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Abstract. 0,,-invariant classical relativistic field theories in one time and one
space dimension with interactions that are entirely due to quadratic con-
straints are shown to be closely related to integrable Hamiltonian systems.

I. Introduction

Even in one space dimension, relativistically invariant classical field theories
defining integrable Hamiltonian systems with a non-trivial, momentum dependent
scattering matrix, are not in oversupply. Actually, up to equivalence and slight
modifications there is only one such model available, the celebrated sine-Gordon
equation [1-3].

In this paper we shall present a whole series of non-equivalent relativistically
invariant field theories in one time and one space dimension, each having a one
parameter family of Backlund transformations and an infinite number of known
integrals of motion. These conserved quantities are associated with covariant local
conserved currents for which the family of Backlund transformations serves as a
generating functional. Further, each one of these models has non-trivial momentum
dependent scattering, and possesses stationary finite energy solutions: the
solitons of the sine-Gordon theory.

By a procedure explained below ("reduction"), the series of new models is
obtained from Oπ-invariant Lagrangian field theories whose interaction arises
solely from the condition that the values of the field functions be constrained to
the surface of a sphere (describing a homogeneous space for On). The new examples
should be viewed as generalizations (involving more and more fields) of the sine-
Gordon theory, which corresponds to the chiral symmetry group O3 (To O2

there corresponds the theory of a free massless field). The connection with the
0,,-invariant chiral theories allows for a simple geometrical interpretation of
various computational manipulations in the new models. For n ^ ό w e set up the
linear eigenvalue equation (for the characteristic initial value problem), which
is the key to the inverse scattering method [4, 5]. We determine the evolution of
the spectral data and thereby solve the characteristic initial value problem.
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Conversely, the analysis of the new models provides a significant first step
towards the complete description of all finite energy solutions of the original On-
invariant chiral theories e.g. supplying for them an infinite number of integrals
of motion associated with covariant local conserved currents. Of particular
interest is the 0 4 ^ SU(2) x SU (2)-invariant chiral theory, the one-space-dimen-

loc.

sional version of the non-linear σ-model [6].
Apropos, the original On-invariant chiral theories do not possess soliton

solutions. However, the solutions related to the solitary waves of the corre-
sponding reduced model are expected to play a special role1.

To sum up, the aim of this paper is twofold:
i) furnishing new examples with the same powerful structure as the one which

is at the bottom of the sine-Gordon theory and
ii) contributing to the solution of theories with an effective Lagrangian

comprising the results of current algebra [6].
The present communication grew out of joint work with H. Lehmann and

G. Roepstorίf in 1968 when the connection between the chiral O3-invariant
theory and the sine-Gordon theory came to light.

II. Heuristic Considerations and Normalization of Coordinates

We start from the classical theory of n real-valued scalar or pseudoscalar fields
qγ{x0,x1),...,qn(x°,x1) in one time and one space dimension which in dimension-
less units, with the help of a Lagrangian multiplier λ(x°, x1), is described by the
Lagrangian density

x')=^ X X (d/dxμqι{x°9x
1))(d/dx'>qιJtx0

9x
1))

i = 1 μ = 0

\ί=l

This Lagrangian is invariant under the action of the internal symmetry group On\

\ i = l , . . . , w j \j=l9...,nj9

n
j / v 0 ^,1\ V n n (v® v-lΛ Ώ (Ώ

qj{x ,x j - 2, κji(li\x >x h κ — \κji (II.2)

With the short hand notation:

(p q)= ΣVAU P2 = \\P\\2= ΣPΪ
i = l ί = l

qμ(x) = 8/dx» q(x), <f (x) = d/δxβ q(x)

For the O3-invariant chiral theory solutions of this kind were found by Dr. M. Schlindwein:

q = (cost tghx, sint-tghx, (coshx)"1).
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together with the summation convention, the Lagrangian density takes the simple
form

/2 {q\x)- 1). (II.4)

The corresponding Euler-Lagrange equations of motion are

• q(x) + (qμ(x) qμ(x))q(x) = 0, q\x) = 1 (II.5)

λ(x)=-(qμ(x).q»(x)).

It is convenient to introduce the characteristic coordinates

ξ = (xo + x1)/2, η = (xo-x1)/2 (II.6)

in which the d'Alembertian Π Φ ^ / ψ 0 ) 2 - ^ 2 / ^ 1 ) 2 factorizes

Π = d2/(dξdη). (IL7)

Employing the notation

qξ = d/dξ q(ξ, η), qη= d/dη q(ξ, η) etc. (II.8)

and denoting the unit sphere in Rn by the symbol Sn-l9 the equations of motion
read in characteristic coordinates:

These equations are forminvariant under general coordinate transformations
which map the light cone into itself, i.e. under the local scale transformations

( U M M ( π l 0 )
dξ' = \H(ξ)\dξ, dη' = \K(η)\dη

with

H(ξ)Φ0*K(η).

