when Rn = −Q∗
−n, the eigenvalues appear in pairs {zj , z∗

j }
and {zj , z∗

j }. We will consider the one-soliton solution to
the nonlocal NLS equation (1) corresponding to a single
(real) eigenvalue (J = J = 1): z1 = eη1 , z1 = e−η1 where
η1 �= η1 satisfying η1 > 0,η1 > 0. Letting C1(0) = z1(z2

1 −
z2

1)/(2z1)eiϕ1 and C1(0) = (z2
1 − z2

1)/(2z1z1)eiϕ1 then the most
general one-soliton solution to Eq. (1) is given by

Qn = − (z1z1)−1
(
z2

1 − z2
1

)
eiϕ1e−2iω1t z2n

1

1 + ei(ϕ1+ϕ1)e2i(ω1−ω1)t z
2n

1 z−2n
1

, (27)

where ω1 = ω(z1) and ω1 = ω(z1). This soliton solution
exhibits unique characteristics stemming from the fact that the
model (1) is a PT symmetric nonlinear system. First, the power∑∞

n=−∞ |Qn(t)|2 (which is not conserved) oscillates in t with
period π/(ω1 − ω1). Such phenomenon has been observed (in
the linear regime) in a PT symmetric periodic structures [9].
Interestingly enough, the soliton forms a singularity on the
integers. For example, when n = 0 the finite time blow up is
given by

tsingularity = π (2j + 1) − ϕ1 − ϕ1

2(ω1 − ω1)
, j ∈ Z. (28)
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VIII. COMPARISON WITH THE
ABLOWITZ-LADIK MODEL

In this section we briefly contrast the properties of Eq. (1)
with that of the AL equation:

iu̇n = (1 ± |un|2)(un+1 + un−1). (29)

In Refs. [19,20] it was shown that (29) is an integrable
Hamiltonian system. Furthermore, it was found that the
symmetries of the scattering data and eigenfunctions of the
associated AL scattering problem are such that the scattering
data and eigenfunctions outside the unit circle in the z complex
plane are related to those inside the unit circle. Moreover, the
eigenfunctions are related through a local in n symmetry and is
independent of the potentials. This is in sharp contrast to our
case where the eigenfunctions at the outside/inside the unit
circle are not related. Importantly, the symmetry condition
relating the eigenfunctions say, outside the unit circle, is
more complicated: highly nonlocal and does depend on the
potential Qn. This new feature complicates the analysis and
leads to a novel method of solution. However, if one considers
Eq. (1) with initial conditions satisfying Qn(0) = Q−n(0)
then one obtains extra symmetries on the scattering data and
eigenfunctions that are similar to the ones we find. This leads
us to the important conclusion that soliton solutions to (1) will
have an AL limit so long (29) admits an even solution.

IX. DISCRETE NONLOCAL PAINLEVÉ TYPE EQUATIONS

The discrete Painlevé equations are certain class of non-
linear second-order complex differential-difference equations
that usually arise as reductions of the discrete soliton equations,

which are solvable by IST cf. [26–28]. They are particularly
interesting due to their properties in the complex plane
and their associated integrability properties. In this section
we propose a discrete nonlocal analogues of Painlevé-type
equation. Nonlocal Painlevé type equations can also be found.
For example if we let Qn(t) = eiλtYn where λ is constant then
Yn satisfies the following discrete Painlevé-type equation

Yn+1 + Yn−1 = − βYn

1 + YnY
∗−n

, (30)

where β = −2 + λ. One can also take the further reduction
Yn to be real.

X. CONCLUSION

A nonlocal integrable discrete nonlinear Schrödinger equa-
tion is found from a new and simple reduction of the
well-known Ablowitz-Ladik scattering problem. It is a dis-
cretization of a recently obtained integrable nonlocal nonlinear
Schrödinger equation [21]. It has a Lax pair, an infinite number
of conserved quantities, and is PT symmetric. The inverse
scattering transform (IST) for decaying data is developed and
a discrete breathing soliton solution is found. The IST requires
different scattering data symmetries than that associated with
the classical integrable discrete NLS equation.
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ishchukov, D. N. Christodoulides, and U. Peschel, Phys. Rev.
Lett. 110, 223902 (2013).

[15] I. V. Barashenkov, Sergey V. Suchkov, Andrey A. Sukhorukov,
Sergey V. Dmitriev, and Yuri S. Kivshar, Phys. Rev. A 86,
053809 (2012).

[16] N. V. Alexeeva, I. V. Barashenkov, and Andrey A. Sukhorukov,
and Yuri S. Kivshar, Phys. Rev. A 85, 063837 (2012).

[17] N. Lazarides and G. P. Tsironis, Phys. Rev. Lett. 110, 053901
(2013).

[18] Yaakov Lumer, Yonatan Plotnik, Mikael C. Rechtsman, and
Mordechai Segev, Phys. Rev. Lett. 111, 263901 (2013).

