Department of Mathematical Physics,
P.N. Lebedev Physical Institute of Russian Academy of Sciences

Integrable hydrodynamic chains

Maxim Valentinovich Pavlov

Benney hydrodynamic chain

Let us consider the remarkable Benney hydrodynamic chain

$$
A_{t}^{k}=A_{x}^{k+1}+k A^{k-1} A_{x}^{0}, \quad k=0,1,2, \ldots
$$

Let us introduce N field variables $a^{k}(x, t)$ such that

$$
A^{k}=\sum_{i=1}^{N} f_{i(k)}\left(a^{i}\right)
$$

where the functions $f_{i(k)}\left(a^{i}\right)$ are not yet determined.
A substitution of the above ansatz in the Benney hydrodynamic chain leads to

Benney hydrodynamic chain

$$
\sum_{i=1}^{N} f_{i(k)}^{\prime}\left(a^{i}\right)\left(a_{t}^{i}-\frac{f_{i(k+1)}^{\prime}\left(a^{i}\right)}{f_{i(k)}^{\prime}\left(a^{i}\right)} a_{x}^{i}-k \frac{f_{i(k-1)}\left(a^{i}\right)}{f_{i(k)}^{\prime}\left(a^{i}\right)} A_{x}^{0}\right)=0
$$

Suppose each expression (in brackets) vanishes simultaneously. It means, that

$$
\varphi_{i}\left(a^{i}\right)=\frac{f_{i(k+1)}^{\prime}\left(a^{i}\right)}{f_{i(k)}^{\prime}\left(a^{i}\right)}, \quad \psi_{i}\left(a^{i}\right)=k \frac{f_{i(k-1)}\left(a^{i}\right)}{f_{i(k)}^{\prime}\left(a^{i}\right)}
$$

Then Benney hydrodynamic chain reduces to the form

$$
\partial_{t} \varphi_{i}\left(a^{i}\right)=\partial_{x}\left(\frac{\varphi_{i}^{2}\left(a^{i}\right)}{2}+\sum_{m=1}^{N} \epsilon_{m} \varphi_{m}\left(a^{m}\right)\right)
$$

where

$$
\sum_{m=1}^{N} \epsilon_{m}=0, \quad \psi_{i}\left(a^{i}\right)=\frac{1}{\varphi_{i}^{\prime}\left(a^{i}\right)}, \quad A^{k}=\frac{1}{k+1} \sum_{n=1}^{N} \epsilon_{n}\left[\varphi_{n}\left(a^{n}\right)\right]^{k+1}
$$

Benney hydrodynamic chain

Under the scaling $\varphi_{i}\left(a^{i}\right) \rightarrow a^{i}$ the above hydrodynamic type system can be rewritten as the so-called waterbag reduction

$$
a_{t}^{i}=\partial_{x}\left(\frac{\left(a^{i}\right)^{2}}{2}+A^{0}\right),
$$

where

$$
A^{0}=\sum_{m=1}^{N} \epsilon_{m} a^{m} .
$$

Let us replace a^{i} by p. A corresponding equation

$$
p_{t}=\partial_{\times}\left(\frac{p^{2}}{2}+A^{0}\right)
$$

is nothing but a generating function of conservation laws for the Benney hydrodynamic chain.

Benney hydrodynamic chain

Indeed, let us substitute a formal series

$$
p=\lambda-\frac{H_{0}}{\lambda}-\frac{H_{1}}{\lambda^{2}}-\frac{H_{2}}{\lambda^{3}}-\ldots
$$

where a parameter λ goes to infinity. Then the Benney hydrodynamic chain can be written in the conservative form

$$
\partial_{t} H_{k}=\partial_{\times}\left(H_{k+1}-\frac{1}{2} \sum_{m=0}^{k-1} H_{m} H_{k-1-m}\right),
$$

where $H_{0}=A^{0}, H_{1}=A^{1}, H_{2}=A^{2}+\left(A^{0}\right)^{2}, H_{3}=A^{3}+3 A^{0} A^{1}, \ldots$ All conservation law densities H_{k} can be found by the above substitution into the inverse series

$$
\lambda=p+\frac{A^{0}}{p}+\frac{A^{1}}{p^{2}}+\frac{A^{2}}{p^{3}}+\ldots
$$

The Gibbons-Tsarev system

Let us suppose that moments A^{n} depend on N Riemann invariants r^{k}. Then the Benney hydrodynamic chain reduces to a family of hydrodynamic type systems

$$
r_{t}^{i}=p^{i}(\mathbf{r}) r_{x}^{i}, \quad i=1,2, \ldots, N,
$$

parameterized by N arbitrary functions of a single variable. Each hydrodynamic type system possesses the same generating function of conservation laws

$$
p_{t}=\partial_{x}\left(\frac{p^{2}}{2}+A^{0}\right)
$$

It means that a generating function of conservation law densities p satisfies the Löwner equation

$$
\partial_{i} p=\frac{\partial_{i} A^{0}}{p^{i}-p},
$$

where A^{0} is a function of all Riemann invariants r^{k}.