The sum and difference of the energy and momentum densities of the fields are
given by \q^ and \q^ respectively and the energy-momentum conservation is
expressed by the equations

Hence q* and q2

ξ are functions solely of η and ξ respectively:

<ή = h2(ξ), q2

η=k2(η) (11.12)

which are already determined by the Cauchy data at a fixed time.
For the derivation of the continuity Eq. (II. 11) note that qξ and qη are orthogonal

to q in virtue of q2 = 1 and that qξη is parallel to q in virtue of the equation

We may choose

\H(ξ)\ = \h(ξ)\
(11.13)

\K(η)\ = \k(η)\.
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This amounts to an identically vanishing momentum density and a constant
energy density =\ in the new "normalized" coordinates. [A situation with h{ξ) = O
for some ξ = ζ0 and/or k(η) — O for some η = η0 is to be approximated by Cauchy
data for which h(ξ) and k(η) are different from zero everywhere.] Without loss of
generality we may take normalized coordinates as a basis for our discussion and
omit the identifying primes. Now, only one of the 0,,-invariants formed from q
and its first derivatives qξ and qη is undetermined, namely (qξ-qη):

q2 = \, q2

ξ = l, ^ 2 = 1 5η (11.14)
{qξ q) = 0, (qη q) = 0, -l^(qξ qη)£l .

We set

(11.15)

III. The Chiral 03 Model and the Sine-Gordon Equation

For n = 3 the vectors q, qξ, and qη already span the entire space IR3. Without
loss of generality the solutions of the equations of motion (II.9) satisfy the con-
straints

Conversely, for n = 3 the constraints q2 = l = q2=q2 imply the equations of
motion (II.9).

Hence, solving (II.9) for n = 3 is equivalent to the construction of all three
component unit vector fields q = q(ζ, η) with

Next we want to derive the sine-Gordon equation for arc cos(qξ qη). To this end,
we express the second derivatives qξξ and qηη as linear combinations of q, qξ, and qη

qξξ=-q + 2ccξ ctgotq ξ- 2ccξ(sina)~1 qη

(III.l)
Qηη = ~ Q — 2α^(sin α) qξ + 2aη ctg α qη

and compute the mixed second derivative of α =

Making use of the above expressions for qξξ and qηη we obtain

aξη = — {oίξoίη cosα — cos2 α + (1 — α ^ cosα)}sinα , (III.3)

i.e. the sine-Gordon equation which can be derived from the Lagrangian density
L = L(x)
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Conversely, to every solution α of the sine-Gordon equation there exists a solution
of the equations of motion (II.9) with q2 = l=q2 and (^-^) = cosα.

The sine-Gordon equation is known to possess a one parameter family of
Backlund transformations Tγ9 yeR1:

where α( y) is again a solution of the sine-Gordon equation

{(α( γ)- α)/2}η=-y sin((α( γ) + α)/2). (ΠI.6.2)

7 being a constant independent of ξ and η [7].
By elementary manipulations we derive the conservation law

If we expand α( 7) in a formal power series in y around the point y = 0, insert this
expansion into the above conservation law, collect terms involving the same power
of y and set the coefficients of the resulting power series in y separately equal to
zero, we obtain an infinite number of conservation laws for covariant local currents
involving higher and higher powers of higher and higher derivatives of the sine-
Gordon field α. The corresponding integrals of motion are independent of each
other and in involution.

The soliton and antisoliton solutions are most easily obtained by applying
the Backlund transformations Tγ with positive and negative y respectively to the
vacuum solution αΞO.

Next, we would like to remind the reader of NewelΓs derivation of the iso-
spectral linear eigenvalue problems L(η)\p = ζψ with the ^-coordinate as the
deformation parameter [8]. These eigenvalue problems play a central role in the
inverse scattering method for the characteristic initial value problem. The deriva-
tion follows the pattern: one-parameter family of Backlund transformations ->
one parameter family of Riccati equations -• linearization of these Riccati
equations = isospectral linear eigenvalue problems.

We start from the first of the two ordinary differential equations defining Tγ:

ξ = y-1 sin((α( 7)-α)/2) (III.6.1)

and reduce the transcendental non-linearity to a quadratic one by rewriting the
equation for

Γ=tg((α(.;y)-α)/4). (III.8)

This is the above mentioned one parameter family of Riccati equations.
The linearization is achieved by substituting

Γ = Ψί/ψ2. (III.10)

The resulting differential equation

2i (iii.ii)
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is satisfied \ϊψι and ψ2 solve the following linear system of first order ordinary
differential equations

i.e. the linear eigenvalue problems for each value of η

L(η)ψ = (i/(2y))Ψ, (I II. 13)

where

Remember that y is independent of η (and ξ).

