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Abstract

We introduce a class of integrable dynamical systems of interacting classical matrix-
valued fields propagating on a discrete space-time lattice, realized as many-body circuits
built from elementary symplectic two-body maps. The models provide an efficient inte-
grable Trotterization of non-relativisticσ-models with complex Grassmannian manifolds
as target spaces, including, as special cases, the higher-rank analogues of the Landau–
Lifshitz field theory on complex projective spaces. As an application, we study transport
of Noether charges in canonical local equilibrium states. We find a clear signature of
superdiffusive behavior in the Kardar–Parisi–Zhang universality class, irrespectively of
the chosen underlying global unitary symmetry group and the quotient structure of the
compact phase space, providing a strong indication of superuniversal physics.
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1 Introduction

Explaining how macroscopic laws of matter emerge from microscopic reversible dynamics is
one the central problems of modern theoretical physics which is still quite far from being set-
tled. One source of difficulties is that dynamical systems which comprise many interacting
degrees of freedom are rarely amenable to exact analytic treatment and explicit closed-form
solutions are an exception. To make matter worse, numerical simulations of thermodynamic
systems out of equilibrium becomes quickly inaccessible at large times owing to exponential
growth of required resources, even in one spatial dimension where state-of-the-art methods
based on matrix-product states are available. Integrable models provide an opportunity to
mitigate some of these issues by providing an ideal theoretical playground and address some
key question of statistical physics with a high level of rigour. In spite of a long-lasting progress
in the field of classical [1–6] and quantum integrability [7–16], the ultimate hope to obtain
explicit solutions to various nonequilibrium problems has not materialized yet, and even the
most fundamental question still present a formidable task for analytical methods. Even in the
context of classical soliton theories, one of the gems of mathematical physics which culmi-
nated with the development of the (inverse) scattering techniques [17–19], neither the direct
nor the inverse problem generally permit closed-form solutions, and only rare instances are
known where the integration can be carried out in an analytic fashion [20–23]. Indeed, even
from a numerical standpoint, no effective framework for computing equilibrium averages of
dynamical (or even static) correlation functions is available at this time.

To circumnavigate some of these inherent limitations it is fruitful to attempt a slightly
different approach. To better understand certain peculiar features of integrable dynamical
systems subject to non-trivial global symmetry constraints, we confine ourselves in this paper
to a certain class of classical models in a discrete space-time geometry by following the spirit
of a preceding work [24]. Our aim is to explore the possibility of realizing simple exactly solv-
able symplectic circuits which possess conserved non-abelian currents. While sacrificing time-
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translational symmetry may at first glance seem an unnecessary hindrance, we wish to argue
nonetheless that dynamical systems in discrete time offer certain advantages over Hamiltonian
models that can be fruitfully employed in various physics applications. An example of this are
simple deterministic cellular automata studied recently in [25, 26, 26–28] which permit one
to obtain very explicit results for dynamical correlation functions. In this work, we describe a
simple procedure to obtain a class of many-body propagators composed of two-body sympletic
maps which governs a discrete space-time evolution of interacting matrix-valued degrees of
freedom. This is accomplished in a systematic manner, employing the methods of algebraic
geometry and the notion of Lax representation [2] which ensures integrability of the model
from the outset. An explicit integration scheme we managed to obtain provides a versatile
numerical tool which facilitates efficient numerical simulation of statistical ensembles.

An important source of motivation for this work comes from an ever growing theoreti-
cal interest in nonequilibrium phenomena in strongly-correlated quantum systems, nowadays
routinely explored in cold-atom experiments using highly-tunable optical lattice setups. Study-
ing systems confined to one spatial dimension is particularly attractive not only because they
can exhibit unorthodox phenomena, such as anomalous equilibration [29–34] and anoma-
lous transport laws [35–42], but also thanks to a variety of theoretical tools available to study
them. In the past few years, our understanding of transport phenomena in low dimensional
systems, both in the linear regime and far from equilibrium, has increased quite dramatically.
In the realm of integrable systems, the framework of generalized hydrodynamics [43,44] has
established itself as a versatile analytic and numerical tool which led to universal closed-form
expressions for the Drude weights [45–47] and DC conductivities [48–51] and paved the way
to many applications [52–65].

This work has been largely inspired by the recent discovery of superdiffusive magnetization
transport in the isotropic Heisenberg spin-1/2 chain [66–68], subsequently scrutinized in a
number of papers [41,42,69], collectively accumulating a convincing numerical evidence for
the Kardar–Parisi–Zhang (KPZ) type universality [70] (see also [71, 72] and [73–75]). It is
remarkable that the same phenomenon is already visible at the classical level, namely in the
integrable classical spin chains symmetric under global SO(3) rotations [24,76,77]. In spite of
a phenomenological picture based on an effective noisy Burger’s equation proposed recently
in [41] and further refined in [42], a complete and quantitative understanding of this curious
phenomen is still lacking at the moment. More specifically, aside from partial analytical [37,
39,78] and numerical evidence [79], it is not very clear what is the precise role of non-abelian
symmetries and, particularly, if higher-rank symmetries could potentially alter this picture and
possibly unveil new types of transport laws. With these questions in mind, we design a class
of integrable models whose degrees of freedom are matrix fields which take values on certain
compact manifolds. To gain better insight into anomalous nature of spin/charge dynamics in
models invariant under the action of non-Abelian Lie groups, we carry out a detailed numerical
study of charge transport in maximum entropy states. Our results indicate, quite remarkably,
that KPZ scaling is a ubiquitous phenomenon independent of the symmetry structure of the
local matrix manifold.

Outline. The paper is structured as follows. In Section 2 we present a novel class of in-
tegrable matrix models in discrete space-time. We begin in Section 2.1 by introducing the
setting and the zero-curvature formulation, and proceed in Section 2.2 with deriving a two-
body symplectic map and the corresponding many-body circuit. Next, in Section 2.3, we detail
out various properties of the local phase space and give a concise exposition of complex Grass-
mannian manifolds along with their symplectic structure (Section 2.3.2). The rest of Section 2
is devoted to various formal apects of our dynamical systems. Since these are not essential
for our application, the reader may choose to jump directly to Section 3, where we carry out
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a numeric study of charge transport in unbiased maximum-entropy equilibrium and quantify
its anomalous character. The interested reader is however warmly invited to read the remain-
der of Section 2, where we discuss several other key properties of the symplectic map. These
include integrability aspects (Section 2.4.1), the space-time self-duality (Section 2.4.2), the
Yang–Baxter property (Section 2.4.3), the Hamiltonian representation of the two-body map
(Section 2.5) and continuum limits (Section 2.6). In Section 4 we make concluding remarks
and outline several open directions. There are five separate appendices which include detailed
derivations and additional information on various technical aspects.

2 Integrable matrix models

2.1 Discrete zero-curvature condition

To set the stage, we shall first introduce the setting. We consider a discrete space-time in the
form of a a two-dimensional square lattice. Throughout the paper we adopt the convention
that the time flows in the vertical direction and the spatial axis is oriented horizontally towards
the right. To each site of the space-time lattice we attach a physical variable. A precise specifi-
cation of physical degrees of freedom, alongside the associated classical phase space, will be a
subject of Section 2.3. By rotating the space-time lattice by 45◦ degrees we introduce the light-
cone lattice and assign to each of its vertices (nodes) (n, m) ∈ Z2 an auxiliary variable φn,m.
Physical variables M t

`
are situated on the nodes of the space-time lattice (`, t) ∈ Z2 (at the mid-

points of edges of the light-cone lattice) and we label them as M t=n−m
`=n+m+1 (resp. M t=n−m+1

`=n+m+1 )
when ` + t is odd (resp. even). We furthermore impose periodic boundary condition in the
space direction, that is M t

`
≡ M t

`+L , assuming the system length L to be even.
The outlined construction rests on the notion of a linear transport problem for the auxiliary

variables, see e.g. references [2,5,18,19,80]. Parallel transport along the light-cone directions
(i.e. characteristics `± t = const) reads

φn+1,m = L(+)n,m(λ)φn,m, φn,m+1 = L(−)n,m(µ)φn,m, (1)

where a pair of ‘matrix propagators’ L(±), called the Lax pair, represent certain matrix functions
of physical variables which additionally depend analytically on the so-called spectral parame-
ters λ and µ.

The consistency requirement for the above auxiliary linear problem is that the shifts of the
light-cone coordinates commute, meaning that moving fromφn,m toφn+1,m+1 does not depend
on the order of the light-cone propagators. This condition can be neatly encapsulated by the
discrete zero-curvature property (cf. refs. [81, 82]) around the elementary square plaquette of
the light-cone lattice

F1/2 L(+)(λ; M2)L
(−)(µ; M1)F

−1/2 = F−1/2 L(−)(µ; M ′2)L
(+)(λ; M ′1)F

1/2. (2)

Here we have focused on a single plaquette and slightly adapted our notation: the Lax matrices
L(±) that propagate along the light-cone directions are now functions of local ‘edge variables’
M , whereas F is a constant invertible ‘twisting matrix’; primed variables M ′ are a shorthand no-
tation for M shifted by one unit in the time direction (as depicted in Figure 1). Importantly, the
discrete curvature is everywhere satisfied if and only if the updated variables M ′1,2 are appro-
priately linked to M1,2. Another suggestive interpretation is to think of the flatness condition
as a specification of the dynamical propagator, i.e. a local two-body map (M1, M2) 7→ (M ′1, M ′2)
over a spatially adjacent pair of sites (1, 2). In Section 2.4.1 we explain how Eq. (2) gives rise
to integrability of the model.
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L(−)(µ; M1) L(+)(λ; M2)

L(+)(λ; M ′1) L(−)(µ; M ′2)

Figure 1: Elementary plaquette of the discrete light-cone lattice: matrix-valued clas-
sical fields (blue circles), which belong to a certain manifold, are attached to vertices
of the discrete space-time lattice. Primed variables M ′1,2 pertain to M1,2 time-shifted
by one unit by application of propagator Φτ. Yellow circles implement local twists
of either positive or negative orientation represented by conjugations with constant
invertible matrices F1/2 and F−1/2, respectively.