[19] M. J. Ablowitz and J. F. Ladik, J. Math. Phys. 16, 598
(1975).

[20] M. J. Ablowitz and J. F. Ladik, J. Math. Phys. 17, 1011
(1976).

[21] M. J. Ablowitz and Ziad H. Musslimani, Phys. Rev. Lett. 110,
064105 (2013).

[22] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998).

[23] M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides,
Phys. Rev. Lett. 79, 4990 (1997).

032912-4

http://dx.doi.org/10.1016/S0370-1573(98)00025-8
http://dx.doi.org/10.1016/S0370-1573(98)00025-8
http://dx.doi.org/10.1016/S0370-1573(98)00025-8
http://dx.doi.org/10.1016/S0370-1573(98)00025-8
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1364/OL.13.000794
http://dx.doi.org/10.1364/OL.13.000794
http://dx.doi.org/10.1364/OL.13.000794
http://dx.doi.org/10.1364/OL.13.000794
http://dx.doi.org/10.1103/PhysRevLett.81.3383
http://dx.doi.org/10.1103/PhysRevLett.81.3383
http://dx.doi.org/10.1103/PhysRevLett.81.3383
http://dx.doi.org/10.1103/PhysRevLett.81.3383
http://dx.doi.org/10.1103/PhysRevLett.83.2726
http://dx.doi.org/10.1103/PhysRevLett.83.2726
http://dx.doi.org/10.1103/PhysRevLett.83.2726
http://dx.doi.org/10.1103/PhysRevLett.83.2726
http://dx.doi.org/10.1016/0022-5193(73)90256-7
http://dx.doi.org/10.1016/0022-5193(73)90256-7
http://dx.doi.org/10.1016/0022-5193(73)90256-7
http://dx.doi.org/10.1016/0022-5193(73)90256-7
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1103/PhysRevLett.61.970
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevA.86.053809
http://dx.doi.org/10.1103/PhysRevA.86.053809
http://dx.doi.org/10.1103/PhysRevA.86.053809
http://dx.doi.org/10.1103/PhysRevA.86.053809
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.111.263901
http://dx.doi.org/10.1103/PhysRevLett.111.263901
http://dx.doi.org/10.1103/PhysRevLett.111.263901
http://dx.doi.org/10.1103/PhysRevLett.111.263901
http://dx.doi.org/10.1063/1.522558
http://dx.doi.org/10.1063/1.522558
http://dx.doi.org/10.1063/1.522558
http://dx.doi.org/10.1063/1.522558
http://dx.doi.org/10.1063/1.523009
http://dx.doi.org/10.1063/1.523009
http://dx.doi.org/10.1063/1.523009
http://dx.doi.org/10.1063/1.523009
http://dx.doi.org/10.1103/PhysRevLett.110.064105
http://dx.doi.org/10.1103/PhysRevLett.110.064105
http://dx.doi.org/10.1103/PhysRevLett.110.064105
http://dx.doi.org/10.1103/PhysRevLett.110.064105
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.79.4990
http://dx.doi.org/10.1103/PhysRevLett.79.4990
http://dx.doi.org/10.1103/PhysRevLett.79.4990
http://dx.doi.org/10.1103/PhysRevLett.79.4990


INTEGRABLE DISCRETE PT SYMMETRIC MODEL PHYSICAL REVIEW E 90, 032912 (2014)

[24] M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete
and Continuous Nonlinear Schrödinger Systems (Cambridge
University Press, Cambridge, 2004).

[25] M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering
Transform, SIAM Studies in Applied Mathematics Vol. 4
(SIAM, Philadelphia, 1981).

[26] B. Grammaticos, R. G. Halburd, A. Ramani, and C.-M. Viallet,
J. Phys. A: Math. Theor. 42, 454002 (2009).

[27] P. A. Clarkson, J. Comp. App. Math. 153, 127
(2003).

[28] P. A. Clarkson and E. L. Mansfield, Nonlinearity 16, R1
(2003).

032912-5

http://dx.doi.org/10.1088/1751-8113/42/45/454002
http://dx.doi.org/10.1088/1751-8113/42/45/454002
http://dx.doi.org/10.1088/1751-8113/42/45/454002
http://dx.doi.org/10.1088/1751-8113/42/45/454002
http://dx.doi.org/10.1016/S0377-0427(02)00589-7
http://dx.doi.org/10.1016/S0377-0427(02)00589-7
http://dx.doi.org/10.1016/S0377-0427(02)00589-7
http://dx.doi.org/10.1016/S0377-0427(02)00589-7
http://dx.doi.org/10.1088/0951-7715/16/3/201
http://dx.doi.org/10.1088/0951-7715/16/3/201
http://dx.doi.org/10.1088/0951-7715/16/3/201
http://dx.doi.org/10.1088/0951-7715/16/3/201