The Gibbons-Tsarev system

The compatibility condition $\partial_{i}\left(\partial_{k} p\right)=\partial_{k}\left(\partial_{i} p\right)$ leads to the Gibbons-Tsarev system

$$
\partial_{i} p^{k}=\frac{\partial_{i} A^{0}}{p^{i}-p^{k}}, \quad \partial_{i k} A^{0}=2 \frac{\partial_{i} A^{0} \partial_{k} A^{0}}{\left(p^{i}-p^{k}\right)^{2}}, \quad i \neq k,
$$

whose solutions are parameterized by N arbitrary functions of a single variable

Vlasov type kinetic equations

Let us consider the so-called Vlasov kinetic equation

$$
\lambda_{t}=\{\lambda, \boldsymbol{\Psi}\},
$$

where $\lambda(x, t, p), u(x, t)$ are unknown functions and $\boldsymbol{\Psi}(u, p)$ is some given function. Here the Poisson bracket is canonical

$$
\{\lambda, \boldsymbol{\Psi}\} \equiv \frac{\partial \lambda}{\partial x} \frac{\partial \boldsymbol{\Psi}}{\partial p}-\frac{\partial \lambda}{\partial p} \frac{\partial \boldsymbol{\Psi}}{\partial x} .
$$

Under the semi-hodograph transform $\lambda(x, t, p) \leftrightarrow p(x, t, \lambda)$, the above equation reduces to the conservative form

$$
p_{t}=\partial_{x} \boldsymbol{\Psi}(u, p),
$$

which is nothing but a generating function of conservation laws with respect to parameter λ.

Vlasov type kinetic equations

Suppose the above equations possesses hydrodynamic reductions

$$
r_{t}^{i}=\mu^{i}(\mathbf{r}) r_{x}^{i} .
$$

Then such hydrodynamic type systems preserve the above generating function. It means, that a generalization of the Löwner equation is given by

$$
\partial_{i} p=\frac{\boldsymbol{\Psi}_{u}}{\mu^{i}-\boldsymbol{\Psi}_{p}} \partial_{i} u
$$

The compatibility conditions $\partial_{i}\left(\partial_{k} p\right)=\partial_{k}\left(\partial_{i} p\right)$ leads to a generalization of the Gibbons-Tsarev system.

Here we consider three distinct generating functions of conservation laws

$$
p_{t}=\partial_{x}[u+U(p)], \quad q_{\bar{t}}=\partial_{\bar{x}}[v V(q)], \quad s_{\tilde{t}}=\partial_{\tilde{x}}[w s+W(s)],
$$

where functions $U(p), V(q), W(s)$ satisfy to three ODE's of the second order

$$
U^{\prime \prime}=\alpha U^{\prime 2}+\beta U^{\prime}+\gamma, \quad V V^{\prime \prime}=\alpha V^{\prime^{2}}+\beta V^{\prime}+\gamma, \quad s W^{\prime \prime}=\alpha W^{\prime^{2}}+\beta W^{\prime}+\gamma .
$$

Three distinct generating functions

Corresponding semi-Hamiltonian hydrodynamic reductions
$r_{t}^{i}=U^{\prime}\left(p^{i}\right) r_{x}^{i}, \quad r_{\tilde{t}}^{i}=v V^{\prime}\left(q^{i}\right) r_{\bar{\chi}}^{i}, \quad r_{\tilde{t}}^{i}=\left[w+W^{\prime}\left(s^{i}\right)\right] r_{\dot{\chi}}^{i}, \quad i=1,2, \ldots, N$
are connected with generalized Löwner equations
$\partial_{i} p=\frac{\partial_{i} u}{U^{\prime}\left(p^{i}\right)-U^{\prime}(p)}, \quad \partial_{i} q=\frac{V(q) \partial_{i} \ln v}{V^{\prime}\left(q^{i}\right)-V^{\prime}(q)}, \quad \partial_{i} s=\frac{s \partial_{i} w}{W^{\prime}\left(s^{i}\right)-W^{\prime}(s)}$,
where $\partial_{i} \equiv \partial / \partial r^{i}$. These generalized Löwner equations are equivalent to each other under the transformations

$$
d p=\frac{d q}{V(q)}=d \ln s, \quad u=\ln v=w, \quad U^{\prime}(p)=V^{\prime}(q)=W^{\prime}(s) .
$$