Obtaining and classifying all physically admissible solutions to Eq. (2) is likely a difficult
task and we shall not undertake it in this work. With a more modest goal in mind, we will
attempt to find first the simplest solutions by making the following restrictions:

1. We set both light-cone Lax operators to be equal, L(+) ≡ L(−).

2. Lax matrix L(λ; M) is assumed to be a linear function of the spectral parameter λ.

3. Lax matrix L(λ; M) is assumed to have a linear dependence on the matrix variable M .

We shall interpret a local physical variable M as a classical matrix field which takes values
in GL(N ;C) or a submanifold thereof. The third requirement can then be naturally satisfied
(without loss of generality) by imposing the non-linear constraint

M2 = 1. (3)

We make the following ansatz for the Lax matrix complying with (1.-3.),

L(±)(λ; M) −→ L(λ; M) = λ1+ i M , (4)

and proceed to look for the solutions of the discrete zero-curvature condition of the form

F L(λ; M2)L(µ; M1) = L(µ; M ′2)L(λ; M ′1)F. (5)

It remarkably turns out that this matrix equation admits a unique non-trivial solution of the
difference type, i.e. that there exist a map (M1, M2) 7→ (M ′1, M ′2) depending solely on the
difference of the two spectral parameters µ−λ. As subsequently demonstrated, the difference
condition naturally implies a dynamical conservation law

M ′1 +M ′2 = F(M1 +M2)F
−1 ≡ AdF (M1 +M2), (6)

which in the absence of twist (F = 1) implies a global conservation law
∑

` M t
`
= const when

extended to the space-time lattice, see Figure 2.
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Figure 2: Fabric of discrete space-time: the physical space-time lattice, comprising
matrix degrees of freedom M t

`
(blue circles), coexisting with the light-cone square lat-

tice depicted by a tilted checkerboard. A two-body symplectic map Φτ (red square),
which is attached to the middle of each tile, provides the time-propagator for every
pair of adjacent physical variables.

2.2 Dynamical map

The solution to the zero-curvature condition (5), supplemented with nonlinear constraint
(3), admits a unique solution of ‘difference form’ as one-parameter family of symplectic maps,
Φτ : M1 ×M1→M1 ×M1,

�

M ′1, M ′2
�

= Φτ(M1, M2), τ := µ−λ ∈ R, (7)

representing diffeomorphisms on the product of two manifolds M1 of involutory matrices. An
explicit realization of Φτ is an adjoint mapping

M ′1 = AdFSτ(M2), M ′2 = AdFSτ(M1), (8)

generated by an invertible1 matrix

Sτ ≡ M1 +M2 + iτ1, (9)

where the ‘twist field’ F can be any constant invertible GL(N ;C) matrix. For the proof with
a derivation we refer the reader to Appendix A. Note that the map is well defined even for
arbitrary complex τ, while we require τ to be real in this paper in order to allow for its inter-
pretation as a Trotter time step of a Hamiltonian flow.

The above mapping plays a role of the two-site time-propagator (with time-step τ) which
provides the basic building block of the many-body symplectic circuit (shown in Figure 2)
which, moreover, manifestly preserves the non-linear constraint (3). The above construction
is arguably the simplest integrable many-body dynamical system of non-commuting variables
in discrete space-time.

1Non-degeneracy of Sτ for |τ| > 0 follows from showing Det(Sτ)Det(S†
τ
) > 0, which is a consequence of her-

miticity of M1,2, commutativity [M1M2, M2M1] = 0, ‖M1,2‖2 = 1, and sub-multiplicativity of the operator norm.
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Many-body propagator. The two-body propagator defined in Eq. (7) constitutes a basic el-
ement of the dynamical map Φfull

τ : ML →ML defined on the entire phase space ML =M×L
1 ,

denoting the Cartesian product of L copies of M1.
By virtue of the light-cone structure, the dynamics decomposes into odd and even time-

steps,

(M2t+2
2`−1 , M2t+2

2` ) = Φτ(M
2t+1
2`−1 , M2t+1

2` ), (M2t+1
2` , M2t+1

2`+1 ) = Φτ(M
2t
2` , M2t

2`+1), (10)

respectively, as depicted in Figure 2. With the usual embedding prescription,

Φ( j)τ = I ⊗ · · · ⊗ I
︸ ︷︷ ︸

j−1

⊗Φτ ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

L− j−1

, (11)

where I : M1 →M1 designates a local unit function I(M) ≡ M , the full propagator for a
double time step t 7→ t + 2 can be split as,

Φfull
τ = Φ

even
τ ◦Φodd

τ , (12)

with the odd/even propagators further factorizing as

Φodd
τ =

L/2
∏

`=1

Φ(2`−1)
τ , Φeven

τ =
L/2
∏

`=1

Φ(2`)τ . (13)

In this view, the full map Φfull
τ can be perceived as an ‘integrable Trotterrization’, closely re-

sembling the integrable Trotterization of the quantum Heisenberg model obtained in [83,84].
Indeed, we will shortly demonstrate in Section 2.6 below that Eqs. (8) actually correspond
to complete space-time discretizations of (nonrelativistic) σ-models with compact Lie group
cosets as their local target spaces. These include, in particular, the higher-rank analogues of
the Landau–Lifshitz magnets [18,85] pertaining to CPn manifolds, cf. [86]. This class of clas-
sical field theories indeed naturally emerges as the semi-classical limit of integrable quantum
chains of locally interacting ‘spins’ which exhibit manifest symmetry under SU(N), introduced
a long while ago in [87,88]. In Appendix E we show that the effective classical action govern-
ing the long-wavelength modes above a ferromagnetic vacuum yields precisely the continuous
space-time counterparts of our matrix models.

2.3 Phase space and invariant measures

In this section we proceed by identifying the admissible phase spaces for the dynamical map
and describe their formal properties. For a general introduction to differential geometry and
symplectic manifolds we refer the reader to one of the standard texts, e.g. [89,90].

In classifying the phase space, the non-linear constraint (3) plays a pivotal role. Moreover,
it will be key for us to restrict ourselves to compact smooth manifolds where the notion of
a normalizable invariant measure is well defined. This leaves us with the following list of
compact Lie groups: (i) unitary groups U(N), (ii) orthogonal groups O(N), and (iii) compact
symplectic groups USp(2N).2

Complex Grassmannians. We begin be examining the unitary Lie groups G = U(N), as-
suming N ≥ 2. The first thing to notice is that, by virtue of the involutory property (3), the
dynamical matrix variables do not bijectively correspond to the elements of G but instead lie
on a submanifold spanned by N -dimensional hermitian matrices prescribed by

GrC(k, N) :=
�

M ∈ GL(N ;C); M† = M , M2 = 1, Tr M = N − 2k
	

. (14)

2There are, in addition, the compact forms of exceptional Lie groups which will be exempted from this study.
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This defines the so-called complex Grassmannian manifold, the set of k-dimensional complex
planes embedded in CN which pass through the origin, corresponding to the eigenspaces of
M with eigenvalue −1. Specifically, by prescribing a diagonal signature matrix,

Σ(k,N) = diag(−1,−1, . . . ,−1
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

N−k

), (15)

the manifolds M(k,N)
1 ≡ GrC(k, N) can be naturally identified with the adjoint orbits of Σ(k,N)

under the action of group G, that is any M ∈M(k,N)
1 can be obtained as

M = gΣ(k,N) g†, g ∈ G. (16)

Here we emphasize that a matrix M ∈ M1, as given by Eq. (16), does not correspond to
a unique group element g, the reason being that Σ(k,N) is invariant under conjugation with
unitary matrices of the form h ∈ H = U(k)×U(N − k), that is AdhΣ

(k,N) = Σ(k,N) for all h ∈ H.
In this view, GrC(k, N) are homogeneous spaces, i.e. cosets of the isometry group G by the
stability group H,

GrC(k, N)'
G
H
≡

U(N)
U(k)× U(N − k)

∼=
SU(N)

S(U(k)× U(N − k))
, (17)

where ∼= stands for diffeomorphic equivalence.3 The group G acts transitively on each compo-
nent of GrC(k, N) by virtue of Eq. (16), with the subgroup H being the G-stabilizer ofΣ(k,N). In
other words, the group manifold foliates into equivalence classes under the action of H, each
being an element of the coset space G/H. Grassmannian manifolds include, as a special case,
complex projective spaces GrC(1, N) ∼= CPN−1, representing complex lines passing through
the origin of a complex Euclidean space. Due to equivalence GrC(k, N) ∼= GrC(N − k, N) we
shall subsequently assume, with no loss of generality, that k ≤ bN/2c.

Matrices which satisfy the involutory property (3) can be alternatively realized in terms of
rank-k projectors P projecting onto the eigenspace with eigenvalue −1,

M = 1− 2P, P = g P0 g†, P0 =

�

1k Ok,N−k
ON−k,k ON−k

�

, (18)

where 1n and On are n× n unit and zero matrices, respectively, while Om,n is an m× n zero
matrix.

Complex Grassmannian manifolds GrC(k, N) are preserved (closed) under the map (8), as
confirmed by a direct calculation (see Appendix A), so they may be identified with a single-site
phase space for our dynamics M1 ' GrC(k, N).

Real Grassmannians. By replacing the unitary Lie group with the (real) orthogonal Lie
group O(N), and again demanding M2 = 1, we obtain homogeneous spaces with the coset
structure GrR(k, N) = O(N)/(O(k)×O(N−k)), known as real Grassmannian manifolds. A brief
inspection shows that real Grassmannians GrR(k, N) are not preserved under the dynamical
map (8) and hence will not be considered further in this work.

Lagrangian Grassmannians. We finally consider complex matrices which preserve the sym-
plectic unit, namely the symplectic group Sp(2N ;C). Although the latter is not compact, its
restriction to the unitary subgroup, that is the intersection of Sp(2N ;C) with SU(2N), is a
simply-connected compact Lie group USp(2N) of 2N -dimensional complex matrices

USp(2N)≡ Sp(N) :=
�

g ∈ GL(2N ,C); g† g = 12N , gT J g = J
	

, (19)

3S(U(k)× U(N − k)) denotes intersection of SU(N) and U(k)× U(N − k).