The ^-evolution of ψ can be determined from the second of the two ordinary
differential equations defining Tγ:

{(α( ;y)-α)/2} f 7--ysin((α( ;y) + α)/2): (IΠ.6.2)

Γ,, + y / 2 s i n α ( l - Γ 2 ) = - y c o s α Γ (III.9.2)

leading to

with

β y / 2 f .
\sinα, — cosα/

We confirm the relation

[B,L] (III.15)
the necessary and sufficient condition for the ^-independence of the spectrum
of L{η).

We notice that the parameter y of the family of Backlund transformations
plays the role of the continuous eigenvalue in the family of isospectral linear
eigenvalue problems associated with the sine-Gordon equation.

Returning to the Backlund transformations Tτ let q be a solution of the
equations of motion (II.9) for the chiral O3 model withg? = l=q* and (qξ-qη) = cos a.
Then

q(.; 1) = cos (α( •; 1 )/2) ((qξ + qη)/(2 cos (α/2))) + sin (α( •; 1 )/2) ((qξ - qη)/(2sm(oc/2)))

(111.16)
is a solution of the equations of motion (II.9) with

« - : l W - l . ( « - : l W ( Π U 7 )
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The vectors q and q( 1) are orthogonal to each other. The requirement that the
component of q(-; l)ξη in the direction of q vanishes, is equivalent to the con-
servation law

{cos((α(.;l + α)/2)} ξ+{cos((α(.;l)-α)/2)}^0. (111.18)

However, for general values of the parameter y, the geometrical relation between
the solution vector q and a solution q(-;y) of the equations of motion with

(<?(' \i)ξ-q{' ;?)„) = cos α( y)

is not so simple. The resolution of this point is presented in Section VI for general
values of n, after the geometrical meaning of the parameter γ has been clarified
in Section V.

IV. Goals and Strategy

We aim at associating a one-parameter family of isospectral linear eigenvalue
problems (with the ^-coordinate as the deformation parameter) to the evolution
equations for the invariants of the general chiral group On in normalized coor-
dinates. So far, this task is accomplished for n^6 only. A less ambitious goal
is the construction of a generating functional for the infinite number of covariant
local conserved currents.

For the realization of this program we maintain the spirit of Newells'
pattern [8]:

1) introduction of γ as an expansion or contraction parameter for the sum
and difference of the energy and momentum densities respectively;

2) adjunction of one discrete Backlund transformation for the chiral fields qt

i = l s . . . , n .
Remark. 1) and 2) yield a one-parameter continuum of Backlund transforma-

tions Ty which serves as a generating functional for the infinite number of con-
servation laws.

3) Transition from the chiral fields to 0,,-invariants.
4) Derivation of a one-parameter family of systems of (n — 2) coupled non-

linear first order ordinary differential equations involving at most bilinear terms.
5) Construction of a one-parameter family of genuine Riccati equations.
6) Linearization of these Riccati equations to obtain the desired isospectral

linear eigenvalue equations.

V. The Geometrical Meaning of the Parameter γ

In this section we shall show that for every solution q of the equations of motion
(II.9) there exists a one-parameter family of solutions q{y\ yelR1 with

q(y)2 = y - 2 2 ^ ( y )2 = 2 2 ^
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(in a general system of coordinates). Actually we shall prove even more, namely
the existence of coordinate dependent rotation matrices &iγ) = &iγ\ξ, η; q):

the superscript tr denoting transposition such that the equations of motion are
satisfied for

(V.3)

and

(V.4)

Obviously, for q{y) so defined the relations (V.I) hold.
The existence of such rotation matrices ^ ( y ) follows from the compatibility of

the equations

( + ) (V.5.1)

(V.5.2)

and

^(y)^(y)t' = ^ ( y ) ^ ( ) ' ) = = l ? (V.5.3)

where

M ( ± ) = M ( ± )(ξ,^;^) = (M ( ± ) W ) (V.6.1)

and

(V.6.2)

M ( ± ) W are the sum and difference respectively of the zero and one components of
the current densities for the chiral field vector q corresponding to a rotation in the
(k, Z)-plane.

The construction of the matrices M{y) follows the standard iterative procedure
for the generation of the resolvents for systems of homogeneous linear first order
ordinary differential equations [9].