Three distinct generating functions

These hydrodynamic reductions written in the so-called symmetric form
$a_{t}^{i}=\partial_{x}\left[u(\mathbf{a})+U\left(a^{i}\right)\right], \quad b_{t}^{i}=\partial_{\bar{x}}\left[V\left(b^{i}\right) v(\mathbf{b})\right], \quad c_{\tilde{t}}^{i}=\partial_{\tilde{x}}\left[c^{i} w(\mathbf{c})+W\left(c^{i}\right)\right]$,
are connected with corresponding generalized Löwner-like equations

$$
\begin{aligned}
\partial_{i} p & =\frac{\partial_{i} u}{U^{\prime}\left(a^{i}\right)-U^{\prime}(p)}\left(1+\sum \frac{\partial_{m} u}{U^{\prime}\left(a^{m}\right)-U^{\prime}(p)}\right)^{-1}, \\
\partial_{i} q & =\frac{V(q) \partial_{i} \ln v}{V^{\prime}\left(b^{i}\right)-V^{\prime}(q)}\left(1+\sum \frac{V\left(b^{m}\right) \partial_{m} \ln v}{V^{\prime}\left(b^{m}\right)-V^{\prime}(q)}\right)^{-1}, \\
\partial_{i} s & =s \frac{\partial_{i} w}{W^{\prime}\left(c^{i}\right)-W^{\prime}(s)}\left(1+\sum \frac{c^{m} \partial_{m} w}{W^{\prime}\left(c^{m}\right)-W^{\prime}(s)}\right)^{-1},
\end{aligned}
$$

due to the extra transformations

$$
d a^{i}=\frac{d b^{i}}{V\left(b^{i}\right)}=d \ln c^{i},
$$

where $u(\mathbf{a}), v(\mathbf{b})$ and $w(\mathbf{c})$ are some functions, and $\partial_{i} \equiv \partial / \partial a^{i}, \partial_{i} \equiv \partial / \partial b^{i}, \partial_{i} \equiv \partial / \partial c^{i}$, respectively.

Explicit hydrodynamic reductions

Hydrodynamic chains associated with generating function of conservation laws can be found by the approach presented at the beginning.

1. Replacing p by N field variables a^{i} in the corresponding generating functions of conservation laws

$$
p_{t}=\partial_{x}[u+U(p)]
$$

one can obtain the symmetric hydrodynamic type system

$$
a_{t}^{i}=\partial_{x}\left[u(\mathbf{a})+U\left(a^{i}\right)\right],
$$

where $u(\mathbf{a})$ is a some function, which is not determined yet.
2. The corresponding Löwner type equation

$$
\partial_{i} p=\frac{\partial_{i} u}{U^{\prime}\left(a^{i}\right)-U^{\prime}(p)}\left[1+\sum \frac{\partial_{m} u}{U^{\prime}\left(a^{m}\right)-U^{\prime}(p)}\right]^{-1}
$$

can be integrated just in some special cases.

Explicit hydrodynamic reductions

3. Let us consider the function $u(\Delta)$, where $\Delta=\Sigma f_{m}\left(a^{m}\right)$. These functions $f_{m}\left(a^{m}\right)$ are not yet determined.
4. In such a case, the solution

$$
\lambda=e^{\delta p+(\alpha+\epsilon) U(p)} \sum_{k=0}^{\infty} \frac{A^{k}}{U^{k+1}(p)}
$$

of the Löwner type equation can be found explicitly, where the moments A^{k} are given by their derivatives

$$
d A^{k}=\sum_{i=1}^{N} \epsilon_{i} e^{(\beta-\delta) a^{i}+(\alpha-\epsilon) U\left(a^{i}\right)} U^{\prime^{k}}\left(a^{i}\right) d a^{i},
$$

and

$$
u=\frac{1}{\epsilon} \ln \Delta \equiv \frac{1}{\epsilon} \ln A^{0} .
$$

Explicit hydrodynamic reductions

5. A corresponding integrable hydrodynamic chain is given by $A_{t}^{k}=A_{x}^{k+1}+\frac{1}{\epsilon A^{0}}\left[(\alpha(k+1)-\epsilon) A^{k+1}+(\beta(k+1)-\delta) A^{k}+\gamma k A^{k-1}\right] A_{x}^{0}, \quad k=0,1,$.
Remark:If the parameter $\epsilon=0$, then

$$
u=\Delta=B^{0}
$$

In such a case, the above equation of the Riemann surface reduces to the form

$$
\lambda=\int e^{\beta p+\alpha U(p)} d p+e^{\beta p+\alpha U(p)} \sum_{k=0}^{\infty} \frac{B^{k}}{U^{k+1}(p)} .
$$

The corresponding hydrodynamic chain $B_{t}^{k}=B_{x}^{k+1}+\left(\alpha(k+1) B^{k+1}+(\beta(k+1)-\delta) B^{k}+\gamma k B^{k-1}\right) B_{x}^{0}, \quad k=0,1,2, \ldots$ is determined by the moment decomposition

$$
d B^{k}=\sum_{i=1}^{N} \epsilon_{i} e^{(\beta-\delta) a^{i}+\alpha U\left(a^{i}\right)} U^{\prime^{k}}\left(a^{i}\right) d a^{i},
$$

where $B^{0}=\Delta$.