8

https://scipost.org
https://scipost.org/SciPostPhys.9.3.038


SciPost Phys. 9, 038 (2020)

called the unitary symplectic group. Here J denotes the standard symplectic unit

J =

�

ON 1N
−1N ON

�

= iσ y ⊗1N . (20)

The adjoint USp(2N) orbits of the antisymplectic signature4

Σ= diag(1, . . . , 1
︸ ︷︷ ︸

N

,−1, . . . ,−1
︸ ︷︷ ︸

N

) = σz ⊗1N , ΣT J Σ= −J , (21)

then give antisymplectic unitary involutory matrices M = gΣ g† which satisfy

L(N) :=
�

M ∈ GL(2N ,C); M2 = M M† = 1, MTJ M = −J
	

. (22)

This defines a sub-manifold of GrC(N , 2N) of complex dimension N(N + 1)/2 known as the
complex Lagrangian Grassmannian L(N), a homogeneous manifold of Lagrangian subspaces
in a symplectic vector space of even dimension 2N with the quotient structure

L(N) =
USp(2N)

U(N)
. (23)

In Appendix A we demonstrate that the dynamics (8) preserves the Lagrangian submani-
fold with the anti-symplectic signature, hence Lagrangian Grasmannians again also constitute
an admissible phase space M1

∼= L(N).

2.3.1 Affine parametrization

To specify a Grassmannian manifold GrC(k, N) one has to supply k linearly independent com-
plex vectors of dimension N . Let us suppose these are stored as columns of a complex N × k
matrix Ψ. Matrix elements of Ψ are referred to as homogeneous coordinates of GrC(k, N). It is
crucial to recognize here that the choice of basis vectors is not unique as one enjoys the free-
dom of performing linear transformations Ψ→ ΨA with any invertible k-dimensional matrix A.
Given that Grassmannians are identified with equivalence classes g H, a description in terms
of homogeneous coordinates involves (in general non-abelian) gauge freedom. By exploiting
this gauge redundancy, we can always pick and choose an element in each equivalence class
to bring the coordinate matrix into a ‘canonical form’

Ψ =

�

1k
Z

�

, (24)

uniquely fixing (N − k)× k complex matrix coordinates

Z = (zi,a), i = 1,2, . . . , N − k, a = 1, 2, . . . , k. (25)

Grassmannian manifolds GrC(k, N) therefore correspond to complex manifolds of real dimen-
sion dim GrC(k, N) = dim U(N)− dim (U(k)×U(N − k)) = 2k(N − k) parametrized locally by
affine coordinates zi,a. By parametrizing the group element in the form [91–93]

g(Z) =

�

(1k + Z†Z)−1/2 −(1k + Z†Z)−1/2Z†

Z(1k + Z†Z)−1/2 (1N−k + Z Z†)−1/2

�

, (26)

4Let us also note that an alternative choice of the signature, eΣ = diag(1,−1,1,−1 . . . , 1,−1) = 1N ⊗σz would
generate symplectic involutory matrices M . As shown in Appendix A, this property is not conserved under the
dynamics.
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projector P(Z) of rank-k assumes the block structure

P(Z) =

�

(1k + Z†Z)−1 (1k + Z†Z)−1Z†

Z(1k + Z†Z)−1 Z(1k + Z†Z)−1Z†

�

. (27)

One shortcoming of such an explicit parametrization is that it does not provide a global
parametrization of M1. Indeed, one needs in total

�N
k

�

coordinate charts to cover the en-
tire phase space, obtained by all possible distributions of −1 in the diagonal signature matrix
Σ.

2.3.2 Symplectic structure

Complex Grassmannians GrC(k, N) are symplectic manifolds. They are indeed Kähler mani-
folds, which means that they possess compatible Riemannian and symplectic structures. In this
section we give a succinct review of the basic notions which we subsequently use throughout
the rest of the paper.

Sympletic form. The local phase space M(k,N)
1 of a matrix model is a smooth manifold en-

dowed with a symplectic 2-fromωK which is closed, dωK = 0, and non-degenerate, Det(ωK) 6= 0.
Expressed in terms of local affine coordinates zi,a (and their complex conjugates z̄i,a) with
ranges i = 1, 2, . . . , N − k and a = 1,2, . . . k, the Kähler form ωK reads compactly

ωK =
i
2

N−k
∑

i, j=1

k
∑

a,b=1

ω(i,a),( j,b)dzi,a ∧ dz̄ j,b. (28)

The Kähler form can be expressed in terms of the Riemann metric tensor,

η(Z) =
�

�

1N−k + Z Z†
�−1 ⊗

�

1k + Z†Z
�−T�

, (29)

and, employing the vectorized matrix coordinate

Z= vec(Z) = (z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zN−k,1, . . . , zN−k,k)
T, (30)

can be written compactly as ωK =
1
2idZ† ∧ η(Z)dZ. In the special case of complex projective

spacesCPn one recovers the well-known Fubini–Study metric ηFS, which can be obtained from
the Kähler potential K = log

�

1+
∑n

j=1 |z j|2
�

, via
�

ηFS

�

i j = ∂
2K/∂ zi∂ z̄ j .

An alternative way of introducing the symplectic structure is to exploit the algebraic struc-
ture. This is not only advantageous from the practical standpoint, but also avoids any particular
coordinatization of M(k,N)

1 . The symplectic form can then be written compactly as

ω=
1
4i

Tr(MdM ∧ dM) = −iTr(PdP ∧ dP). (31)

Here it is crucial that, owing to involutory property M2 = 1, the differentials are subjected to
MdM + dM M = 0. It is not hard to explicitly verify that the 2-form given by Eq. (31) is both
non-degenerate5 and closed6, ensuring that ω−1 exists. Note that the sympectic forms (28)
and (31) are equivalent, up to normalization.

5Since Grassmannians are homogeneous spaces with one connected component, it is sufficient to verify non-
degeneracy at one point, e.g. at Σ.

6Closedness can be established immediately: dω = (4i)−1Tr(dM ∧ dM ∧ dM) = (4i)−1Tr(dM ∧ dM ∧ dM M2)
= −(4i)−1Tr(MdM ∧dM ∧dM M) = −(4i)−1Tr(dM ∧dM ∧dM M2) = −dω= 0, where we have used M2 = 1 and
M dM + dM M = 0.
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Vector fields. Classical observables f are regarded as smooth functions on M1,
f ∈ C∞(M1), where for clarity of notation we keep dependence on k and N implicit. The sym-
plectic form ω provides a mapping from the smooth functions to vector fields via d f = ιVω,
where where ιVω is the interior product7. The vector fields span a complexified tangent plane
TMM1 attached to a point M ∈M1. Expanding in the basis of partial derivatives ∂ /∂ zi,a and
∂ /∂ z̄i,a, we can write

V =
N−k
∑

i=1

k
∑

a=1

�

Vi,a
∂

∂ zi,a
+ V̄i,a

∂

∂ z̄i,a

�

. (32)

We can nonetheless avoid making any reference to an explicit coordinate system and use
the fact that there is a natural action of the group G = SU(N) on M1 given by conjuga-
tion M 7→ g M g†, where g ∈ G is a group element of the form g = exp

�

−i
∑

a θaX a
�

, with
θa ∈ R and X a ∈ g being traceless hermitian matrices generating the Lie algebra g = su(N).
Fixing the basis {X a}, a = 1, 2, . . . , dimg= N2 − 1, with normalization

κab = Tr(X aX b) =
1
2
δab, (33)

the generators satisfy commutation relations8

[X a, X b] = i
∑

c

εabcX
c , (34)

where εabc is the appropriate tensor of structure constants. Now the matrix-valued vector
fields VX (M) can be viewed as an infinitesimal action of group G at M ∈M1, that is

VX (M) = −i (ad X )M ≡ −i[X , M]. (35)

Momentum maps. The Lie algebra structure on the space of vector fields realized by the
commutator induces a Lie algebra structure on the space of functions provided by the Poisson
bracket on the phase space M1. A mapping from a Lie algebra to functions on classical phase
spaces is realized by the momentum map, formally obtained by contracting the symplectic form
with the vector field

d fX = ιVX
ω. (36)

Contracting the symplectic form using dM(VX ) = VX (M),

ιVX
ω=

1
4i

Tr
�

M[VX (M), dM]
�

, (37)

provides the momentum map associated to every generator X ∈ g,

fX (M) = Tr(X M). (38)

Poisson bracket. The Poisson bracket {·, ·} is an anti-symmetric bilinear operation which
obeys the Liebniz derivation rule and the Jacobi identity, formally defined through the full
contraction of the symplectic 2-form.

In any local coordinate chart, the Poisson bracket can be expressed through the inverse of
the Riemann metric

{ f1, f2}K =
∑

j,k

�

η−1
�

jk

�

∂ f1
∂ z j

∂ f2
∂ z̄k
−
∂ f1
∂ z̄ j

∂ f2
∂ zk

�

. (39)

7Contraction of a 2-form α∧ β with a vector field V is computed as ιV (α∧ β) = (ιVα)β −α(ιVβ).
8We note that by normalization convention for the generators of g, we have ω= 2ωK .
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We again avoid explicit coordinate description by utilizing the momentum maps induced by
the action of g and accordingly define the Poisson bracket through the contraction of ω,

{ fX , fY } :=ω(VX , VY ) = ιVY
d fX = ιVY

ιVX
ω. (40)

This readily implies the following relation for the momentum maps,

{ fX , fY }=
1
4i

Tr
�

M
�

i[X , M], i[Y, M]
�

�

= −Tr
�

i[X , Y ]M
�

, (41)

yielding the Lie–Poisson algebra,

{ fX , fY }= f−i[X ,Y ] =⇒ { fX a , fX b}=
∑

c

εabc fX c . (42)

Using furthermore that
fX a(M) = Tr(X aM) = M a, (43)

we deduce the su(N) Lie–Poisson algebra for the hermitian components of M ,

{M a, M b}=
∑

c

εabc M c . (44)

This is a good place to stress once again that, by virtue of M2 = 1, not all matrix elements
(components) M a can be regarded as independent fields. Indeed, imposing the nonlinear
constraint amounts to fixing a symplectic leaf (i.e. Casimir invariants). Consequently, the
symplectic form ω is non-degenerate only on particular adjoint group orbits. With this in
mind, the Lie–Poisson bracket (44) on a local phase space M1 can be more conveniently
reformulated in an equivalent matrix form

�

M ⊗, M
	

= −
i
2

�

Π, M ⊗1N −1N ⊗M
�

, (45)

where Π is the permutation (transposition, or swap) matrix over CN ⊗ CN and the matrix
Poisson bracket is defined as

��

M ⊗, M
	�

ab,cd ≡
�

Mac , Mbd

	

. This bracket can be immediately

lifted to the product phase space ML =M×L
1 by demanding Poisson commutativity at different

lattice sites,
�

M`
⊗, M`′

	

= −
i
2

�

Π, M` ⊗1N −1N ⊗M`′

�

δ`,`′ . (46)

Finally, promoting the Lie–Poisson algebra to Lax matrices, the linear bracket (46) can be
presented as Sklyanin’s fundamental quadratic bracket

�

L(λ; M`) ⊗, L(λ′; M`′)
	

=
�

r(λ,λ′), L(λ; M`)⊗ L(λ′; M`′)
�

δ`,`′ , r(λ,λ′) =
Π

λ′ −λ
, (47)

where the intertwiner r(λ,λ′) is the so-called classical r-matrix [12,18,19].