Moreover, the following transitivity equation holds

^(72 yi)(. q) = @(y2\. 0<yi)(. q)q).^\. q) . (V.7)

To sum up, the parameter y describes expansions or contractions of the respective
sum and difference of the energy and momentum densities of the chiral field
vector q without at the same time changing the angle between qξ and qη.

VI. Backlund Transformations and Conservation Laws

We adjoin to the transformations Ry, γelR1:

q)q (VI.l)
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of the solutions of (II.9) onto themselves essentially one more such discrete non-
linear transformation B+:

which changes neither the energy nor the momentum density, but the angle
between the ξ- and ^-derivatives:

( V O )

(q'ξ q'η)*(qξ qη)

B+ is defined up to some coordinate independent rotations by the four compatible
equations:

W + q\ = M'qξ) - (q'ξ q))β (qf ~ q), (VI.4.1+)

(q1 ~ q\ = H q) ~ (q' qη))β («' + q), (VI.4.2+)

This transformation corresponds to the Backlund transformation 7] in the sine-
Gordon theory. Along with B+ goes the conservation law:

(q''qξ)η+(q''qη)ξ=o. (vi.5)

We obtain a one-parameter family of Backlund transformations Ty - to be com-
pared with the maps α->α( γ) in the sine-Gordon theory, cf. Eq. (III.6) - if we
combine B+ and the Rγ's to form

Ty+=Rγ B+Rγ

( V L 6 )

taking the non-commutativity of the diagram

B+

q'
(VI.7)

into account: the angle between q( ;y+)ξ and q( ;y + )η depends on γ.
Along with Ty+ goes the conservation law:

with

By expanding q{y)r near the asymptote of &{y\ \q)qξ/\\qξ\\ for y^O into an
asymptotic series in y, inserting this expansion into (VI.8), collecting all terms
of the same order in y and setting the resulting coefficients separately equal to
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zero, we obtain an infinite number of covariant local non-polynomial conserva-
tion laws leading to independent integrals of motion for the chiral fields which are
in involution. The first three continuity equations are given explicitly by

{\l{2\\qξ\\){8ldξ{qξl\\qξ\\))2}η={(qi-qn)/\\qξ\\}ζ, (VI.9.2)

ί , ί { | | 9 4 | | ) ) 2 } ί . (VI.9.3)

Obviously, instead of the discrete non-linear transformation B+ we could have
taken the transformation £_, up to some coordinate independent rotations
defined by

(<?' ~ q)ξ = ((q'ξ q) - (q''qξ))β (qf + q), (VIA 1")

(q' + q\ = ((«' 4,) ~ K «))/2 tf - q), (VI.4.2")

g/2 = l , (VI A 3 ' )

te' β) = 0. (VL4.4-)

To J5_ there corresponds the same conservation law as to B+: Eq. (VI.5) and a
one-parameter family of Backlund transformations

Going through the same routine as before, we obtain an infinite number of new
covariant local non-polynomial conservation laws, which arise from the above
ones by interchanging ^-derivatives with ^-derivatives.

VII. Differential Equations for the On-Invariants

From now on, we shall work with normalized coordinates. In these coordinates
the conservation laws look much simpler than before e.g.

( V I L 1 2 )

{U2

ξξξ-VHq2

ξξ)
2}η={~(qξ qη)βq2

ξξ}ξ etc. (VII.1.3)

The coordinates normalized for the solution q serve at the same time as normalized
coordinates for the Backlund transformed solutions

q(.;γ±)=Tγ±q.

From the solution vector q we construct a basis in IRn with the first three basis-
vectors specified

i ί = 2,..., n — 2.
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such as to give M ( + ) a simple form with (ξ, ^-independent entries:

In this basis also M (_ } takes a fairly simple form:

M(_)b_ί =cosαfe0 + sinαbi, M ί _ ^ 0 = cosαb_ 1
(VII.4)

M (_ )6 1 = sinα6_ 1 , M (_)ft~0 ί = 2,...,n —2.

g) maps this basis into a new one

q)bk9 k= - 1,0,1,..., n - 2. (VII.5)

We may construct a similar basis {i>^}/} starting from the solution vector q( y)
and envisage a derivation of a differential equation for the rotation Θiy\ This
describes the change of basis {b^}-^^^'} and is symmetric with respect to
primed and unprimed quantities. The entries of the orthogonal matrix Θ{y):