Hamiltonian formulation

This hydrodynamic chain can be written in different forms. Below, we have derive another moment decomposition assuming that hydrodynamic reductions

$$
a_{t}^{i}=\partial_{x}\left[u(\mathbf{a})+U\left(a^{i}\right)\right],
$$

possess the local Hamiltonian structure

$$
a_{t}^{i}=\frac{1}{\epsilon_{i}} \partial_{x} \frac{\partial h}{\partial a^{i}}
$$

In such a case,

$$
\frac{\partial h}{\partial a^{i}}=\epsilon_{i}\left[u(\mathbf{a})+U\left(a^{i}\right)\right], \quad \frac{\partial^{2} h}{\partial a^{i} \partial a^{k}}=\epsilon_{i} \frac{\partial u(\mathbf{a})}{\partial a^{k}}=\epsilon_{k} \frac{\partial u(\mathbf{a})}{\partial a^{i}}, \quad i \neq k .
$$

It means, that $u(\mathbf{a})$ is a some function of $\Sigma \epsilon_{n} a^{n}$. A substitution of this anzac in the above Löwner type equation leads to $u(\mathbf{a})=\Sigma \epsilon_{n} a^{n}$ for $\alpha=0$ and $u(\mathbf{a})=\ln \left(\Sigma \epsilon_{n} a^{n}\right) / \alpha$ in a general case.

Hamiltonian formulation

The equation of the Riemann surface ($\xi=\Sigma \epsilon_{n}$)

$$
\lambda=-\xi \int \frac{e^{\beta p+2 \alpha U(p)}}{U^{\prime}(p)} d p+e^{\beta p+2 \alpha U(p)} \sum_{k=0}^{\infty} \frac{C^{k}}{U^{\prime k+1}(p)}
$$

and corresponding integrable hydrodynamic chain

$$
C_{t}^{0}=\partial_{x}\left(C^{1}+\frac{\xi}{\alpha} \ln C^{0}\right), \quad C_{t}^{k}=C_{x}^{k+1}+\frac{k}{\alpha C^{0}}\left(\alpha C^{k+1}+\beta C^{k}+\gamma C^{k-1}\right) C_{x}^{0}
$$

are connected with the above hydrodynamic type systems via moments C^{k} determined by their derivatives

$$
d C^{k}=\sum_{i=1}^{N} \epsilon_{i} U^{k}\left(a^{i}\right) d a^{i}
$$

This hydrodynamic chain preserves a local Hamiltonian structure. A corresponding Poisson bracket is given by

$$
\left\{C^{0}, C^{0}\right\}=\xi \delta^{\prime}\left(x-x^{\prime}\right), \quad\left\{C^{k}, C^{n}\right\}=\left[\Gamma^{k n} \partial_{x}+\partial_{x} \Gamma^{n k}\right] \delta\left(x-x^{\prime}\right), \quad k+n>0,
$$

$$
\text { where } \Gamma^{k n}=k\left(\alpha C^{k+n+1}+\beta C^{k+n}+\gamma C^{k+n-1}\right) .
$$

Generalized Benney hydrodynamic chain

The generating function of conservation laws

$$
p_{t}=\partial_{x}[u+U(p)]
$$

associated with ODE

$$
U^{\prime \prime}=\alpha U^{\prime^{2}}+\beta U^{\prime}+\gamma
$$

can be split on four distinguished sub-cases.

1. $\alpha \neq 0$, and quadratic equation $\alpha z^{2}+\beta z+\gamma$ has two distinct roots (without loss of generality we can fix $\alpha=-1, \beta=1, \gamma=0$). In such a case, the first generating function is reducible to

$$
p_{t}=\partial_{x}\left[\ln \left(e^{p}+1\right)-u\right] .
$$

Generalized Benney hydrodynamic chain

2. $\alpha \neq 0$, and quadratic equation $\alpha z^{2}+\beta z+\gamma$ has two coincided roots (without loss of generality we can fix $\alpha=1$). Then the first generating function is reducible to

$$
p_{t}=\partial_{\times}(\ln p+u) .
$$

3. $\alpha=0$, but $\beta \neq 0$. Without loss of generality we can fix $\beta=1$. Then the first generating function is reducible to

$$
p_{t}=\partial_{x}\left(e^{p}+u\right) .
$$

4. $\alpha=0$ and $\beta=0$. Then we obtain a generating function for the remarkable Benney hydrodynamic chain

$$
p_{t}=\partial_{\times}\left(\frac{p^{2}}{2}+u\right) .
$$