Hamiltonian field. The Hamiltonian action on a local phase space M(k,N)
1 associated with

a vector field VH (for Hamiltonian H ∈ g) induces the following dynamics of the momentum
maps

d
dt

fX a(t) = VH fX a = { fX a , fH}= f−i[X a ,H]. (48)

At the level of matrix variables M , one can accordingly deduce the ‘Heisenberg equation of
motion’

d
dt

M(t) = i[M(t),H], (49)
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with the solution
M(t) = UH(t)M(0)U

†
H(t), UH(t)≡ e−it H. (50)

Splitting the Hamiltonian H and the unitary propagator UH into block form,

H =
�

Ak Bk,N−k

B†
N−k,k DN−k

�

=⇒ UH =

�

UA UB
UC UD

�

, (51)

and using the projector representation of the momentum map,

fH(Z , Z†) = −2Tr
�

H P(Z , Z†)
�

= −2Tr
�

(1+ Z†Z)−1(A+BZ + Z†B† + Z†DZ)
�

, (52)

the Hamiltonian equations of motion can also be given in the affine coordinates (cf. Eq. (246)
in Section E.1)

dz j

dt
= −i{z j , fH}= −i

∑

k

ηk j
∂ fH
∂ z̄k

, (53)

along with the complex-conjugate counterpart. These can be recast compactly in the form of
a matrix Ricatti equation [91]

d
dt

Z(t) = i(ZA−DZ +B† − ZBZ). (54)

2.3.3 Separable invariant measure

Since M(k,N)
1 are homogeneous spaces, they admit a G-invariant measure inherited from the

invariant Haar measure of the unitary group G. This measure is none other than the normal-
ized invariant symplectic volume, defined via the highest exterior product of the Kähler form
ωK with itself

dΩ(k,N) =
(ωK)∧n

n!
, n= k(N − k). (55)

In terms of the Riemann metric tensor we therefore have

dΩ(k,N) = (2 i)−nDet(η)
k
∏

a=1

N−k
∏

i=1

dz̄i,adzi,a. (56)

The determinant of the metric tensor can be expressed in terms of the affine matrix coordinate

Det(η) =
�

Det(1k + Z†Z)
�−n

. (57)

Liouville measure. The Liouville measure specified by density ρ(k,N) refers to an unbiased
(flat, or uniform) G-invariant probability measure on M(k,N)

1 given by the normalized sym-
plectic volume,

ρ(k,N)(M) =
1

N (k,N)
, N (k,N) = Vol

�

M(k,N)
1

�

=

∫

M(k,N)
1

dΩ(k,N). (58)

The Liouville volume N (k, N) can be computed in an indirect manner by exploiting the coset
structure of GrC(k, N). The symplectic volume of the unitary group U(n) can easily inferred
from the isomorphisms U(n)/U(n−1)∼= S2n−1, where the volumes of hypersphere are known
to be Vol(S2n−1) = 2πn/(n− 1)!, whence

Vol
�

U(n)
�

=
n
∏

m=1

Vol
�

S2m−1
�

=
n
∏

m=1

2πm

(m− 1)!
=

2nπn(n+1)/2

1! · · · (n− 1)!
. (59)
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Using the coset structure we thus have [94]

N (k,N) =
Vol(U(N))

Vol(U(k))Vol(U(N − k))
=

(1! · · · (k− 1)!)πk(N−k)

(N − k)! · · · (N − 2)!(N − 1)!
. (60)

In physics applications, the above measure can be naturally related to the maximum-
entropy (or infinite-temperature) equilibrium ensemble of a local matrix degree of freedom.
The latter is distinguished by the fact that it maximizes the Shannon/Gibbs entropy

s[ρ(M)] = −
∫

M(k,N)
1

dΩ(k,N)ρ(M) log ρ(M). (61)

The Liouville measure over the many-body (product) phase space M(k,N)
L is then given by a

product (separable) flat measure

ρ
(k,N)
L ({M`}) =

L
∏

`=1

ρ
(k,N)
`
(M`) = const. (62)

To establish that the Liouville measure (62) is invariant under the time evolution generated
by Φfull

τ , it suffices to verify that the symplectic form ω (and hence the volume element dΩ)
is preserved under the action of two-body propagator Φτ given by Eqs. (8). This amounts to
show that Φτ preserves the Poisson bracket, as shown explicitly in Appendix B.

Grand-canonical measure. The Liouville measure on M(k,N)
1 admits a multi-parameter ex-

tension

ρ
(k,N)
`
(M`; {µb}) =

1
Z(k,N)({µb})

exp





dimg
∑

a=1

µa fX a(M`)



. (63)

The normalization factor

Z(k,N)({µb}) =
∫

M(k,N)
1

dΩ(k,N) exp

�

∑

a

µa fX a(M)

�

, (64)

can be interpreted as the grand-canonical partition function. Formally, this represent a push-
forward of the Liouville measure by the momentum map, known in the mathematical literature
as an equivariant measure. The class of grand-canonical measures (63) solves the constrained
variational problem of entropy maximization (cf. Eq. (61)) with prescribed Lagrange multi-
pliers µa ∈ R.

Again we can build a product measure over ML from the grand-canonical measures over
single sites. Since any two adjacent local phase spaces M1 ×M1 in the Cartesian product
ML are acted on by the group G in a Hamiltonian fashion and the action of G is diagonal, an
equivariant measure ρ(k,N)

L on ML is also preserved under the action of time-propagator Φτ
provided F = 1. This is an immediate corollary of the fundamental conservation law (6).

We can assume, with no loss of generality, that the grand-canonical measure is charac-
terized only by the maximal torus of G, namely that the exponent in Eq. (63) is an element
X a ∈ g0 of the maximal Abelian (Cartan) subalgebra g0 of g. The phase-space averages of the
Cartan charge densities are given by

〈qa〉=
∫

M(k,N)
1

dΩ(k,N)ρ(M ; {µb}) fX a(M) =
∂

∂ µa
logZ(k,N)({µb}), X a ∈ g0. (65)
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In performing phase-space integrals over an Abelian equivariant measure ρ(k,N)(M ; {µa})
explicit integration can be circumvented thanks to the localization theorem due to Duistermaat
and Heckman [95] (see also [96,97]). The statement essentially concerns the exactness of the
saddle-point approximation: an integral of the exponent of the Hamiltonian action of a torus
group on a compact phase space localizes at its critical points. Recalling the fact that the torus
action on M1 is governed by a linear matrix equation,

dZ(t)
dt

= i(ZA−DZ), (66)

where A and D are blocks of Hamiltonian matrix (51), with H =
∑

a µaX a, and assuming
for definiteness that the critical points are all isolated (i.e. non-degeneracy Aa,a 6= Di,i for all
a = 1, . . . , k and i = 1, . . . , N −k), the stationary points (d/dt)Z? = 0 in every coordinate chart
are located precisely at the origin Z? = 0, with the associated Hessian matrix

∂ 2 fH
∂ zi,a∂ z̄ j,b

�

�

�

Z?
=Aabδi j −Di jδab. (67)

Denoting χα =Hαα and applying the Duistermaat–Heckman formula one finds (see e.g. [92])

Z(k,N)({χα}) = (−1)nπk(N−k)
∑

σ

exp (χσa
)

∏k
a=1

∏

ā∈σ̄(χā −χσa
)
, (68)

where the summation is over all ordered sets σ = {σ1 < σ2 < . . . ,σk} covering all
�N

k

�

coordinate patches (i.e. all possible redistributions of −1’s in the signature Σ(k,N)), while ā
runs over the complementary set of indices σ̄ = {1, 2, . . . , N} \σ.

2.4 Integrability structure of the dynamical map

2.4.1 Isospectrality

In this section we discuss certain integrability aspects of Eqs. (8) arising from the zero-curvature
representation on the discrete two-dimensional light-cone lattice introduced earlier in Sec-
tion 2.1. Flatness of the Lax connection signifies that parallel transport of the auxiliary vari-
able from one point on the light-cone lattice to another does not depend on the path (Wilson
line) between the two; all contractible closed paths on the light-cone lattice are therefore triv-
ial. On the other hand, a discrete holonomy corresponding to a non-contractible path which
wraps once around the system (with periodic boundary conditions) is non-trivial and provides
an analytic family of matrix-valued functions on the phase space ML called the (staggered)
monodromy matrix

Mτ(λ|{M`}) = L(λ; ML) L(λ+τ; ML−1) · · · L(λ; M2) L(λ+τ; M1), (69)

where we have adopted the right-to-left path-ordering convention. The zero-curvature con-
dition implies that any two monodromies with odd or even time argument are related to one
another by a similarity transformation. Their eigenvalues, or any spectral invariants, are conse-
quently conserved under the time evolution. SinceMτ(λ|{M`}) admits analytic dependence on
the spectral parameter λ, its invariants provide a generating functional for an extensive num-
ber (i.e. O(L)) of constants of motion (conservation laws), namely functionally independent
phase-space functions preserved under the evolution. This hallmark property of Lax integra-
bility is referred to as isospectrality [19,81]. To establish integrability in the Liouville–Arnol’d
sense one has to additionally show that these conservation laws are mutually in involution.
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The trace of the monodromy matrix defines the transfer map Tτ(λ) : ML → C,

Tτ(λ|{M`}) = TrMτ
�

λ; {M`}
�

, (70)

constituting a family of mutually Poisson-commuting analytic phase-space functions on ML
¦

Tτ(λ; {M`}), Tτ(λ
′; {M`})

©

= 0 ∀ λ,λ′ ∈ C, (71)

where τ ∈ R is a fixed parameter.9 By sequential application of the local zero curvature relation
(5) on even and subsequently odd pairs of Lax operators along a fixed horizontal sawtooth on
the light-cone lattice, one obtains time conservation of the transfer map

Tτ(λ) ◦Φfull
τ = Tτ(λ). (72)

Functions Tτ(λ) then generate, via logarithmic differentiation, a family of local conservation
laws, at least for signatures with rank k = 1. This is shown explicitly in Appendix D.