(VΠ.6)

are On-invariant.
However, it turns out that the ^-derivatives of the entries

of the first column of Θ{y) can be expressed by at most quadratic terms in the
entries of this very first column, and the same goes for the ^-derivatives of Xk

fc = ( - l ) , 0 , l , . . . , n - 2 .
Hence we confine our attention to the OM-invariants Xh and study two systems

of (n— 1) coupled non-linear first order ordinary differential equations involving
at most bilinear terms:

n — 2
(VII.8.1)

and

XOη = y cosα(l — Xl) — y sinα
n-2

Xlη=-ycosaX0Xι+ysma(ί~Xi)+ £ (blη-bi)Xi
i=2 (VII.8.2)

n-2

Xiη=-γcos<xX0Xi-γsmoLXιXi+ ^ {biη bj)Xj

ί = 29...,n-2

subject to the constraint

X = (X09...,Xn_2)eSn.2

i.e. "ΣX? = 1.
/ = o

X_1 is identically equal to zero since (qiγY qiγ)) = 0.
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The constraint (VII.9) reflects the condition (q{yY)2=l.
As we see, explicit knowledge of &{γ) is not required.
We eliminate the constraint (VII.9) with the help of the stereographic projection

and arrive at two systems of (n — 2) coupled non-linear first order ordinary
differential equations also involving at most bilinear terms.

γjξ=y

j=ι..
with

i ~ 1 y +

. , n - 2

n

m

- 2

Σ SJV
= 1

/n-2

\ w = l

\

Ym)Yi +
I

1
•ί /2 1-

\

« —

- Σ
m —

2

' Y2

1

and

2
-ys inα Y1Y/ + <5J 1 i y2s inα( l+ ^ ym

2] 7=1,. . . ,n-2 (VII. 11.2)
\ m = l

with

These systems of differential equations are to be compared with the Riccati
Eqs. (IΠ.9.1) and (IΠ.9.2) of the sine-Gordon theory.

VIII. Linearization and the Chiral SU(2) x SU(2)

All points of our program (cf. Section IV) have been realized but the last two
which consist of the linearization of the system of Eqs. (VILll.l) and (VII.11.2).

For nrgό the system (VILll.l) can be cast into a single equation for

(vm.i)
where 1, i,j, k is the conventional basis for the quaternions:

^ -χ2)) (VIΠ.2.2)

with

r4±3)), r = l , 2

and where the bar denotes quaternion conjugation.
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Linearization is achieved by the ansatz

χ = (aφ)(bψΓ1 (VIIL4)

with a and b satisfying the compatible equations:

(VIII.5)

giving

a>x=-kv~1 ω+\(aτb)w
(VIII.7.1)

i i τ=π (VIΠ.7.2)
V\ — i ? cosαtp+iy smα(αDjφ .

More conventionally this can be written as

L(η)Ψ = £i/y)Ψ, (VIΠ.8.1)

where

Ψ=

(VIII.ll)

By setting up Eq. (VIII. 10) we have determined the ^-evolution of the spectral data
for the linear eigenvalue problem (VIII.8.1) and hence solved (in the sense of the
inverse scattering method) the characteristic initial value problem for the models
obtained by reduction from the On-invariant chiral theories for n^β. To conclude
the proof that these models define completely integrable Hamiltonian systems we
would have to solve (in the sense of the inverse scattering method) the Cauchy
initial value problem and carry out an analysis similar to the one of Ref. [2].

Among the models under discussion there is a particularly interesting one,
n = 4, corresponding to the one-space-dimensional version of the non-linear
σ-model [6].
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The SU(2) x SU(2)-invariants in normalized coordinates are:

u = qξξ-[q9 qξ9 g j / s i n α , v = qηη [q, qξ, g

[, , ] denoting the vector product.
The equations of motion for these invariants are:

α *„ + sin a + uv/sin oc = 0
(VIII.13)

uη = α^/sinαu, ι̂  = α^/sinαM .

The last two equations possess tg^α as an integrating factor2. Thus we set

u = βξtg^oc, v=-βηtg±a

and obtain two hyperbolic equations for the scalar fields a and β:

These equations can be derived from the Lagrangian

For the formulation of the family of linear isospectral eigenvalue problems
associated with this model, we can dispense with the quaternions:

( V I I U 7 1 )

0

where ω is defined in such a way that it satisfies the equations

ωξ = βξ cosα/(2 cos2 (|α)), ωη = βη/(2 cos2 ( |α)). (VIII. 18)

The ^-evolution of α and β, i.e. the solution of the characteristic initial value
problem, is obtained from the ^-evolution of the spectral data for (VIΠ.17.1) which
in turn can be read off from

dw/dη = Bw
(VIII. 17.2)

B = γ/2[ .
ysmαe lUJ, cosα

This completes our analysis of the classical theory related to the one-space-
dimensional version of the non-linear σ-model.

The author would like to thank Prof. H. Lehmann for this remark.
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