2.4.2 Space-time self-duality

Dual propagator. The two-body propagator defined in Eq. (7) realizes the time propagator
of the matrix model, namely it propagates a pair of adjacent matrix variables by one unit step
along the time direction. The discrete zero-curvature property (5) nonetheless also permits
to define the dual propagator Φd

τ : M1 ×M1 →M1 ×M1, the spatial analogue of a two-
body map where variables (M1, M ′1) are understood as an ‘incoming’ state and (M2, M ′2) as an
‘outgoing’ state. See Ref. [98] for a discussion of related concepts in continuum integrable
models.

To construct the dual propagator, we consider the linear transport problem for the auxiliary
fields in the time direction, noticing that reversing the direction of propagation amounts to
inverting the Lax operator (cf. Eq. (4))

L(λ; M)−1 = (λ2 + 1)−1 L(λ;−M). (73)

Starting from Eq. (5), operating by L(µ; M1)−1 from the right and by L(µ, M ′2)
−1 from the left,

and finally multiplying by twists F−1/2 from both sides, we arrive at the dual zero-curvature
relation (as depicted Figure 3)

F−1/2 L(λ; M ′1) F L(µ;−M1)F
−1/2 = F−1/2 L(µ;−M ′2) F L(λ; M2)F

−1/2. (74)

A neat trick to solve this equation is via a local gauge transformation,

eM1 = −M1, eM ′1 = F−1 M ′1 F, eM2 = F M2 F−1, eM ′2 = −M ′2, (75)

which transforms it back to the original form of the (twisted) discrete zero-curvature relation
(5)

F1/2 L(λ; eM ′1)L(µ; eM1) F
−1/2 = F−1/2 L(µ; eM ′2)L(λ; eM2) F

1/2, (76)

along with the dual dynamical symmetry law (6)

( eM2 + eM ′2) = F( eM1 + eM ′1)F
−1 = AdF ( eM1 + eM ′1). (77)

The upshot here is that the local two-body spatial propagator in the ‘tilde’ (gauged) variables
exactly coincides with the temporal one,

�

eM ′2, eM2

�

= Φτ
�

eM ′1, eM1

�

. (78)

9This statement is a direct corollary of the discrete zero-curvature condition (2) lifted onto the level of transfer
maps with the aid of the Sklyanin bracket and Leibniz derivation rule.
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An explicit prescription for the dual propagator Φd
τ,

(M2, M ′2) = Φ
d
τ(M1, M ′1), (79)

can be found by undoing the gauge transformation (75), yielding

M2 = AdS−τ
(M ′1), M ′2 = AdS+τ

(M1), (80)

where
S±τ = M ′1F±1 − F±1M1 + iτF±1. (81)

In conclusion, the dual (i.e. spatial) propagator Φd
τ and the temporal propagator Φτ (7) are,

apart from a local gauge transformation of the plaquette, identical maps.

M1 M2

M ′1 M ′2

+

−

−

+

−

+

+

−

Φ

L(−)1 (µ; M1) L(+)2 (λ; M2)

L′(+)1 (λ; M1) L′(−)2 (µ; M2)

reversing
direction

M1 M2

M ′1 M ′2

−

+

−

+

+

−

+

−

Φd

�

L(−)1 (µ; M1)
�−1 L(+)2 (λ; M2)

L(+)1 (λ; M ′1) �

L(−)2 (µ; M ′2)
�−1

gauge transformation

eM1 eM2

eM ′1 eM ′2

−

+

+

−

+

−

−

+

Φ

L(−)1 (µ; eM1) L(+)2 (λ; eM2)

L(+)1 (λ; eM ′1) L(−)2 (µ; eM ′2)

Figure 3: Space-time self-duality: parallel transport in the ‘space-like’ direction as-
sociated with the temporal propagator Φτ (top left panel) can be interpreted as the
‘time-like’ parallel transport by inverting the Lax matrices along the ‘negative’ light-
cone axis (top right panel) which defines the dual (i.e. spatial) propagator Φd

τ. The
canonical form can be recovered by additionally applying a gauge transformation on
the matrix variables (bottom panel), thus establishing a duality between the temporal
and spatial propagators.

Self-duality. In the absence of twist (F = 1), the above gauge transformation can be consis-
tently extended to the entire space-time lattice,

eM t
` = (−1)`+t+1M t

` , (82)
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implying that, in tilde variables, the full spatial dynamics can be expressed in terms of the
temporal propagator

( eM2t
2` , eM

2t−1
2` ) = Φτ( eM

2t
2`−1, eM2t−1

2`−1 ), ( eM2t+1
2`+1 , eM2t

2`+1) = Φτ( eM
2t+1
2` , eM2t

2` ). (83)

We shall refer to this property as space-time self-duality.

Two remarks are in order at this point. First, we wish to point out that the self-duality
property, despite its manifest presence in the fully discrete setting, is lost at the level of the
Hamiltonian dynamics emerging in the continuous-time limit (cf. Eq. (95)). This is attributed
to the fact that space and time coordinates no longer appear on equal footing in the continuous
time limit. Indeed, in deriving the continuum limit one only retains smooth variations of the
classical field configurations, which is clearly in conflict with the staggered form of the local
gauge transformation (75).

It may appear, at the first glance at least, that the self-duality property imposes very strin-
gent restrictions on the dynamics, for instance allowing the temporal and spatial dynamics
to be effectively interchanged. This is however not the case. We notice that an uncorrelated
time-invariant initial state after being locally quenched undergoes a non-trivial time-evolution
resulting in a strongly correlated ‘time state’ [28]. Furthermore, correlations do not only prop-
agate with the unit speed as e.g. in the dual-unitary models [99]. In Section 3 we carry out
numerical simulations to explicitly demonstrate this fact.

M1 M2 M3

Φ̂
(1,2)
ζ1−ζ2

Φ̂
(2,3)
ζ1−ζ3

Φ̂
(1,2)
ζ2−ζ3

=

M1 M2 M3

Φ̂
(2,3)
ζ2−ζ3

Φ̂
(1,2)
ζ1−ζ3

Φ̂
(2,3)
ζ1−ζ2

Figure 4: Schematic representation of a set-theoretic (functional) Yang–Baxter equa-
tion in the braid form, representing an intertwining property of three consecutive
applications of the Yang–Baxter map on a product phase space M1 ×M1 ×M1.
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2.4.3 Yang–Baxter relation

Another important manifestation of integrability (cf. the zero-curvature property (5)) is that
the two-body propagator is also a Yang–Baxter map, Rλ : M1 ×M1→M1 ×M1, given by

Rλ = Π ◦ Φ̂λ, Φ̂λ = AdF−1⊗F−1 ◦Φλ = Φλ
�

�

�

F=1
, (84)

where Φ̂λ denotes the ‘untwisted’ elementary propagator and Π is the permutation map on
M1 ×M1. By embedding the maps into a triple Cartesian product M1 ×M1 ×M1, we find
that Rλ satisfies the set-theoretic Yang–Baxter relation

R(1,2)
ζ1−ζ2

◦R(1,3)
ζ1−ζ3

◦R(2,3)
ζ2−ζ3

=R(2,3)
ζ2−ζ3

◦R(1,3)
ζ1−ζ3

◦R(1,2)
ζ1−ζ2

, (85)

whereas the untwisted propagator accordingly satisfies the associated braid relation

Φ̂
(1,2)
ζ2−ζ3

◦ Φ̂(2,3)
ζ1−ζ3

◦ Φ̂(1,2)
ζ1−ζ2

= Φ̂(2,3)
ζ1−ζ2

◦ Φ̂(1,2)
ζ1−ζ3

◦ Φ̂(2,3)
ζ2−ζ3

. (86)

Let us briefly elucidate the origin of the Yang–Baxter map (see [81,100–102], or [103,104]
for more recent accounts which discuss its connection to quasitriangular Hopf algebras [105,
106]). To this end it is convenient to regard the discrete zero-curvature condition (5) as a
re-factorization problem [107] for a pair of Lax matrices

L(λ+ ζ2; M ′2)L(λ+ ζ1; M ′1) = L(λ+ ζ1; M1)L(λ+ ζ2; M2), (87)

where ζ j ∈ C are arbitrary shift parameters. The Yang–Baxter map Rλ provides a mapping
(M1, M2) 7→ (M ′1, M ′2) which is a unique solution to the matrix re-factorization problem. The
set-theoretic (functional) Yang–Baxter property is a statement about equivalence of two differ-
ent intertwining protocols; applying the left- and right-hand sides of Eq. (85) to the sequence
L(λ1; M1)L(λ2; M2)L(λ3; M3), where λ` ≡ λ+ ζ`, we obtain

L(λ3; M◦3)L(λ2; M◦2)L(λ1; M◦1) and L(λ3; M•3)L(λ2; M•2)L(λ1; M•1), (88)

respectively. Here M◦
`

and M•
`
, with ` = 1, 2,3, are two (apriori distinct) sets of propagated

variables. Firstly, by uniqueness of matrix re-factorization (87), each application of the Yang–
Baxter map preserves the cubic λ-polynomial, and hence the two expressions in (88) must
be equal. To establish the Yang–Baxter property (85) it is left to prove that factorization of a
given λ-polynomial into an ordered product of Lax matrices is unique. This is to say that all the
variables are pairwise equal, M◦

`
= M•

`
for all `. Although we suspect that this assertion can

be resolved on a formal basis10, at this moment we are only able to give an explicit algebraic
proof (see Appendix A.1).

2.5 Symplectic generator

Having shown that Eq. (7) provides a symplectic transformation, we can alternatively realize
it in the Hamiltonian form. To this end we define

d
dt

M` = {M`,H
(k,N)
τ }, (89)

and require that for both ` = 1,2 at time t = τ the solution to Eq. (89) yields the symplectic
map (7), namely M1,2(t = τ) = M ′1,2. Beware that H (k,N)

τ is not simply an integrable lattice
Hamiltonian obtained in the τ→ 0 limit (derived below in Section 2.6). It is also important

10To begin with, uniqueness of factorization for general system size is crucial for well-posedness of the inverse
scattering transform.
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to stress that the notion of energy is not meaningful here due to broken time-translational
symmetry. In this respect, the sought-for generating function H (k,N)

τ should be understood
merely as an auxiliary quantity (which need not be necessarily a real function, in general).
The only physical requirement, besides generating the symplectic map (8), is that in the limit
of continuous time the generator H indeed yields a real (integrable) Hamiltonian function.

For definiteness we confine ourselves here to the untwisted case and set F = 1. The
generator H is in general a certain functional of trace invariants of the two-body matrix
S0 ≡ M1 + M2, that is scalars sm = Tr(Sm

0 ). Taking into account that s0 = N , s1 = 2(N − 2k),
and that all odd invariants s2m+1 are proportional to s1 as a consequence of cyclicity of the
trace and M2

1,2 = 1, it is thus sufficient to retain only s2m for m ∈ N. We have succeeded in

deriving a system of PDEs that determines the generators H (k,N)
τ ({s2m}), and below we give

a short summary of the main results. The full derivation is relegated to Appendix B.
We have not managed to obtain a compact and completely general solution to these equa-

tions. Using the knowledge of the explicit solutions for matrices of dimension two and four, we
instead put forward a conjecture for the general form in the simplest case of even dimensional
traceless matrices (N ∈ 2N, k = N/2)

H (N/2,N)
τ

�

{s2m}
�

=
N/2
∑

j=1

�

log
�

τ2 + s̃2
j

�

+
2s̃ j

τ
arctan

�τ

s̃ j

�

�

, (90)

parametrized by the double roots s̃ j of the associated Cayley–Hamilton polynomial
pk,N (ξ) = Det(ξ1N − S0)| (for k = N/2, i.e. s1 = 0), that is pN/2,N (s̃ j) = p′N/2,N (s̃ j) = 0.
The generators associated to matrices of odd dimension take a slightly different form and are
generally complex-valued. In the N = 3 case for instance, the generator

H (1,3)
τ =

2
3

�

log
�

s̃2 +τ2
�

+
2s̃
τ

arctan
�τ

s̃

�
�

+ i

�

s̃2 + 2
6τ

�

log
�

1− iτ/2
�

, (91)

with s̃ defined through p1,3(s̃) = 0, acquires an extra purely imaginary part. The latter nonethe-
less vanishes in the limit τ→ 0, which we expect to be a general feature of symplectic gener-
ators in odd-dimensional cases.

With aid of the Vieta’s formulas and the Jacobi identity we can moreover infer the local
Hamiltonian in the continuous time limit, again for even N :

lim
τ→0

H (N/2,N∈2Z)
τ = log

N
∏

j=1

s̃2
j = log Det(M1 +M2) = Tr log(M1 +M2). (92)

2.6 Semi-discrete and continuum limits

To elucidate the physical meaning of our matrix models it it is instructive to also inspect their
time-continuous and field-theoretical limits. We consider first the limit τ → 0, where the
symplectic map Φτ ‘smoothens out’ into an integrable Hamiltonian flow governed by a lattice
Hamiltonian Hlattice. For this purpose we parametrize the twist field as F = exp(−iτB/2), with
B ∈ g, and expand Eq. (7) to the lowest order in τ. This yields the differential-difference
equation

dM`

dt
=
�

M`, Hlattice

	

= −i
�

M`, (M`−1 +M`)
−1 + (M` +M`+1)

−1 + B
�

, (93)
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which is generated by the following lattice Hamiltonian11

Hlattice =
L
∑

`=1

�

Tr
�

M`B
�

−ReTr log(M` +M`+1)
�

. (94)

Notice that Tr log(M1 + M2) indeed matches log Det(M1 + M2) obtained in the previous sec-
tion, see Eq. (92). The obtained equation of motion can be perceived as an integrable non-
relativistic sigma model (with an applied external field B) on a lattice with variables taking
values on cosets G/H. The special (rank k = 1) case of complex projective planes CPN−1

represent generalized (higher-rank) lattice Landau–Lifshitz models.

Finally, we inspect the field-theory limit of the matrix models by retaining
only smooth configurations in the spatial direction. To this end we reintroduce the
lattice spacing ∆ and expand a smoothly varying matrix field M`(t) → M(x = `∆, t) as
M`+∆→ M+∆Mx+(∆2/2)Mx x+O(∆3). For notational convenience we shall write ft ≡ ∂t f ,
fx = ∂x f , and similarly for derivatives of higher order. Sending ∆→ 0 whilst simultaneously
rescaling time t → (2/∆2)t and the magnetic field strength B → (∆2/2)B, we arrive at a
family of integrable PDEs of the form

Mt = {M(x , t), Hc}=
1
2i

�

M , Mx x

�

+ i[B, M]. (95)

The latter is generated by the continuum counterpart of Eq. (94),

Hc =

∫

dx
�

1
4

Tr
�

M2
x

�

+ Tr(M B)
�

. (96)

The Poisson bracket for this field theory is found by taking the continuum limit of the linear
Poisson bracket (46),

�

M(x) ⊗, M(x ′)
	

= −
i
2

�

Π, M(x)⊗1N −1N ⊗M(x)
�

δ(x − x ′). (97)

Lax equations. The auxiliary linear transport problem for the auxiliary fieldφ`(t) in discrete
space and continuous time takes the form

∂tφ`(t) = V`(λ)φ`(t), φ`+1(t) = L`(λ)φ`(t), (98)

where the spatial propagator L` is the Lax matrix (4) inherited from the light-cone lattice
and the temporal component V` we now determine below. The compatibility condition for
Eqs. (98) takes the form of a semi-discrete zero-curvature condition,

d
dt

L`(t) = V`+1(t)L`(t)− L`(t)V`(t), (99)

which can be deduced by taking the time derivative of the second equation in Eqs. (98) and
combining it with the first equation. It is clear from Eq. (93) that the temporal component
of the connection V` acts non-identically on a pair of adjacent lattice sites ` and ` − 1, i.e.
it depends on variables M`−1 and M`. An explicit form can be inferred from the equation of
motion (d/dt)L`(t) = {L`(t), Hlattice}, which, after some algebraic exercising (cf. Appendix C)
yields

V`(λ) =
−2λ

1+λ2
(L`(0) + L`−1(0))

−1 L`(λ
−1) + iB. (100)

11The equation of motion can be inferred directly with help of the linear Poisson bracket (46), yielding the
equation of motion given by Eq. (95), for any pair (k, N).
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We finally obtain the Lax connection for the continuum counterpart. Reintroducing the
lattice spacing parameter∆ and expanding Eq. (99) to the second order O(∆2), we obtain the
auxiliary linear transport problem associated to a differentiable manifold,

∂xφ(x , t) =U (λ; x , t)φ(x , t), ∂tφ(x , t) = V (λ; x , t)φ(x , t), (101)

satisfying the zero-curvature compatibility condition

∂tU − ∂xV + [U ,V ] = 0, (102)

with connection components

U (λ; x , t) =
i
λ

M , V (λ; x , t) =
2i
λ2

M −
1
λ

Mx M + iB. (103)

The zero-curvature condition (102) is equivalent to the equation of motion (95). For B = 0,
the latter is none other than conservation of the Noether current, namely the local continuity
equation for matrix-valued charge density M(x , t), Mt + (i[M , Mx]/2)x = 0.

Example. For a brief illustration, we consider the simplest example of a 2-sphere
M1 = S2 ∼= CP1. As customary, we will represent the matrix field variable M` in terms of
a unit vector (spin) field S` ∈ S2 (S` · S` = 1) in R3, M` = S` ·σ, where σ = (σx,σy,σz)T is
a vector of Pauli matrices. The symplectic map Φτ for this case has been studied previously
in [24]

Φτ(S1,S2) =
1

τ2 +%2

�

%2 S1 +τ
2 S2 +τS1 × S2,%2 S2 +τ

2 S1 +τS2 × S1

�

, (104)

where %2 ≡ (1+ S1 · S2).
To retrieve the semi-discrete and continuum limits of Eq. (104), we expand the inverses in

Eq. (93), yielding
d
dt

S` =
S` × S`−1

1+ S` · S`−1
+

S` × S`+1

1+ S` · S`+1
+ S` ×B, (105)

where we have put B = B ·σ/2. We can recognize the integrable lattice discretization of the
SO(3)-symmetric Heisenberg ferromagnet (isotropic lattice Landau–Lifshitz model [108,109])
in a homogeneous field B. The equation of motion is generated by a logarithmic interaction
of the form [18]

HLLL = −
L
∑

`=1

log(1+ S` · S`+1) +B · S`. (106)

Its long-wavelength limit yields Eq. (96), with the equation of motion

St = {S, Hc}= −S×
δHc

δS
= S× Sx x + S×B. (107)

3 Charge transport and KPZ superuniversality

The remainder of the paper is devoted to a numerical study of equilibrium transport properties
of integrable matrix models, with aim to address the central questions outlined in the introduc-
tion. To this end, we shall focus exclusively to transport of the Noether charges in canonical
equilibrium ensembles where we can anticipate anomalous features. Here in particular we
have in mind the previous studies of magnetization transport in the isotropic Landau–Lifshitz
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(Heisenberg) magnet (with the spin-field belonging to the coset G/H = S2) which uncovered
superdiffusive transport of the KPZ universality class, both in the quantum and classical set-
ting [24, 66–69, 76, 77]. The aim of the subsequent analysis is to systematically analyze the
role of isometry and isotropy groups G = SU(N) and H = S(U(k)×U(N−k)), respectively. We
shall also consider a distinct case of symplectic symmetry with G = USp(2N) and H = U(N).

400 200 0 200 4000

200

400

600

800

1000

t

(a)

400 200 0 200 400

0

200

400

600

800

1000

(b)

400 200 0 200 400

0

200

400

600

800

1000

(c)

400 200 0 200 4000

200

400

600

800
950

t

(d)

400 200 0 200 400
0

200

400

600

800

1000

(e)

400 200 0 200 400
0

200

400

600

800

1000

(f)

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

Figure 5: Space-time profiles of the charge autocorrelation function Cq(`, t)
(shown the absolute value in logarithmic scale) for various local variables
M ∈M1 = GrC(k, N): (a) (k, N) = (1, 2), (b) (k, N) = (1,3), (c) (k, N) = (1,4),
(d) (k, N) = (2,4), (e) (k, N) = (1, 5) and (f) (k, N) = (2, 5). The data shown for
parameters τ= 1, Ns = 105 and L = 210.

The Noether charge represents a G-valued dynamical observable whose local densities are
provided by the momentum map

fX (M
t
` ) = Tr(X M t

` ). (108)

We will subsequently use notation qa
`
(t)≡ fX a(M t

`
) for components of the Noether charge.

Exact computation of time-dependent correlation functions in equilibrium states lies be-
yond the capabilities of available analytic techniques. We thus have to fully rely on numerical
simulations. The main object of study in our simulations are connected spatio-temporal auto-
correlation functions of charge densities,

Cqa(`, t) = 〈qa
` (t)q

a
0(0)〉 − 〈q

a
` (0)〉〈q

a
0(0)〉. (109)

Presently, the ‘equilibrium expectation value’ 〈·〉 pertains to averaging with respect to a uni-
form Liouville measure on ML . The latter is an analogue of the canonical Gibbs state at
‘infinite temperature’ and is invariant under unit time and space shifts t → t+1 and `→ `+1,
respectively. Indeed, since G acts transitively on GrC(k, N), the G-invariant measure on Grass-
mannian manifolds is naturally inherited from the invariant (Haar) measure on G. In practice
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Figure 6: Algebraic dynamical exponents α = 1/z characterizing the asymptotic de-
cay of correlators Cq(0, t) ∼ |t|−α (for the corresponding datasets shown in Fig. 5)
obtained by least square fit.

one can therefore first sample uniformly over the group G (see e.g. [110]) and then generate
the invariant distribution on GrC(k, N) through the mapping M = gΣ(k,N) g†, see Eq. (16).

We have numerically computed the dynamical correlator defined in Eq. (109) using the
following scheme. First, we generated Ns initial matrix ensembles E ≡ {M t=0

`
}Ns
α=1 by drawing

each sample set from the Liouville probability densityρ(k,N). Next, we computed the connected
longitudinal dynamical correlators with the following prescription

bCqa(x , t) =
1
Ns

∑

E

2
(tmax − t + 1)N

tmax−t
∑

t ′=0

L/2
∑

`′=1

qa
`+2`′(t + 2t ′)qa

2`′(2t ′)− 〈qa〉2, (110)

which can be efficiently performed using the convolution theorem. The maximal simulation
time tmax can be adjusted so as to eliminate any spurious effect due to periodic boundary
conditions.12 To smear out the even-odd effect of staggering (see Figure 2), it is better to
compute the autocorrelation function of the Noether charges by averaging over adjacent pairs
of variables, q` := 1

2(q`+q`+1). The corresponding ‘smoothened’ correlation function is given
by

Cq(`, t) = 〈q`(t)q0(0)〉 − 〈q〉2 =
1
4
bC(`− 1,2t) +

1
2
bC(`, 2t) +

1
4
bC(`+ 1, 2t). (111)

Lastly, by virtue of the global G-invariance we are allowed to average over all the components
a = 1,2, . . . , dimg.

3.1 Uniform equilibrium states

In Figure 5 we display the time-dependent correlation functions (109) for the few smallest di-
mensions N ∈ {2,3, 4,5} and all inequivalent signature specifications
(i.e. k = 1,2, . . . bN/2c). To study transport, twist fields must be set to identity, F = 1.

Assuming an algebraic decay at large times,

Cq(`, t)∼ t−1/z g
�

(λB t)−1/z`
�

, (112)

12Despite an extra sum over t ′ in Eq. (110), there is no additional time averaging or any assumption of ergodicity
involved; the purpose of this prescription is to extract the maximal amount of statistics from the data.
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Figure 7: Convergence to the stationary cross sections of the scaled dynamical struc-
ture factors eCq(ξ, t), fitted with the KPZ universal function gPS (black dashed curve),
for the corresponding datasets shown in Fig. 5. In comparison, the red dashed lines
display the best fit with a Gaussian profile (red dashed curve), showing systematic
deviations in the tails.

we first extract the dynamical exponent z from the numerical data. We find, uniformly for
all the instances with k ≤ N/2 and N = 2, . . . , 5, excellent agreement with the Kardar–Parisi–
Zhang superdiffusive universal algebraic exponent zKPZ = 3/2, cf. Figure 6.

To further corroborate the presence of KPZ physics, we proceed with the extraction of the
scaled dynamical structure factor

eCq(ξ, t) = t1/zCq(`, t), ξ := ` t−1/z . (113)

In Figure 7 we display the stationary cross sections which are expected to collapse onto a
universal scaling function gPS tabulated in [111],

lim
t→∞

eC(ξ, t) = AgPS

�

λ
−1/z
B ξ

�

, (114)

where λB ∈ R is the Burger’s field coupling constant and A is the amplitude. Agreement with
the universal KPZ profile is very solid and there are clearly visible systematic deviations from
the Gaussian form which is characteristic of normal diffusion, see Figure 7. The non-Gaussian
behaviour of the scaling function gPS is most pronounced in the tails, i.e. at large values of
the scaling variable ξ. The extracted numerical values of constants λB and A are reported in
Table 1.
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Figure 8: Dynamics of Noether charges in an invariant unbiased maximum-entropy
state for the matrix model with G = USp(4) and the Lagrangian Grassmannian L(2) as
the local phase-space manifold, showing relaxation of the charge correlator (bottom
panel) and convergence towards stationary KPZ scaling profile (top panel).

For completeness we include the numerical analysis of charge transport in an integrable
matrix model on a Lagrangian Grassmannian. Since these are sub-manifolds of complex Grass-
mannians, they have to be considered independently. We shall only consider here the simplest
instance L(2)∼= USp(2;C)/U(2). Numerical data shown in Figure 8 again complies well with
the KPZ scaling despite of having a different symmetry type.

3.1.1 Magnetic field

To incorporate an external SU(N)-magnetic field we set the twisting element to

F = exp (−iτB/2), (115)

where B is a fixed Hermitian matrix of the form B = h
∑

a naX a, with field strength h and
(unit) polarization vector n. The addition of a field causes the following dynamical effect:
the dynamical correlations pertaining to the distinguished Noether charge aligned with the
polarization direction is unaffected by the field, whereas the correlators of all the remaining
charges exhibit a super-diffusive KPZ spreading modulated by a periodic precessional motion,
see Figure 9.

3.1.2 Inhomogeneous phase space

We finally explore an interesting possibility of introducing an integrable matrix model on an
inhomogeneous phase space of the form

M(k,N)
L ≡M(k1,N)

1 ×M(k2,N)
1 × · · · ×M(kL ,N)

1 . (116)
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Figure 9: Effect of an applied magnetic field Fτ = exp (−iτ (h/2)
∑

a naX a) (cf.
Eq. (115)) on the correlation function of the Noether charges perpendicular to the
polarization direction n, shown for (a) N = 2, h = 10−3, (b) N = 2, h = 10−2, (c)
N = 3, h= 10−2 (with parameters Ns = 103, and L = 210).

(N , k) λB × 102 A f × 102 A i × 102

(2, 1) 8.41 8.29 8.38
(3, 1) 7.45 3.99 3.85
(4, 1) 6.33 2.27 2.14
(4, 2) 8.44 3.33 3.14
(5, 1) 5.42 1.44 1.33
(5, 2) 8.13 2.47 2.30

L(2) 9.18 3.43 3.31

Table 1: Numerical values of the Burger’s coupling constant λB (profile width) and
amplitude (height) A, characterizing stationary KPZ profiles computed for several
lowest dimensions N and ranks k. Parameters (λB, A f ) were obtained by fitting the
scaling function (114). Amplitudes A i were read off from the horizontal axis inter-
cepts of the equal-space correlator C(0, t) shown in Figure 6. The last line pertains
to the unitary symplectic case (see Figure 8).

Such a staggered structure is still compatible with integrability of the many-body dynamics.
This is a corollary of the fact that Φτ acts as a conjugation in G×G which preserves the the total
signature by swapping the signature of two adjacent incidence matrices M and M ′, allowing to
‘scatter’ degrees of freedom from different adjoint orbits. As a consequence, the total signature
∑

`Σ
(k`,N) is conserved under time evolution.

Staggered phase space. As an illustration of the above construction we consider a special
case of a staggered phase space with an alternating sequence of inequivalent phase spaces of
rank k = 1 and k′ = 2, specializing to the lowest-dimensional instance N = 4. As shown in
Figure 10, staggering induces a chiral structure in the problem causing an asymmetric spread-
ing of correlations. The dynamical correlations of Noether charges experience a linear drift,
combined with superdiffusive spreading with a dynamical exponent indistinguishable from
zKPZ = 3/2. This time, however, stationary profiles do not appear to converge towards the
KPZ scaling function. In fact, we find an asymmetric profile with discernible deviations in the
left tail which seem unrelated to finite-time effects.

Owing to an intrinsic chiral structure of this model, we have also tried a two-sided fit by
fitting the KPZ scaling function for each chiral component (left and right movers) separately.
Doing this however did not appreciably improve upon the fit in Figure 10. We postpone a more
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Figure 10: Evolution of the dynamical charge correlation function in a matrix model
with an inhomogeneous phase space of the staggered type, shown for the simplest
case of complex Grassmannians GrC(1, 4) and GrC(2,4) (bottom panel). Black dotted
line marks the center of the correlation. Scaled correlator with dynamical exponent
α = 2/3 characteristic of KPZ superdiffusion (top panel). The scaling variable is
defined as ξ̃= (`+ vt)/t2/3, with v = 0.29.

detailed analysis of this exceptional scenario for future work.

4 Discussion and conclusion

We have introduced a novel family of classical integrable models of interacting matrix-valued
degrees of freedom propagating on a discrete space-time lattice, and obtained an explicit dy-
namical system in the form of a classical Floquet circuit composed of elementary two-body sym-
plectic maps. The class of models is distinguished by the presence of a conserved G-invariant
Noether currents and (in general non-Abelian) local gauge invariance under a subgroup H. In
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the absence of external fields, both time and space dynamics can be realized in uniform way,
which reveals a particular type of space-time self-duality. Integrability of our models man-
ifest itself through the discrete zero-curvature condition on the light-cone lattice, implying
infinitely many conserved quantities in involution and a set-theoretic Yang–Baxter relation for
the elementary two-body symplectic propagator.

Integrable difference equations have been extensively studied in the mathematical physics
literature (see [81,82]), particularly in the context of equations on quadrilateral graphs [101,
112, 113] which have been classified in the work of Adler, Bobenko and Suris [114]. These
include, as a prominent example, the Faddeev–Volkov discretization of the sine-Gordon model
[115]. To our knowledge, the class of models introduced in this work does is not a part of
any known classification scheme, despite from the viewpoint of conceptual simplicity they
can hardly be rivalled. An alternative, albeit less explored, approach to produce integrable
difference equations has been developed in [116–118] and [119–121], via discretization of
Hirota derivatives [122,123]. Although in Ref. [119] the authors obtained a particular lattice
discretization of the N = 2 isotropic Landau–Lifshitz model, its implicit form makes it less
appealing for concrete applications. In more recent works [103,104], several formal connec-
tions between quantum Yang–Baxter maps (representing the adjoint action of the universal
R-matrix of a quantum group) and their classical limits (and discrete-time dynamics) have
been uncovered, indicating that classical Yang–Baxter maps in a way naturally descend from
the associated quantized algebraic structure. In this respect, our results indicate that, at the
set-theoretic level, the emergent classical Yang–Baxter map does not show explicit dependence
on the underlying Lie algebra.

In the second part of the paper, the outlined explicit integration scheme have been em-
ployed as an efficient numerical tool to investigate transport properties of the Noether charges
in unbiased maximum-entropy states. In close analogy to the isotropic Landau–Lifshitz model,
we now found robust evidence of the superdiffusive transport in the KPZ universality class, ir-
respectively of the structure of the local phase space, i.e. isometry and isotropy groups of their
coset target spaces. In fact, universality of KPZ type extends even to Lagrangian Grassman-
nians that are linked with unitary symplectic groups. While the outlined construction does
not accommodate for matrix models associated with real orthogonal Lie groups or exceptional
compact groups, we expect that these could be included with suitable adaptations.

We nonetheless believe that the following conjecture can be stated: all discrete space-time
models built as Floquet circuits from two-body symplectic Yang-Baxter maps (and continuum limits
thereof), with dynamical variables taking values on compact non-abelian symmetric spaces, ex-
hibit superdiffusion of the KPZ type in equilibrium states with unbroken symmetry. If the conjec-
ture holds, the observed phenomenon of KPZ physics can be dubbed as superuniversal. Perhaps
this conjecture could be even slightly expanded by adjoining matrix models on supersymmetric
coset spaces invariant under Lie superalgebras (it is known from [37] that the corresponding
integrable quantum chains possess divergent diffusion constants). We postpone further exam-
ination and other related questions to future studies, including a more comprehensive study
of charge transport by extending the analysis to grand-canonical states.

Our models provide integrable Trotterizations of (non-relativistic) coset σ-models on com-
plex Grassmannian manifolds, emerging as semi-classical limits of integrable symmetric quan-
tum spin chains invariant under global SU(N) rotations that are known to exhibit anomalous
charge transport [37]. It thus appears plausible that our findings elevate to the quantum set-
ting too. This would suggest that there is a general principle behind an exact quantum–classical
correspondence of charge transport, as exemplified previously in the scope of the domain wall
problem in the Heisenberg model [23,124].
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There are several distinct features of our models that were left unexplored but definitely
merit further study. On the formal side, developing a fully-fledged inverse scattering formal-
ism to integrate the auxiliary linear problem in discrete space-time would provide a platform
to tackle various problems of nonequilibrium statistical mechanics in an analytical fashion.
Another pending question is the fate of local conserved quantities outside of the ‘projective
models’ (k = 1). Since for GrC(k ≥ 2, N) the monodromy matrices evaluated at the projec-
tion points no longer decompose into a sequence of rank-1 projectors, it is not obvious which
mechanism (if any) would ensure locality of conserved quantities. Curiously however, in the
limit of continuous time the symplectic generator of the elementary propagator yields a strictly
local Hamiltonian density that generates the time evolution of their integrable lattice counter-
parts even for generic (i.e. non-projective) models (k ≥ 2). It is not inconceivable that these
lattice models involve quasi-local conservation laws, bearing some resemblance to higher-spin
commuting transfer matrices in quantum Heisenberg model where the ‘shift point’ property
also ceases to exist [125,126]. Another interesting question which remains open is whether it
is possible to take different continuum limits to systematically recover the entire hierarchy of
higher Hamiltonian flows in the field-theory limit.

Another curiosity of our models is their space-time self-duality property. While the latter
formally permits to study dynamics in the space direction, that is evolutions of time-states (see
e.g. [28]), it remains obscure at this moment if this has any implications on the structure of
dynamical correlations in these matrix models, or possibly even for the observed anomalous
transport behavior. We wish to stress here that this type of self-duality differs fundamentally
from the so-called dual-unitarity found recently in the context of quantum circuits [99, 127]
where correlations are locked to the light-rays. In our models, dynamical correlations functions
(averaged in a flat invariant measure) fill the entire causal cone in a non-trivial fashion.

To facilitate other physical applications, it would be valuable to obtain various integrable
deformations such as adding an uniaxial interaction anisotropy. Based on numerical evidence
from the anisotropic Landau–Lifshitz model [76], spin transport depends quite intricately on
the value of anisotropy, ultimately responsible for the elusive behavior of the gapless phase in
the anisoropic Heisenberg XXZ spin-1/2 chain [128,129] (see [126] for a review). To conclude,
we wish to mention that the observed superuniversal nature of the KPZ phenomenon in inte-
grable models with non-abelian Noether currents gives a further (albeit implicit) hint that the
notion of hydrodynamic soft modes, employed recently in a phenomenological description of
the KPZ phenomenon [41, 42], extends beyond the simplest SO(3)-invariant Landau–Lifshitz
theory. We postpone the study of these aspects for the future.
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Appendices

A Two-body propagator

Here we show that the discrete zero curvature condition

F L(λ; M2)L(µ; M1) = L(µ; M ′2)L(λ; M ′1)F, (117)

with a linear Lax matrix L(λ; M) = λ1 + i M admits a unique solution
Φ(λ,µ) : (M1, M2) 7→ (M ′1, M ′2) provided that

1. matrix variables M obey the involutory constraint M2 = 1,

2. Φ(λ,µ) is of the difference form, i.e. it depends only on τ := µ− λ, where τ is a fixed
(generally complex) parameter.

Equation (117) can be regarded as an identity for two quadratic polynomials in the spectral
parameter λ ∈ C. We must thus equate each power in λ. Expanding out the zero-curvature
condition (117) and dropping the leading λ2 terms, we find

λ(iM1 + iM2 +τ) + (iτM2 −M2M1) = AdF−1

�

λ(iM ′1 + iM ′2 +τ) + (iτM ′1 −M ′2M ′1)
�

. (118)

Matching the linear terms in λ immediately implies a two-site conservation law (6)

M ′1 +M ′2 = F(M1 +M2)F
−1 ≡ AdF (M1 +M2), (119)

while the λ0 term gives

−iτM2 +M2M1 = AdF−1

�

−iτM ′1 +M ′2M ′1
�

. (120)

Using Eq. (119), we can bring it to the form

M1M2(M1 +M2 − iτ) = F−1(M ′1 +M ′2 − iτ)M ′2M ′1F, (121)

from where it follows

M ′2M ′1 = F(M1 +M2 − iτ)−1M1M2(M1 +M2 − iτ)F−1. (122)

Plugging the above back into Eq. (120) to eliminate the product of primed variables, and
writing Sτ = M1 +M2 + iτ, we arrive at the following explicit form

M ′1 = AdF

�

M2 +
i
τ

M2M1 −
i
τ
(S−τ)

−1M1M2S−τ
�

, (123)

M ′2 = AdF

�

M1 −
i
τ

M2M1 +
i
τ
(S−τ)

−1M1M2S−τ
�

. (124)

In this way, we have established uniqueness of the time propagator Φτ. The right-hand side
can be brought into the final form (8) by a straightforward computation.
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Closure on GrC(k, N). It can now be readily demonstrated that the mapping (8) preserves
Grassmannian submanifolds GrC(k, N) = SU(N)/S(U(k) × U(N − k)) of the unitary group
SU(N) if τ ∈ R, without explicitly specifying N and k.

Considering two hermitian matrices M1,2 and a unitary twisting matrix F , the hermitian-
conjugate counterpart of

M ′1 = FSτM2(FSτ)
−1, (125)

reads
(M ′1)

† = F(S−τ)
−1M2S−τF−1. (126)

To establish M ′1 = (M
′
1)

†, is remains to verify explicitly that S−τSτM2 = M2S−τSτ, which is
a matter of a short calculation. Preservation of the involutory property under Φτ is manifest
from Eq. (125).

Closure on L(N). Let M1,2 now be two unitary antisymplectic complex matrices of dimension
2N with the involutory property, and F a symplectic or antisymplectic matrix, namely

M1,2M†
1,2 = (M1,2)

2 = 1, MT
1,2 J M1,2 = −J , FT J F = ±J , (127)

with J ≡ iσ y ⊗ 1N . The involutory property implies MT
1,2 J = −J M1,2. It can be checked

directly that M ′1,2 retain the antisymplectic property. In contrast, another short calculation
shows that the symplectic property of a pair (M1, M2) is not preserved. The dynamical map
(8) is thus closed on the Lagrangian Grassmannian manifold L(N) = USp(2N)/U(N).

A.1 Uniqueness of factorization

The proof of the set-theoretic Yang-Baxter relation (86), shortly outlined in Section 2.4.3,
hinges on uniqueness of factorization of an ordered product of Lax matrices L(λ j; M j), with
parameters λ j = λ+ζ j and λ,ζ j ∈ C. The vital part of the proof is to establish that equivalence
of the following two cubic monodromies,

L(λ3; M◦3)L(λ2; M◦2)L(λ1; M◦1) = L(λ3; M•3)L(λ2; M•2)L(λ1; M•1), (128)

implies that all the matrix variables are pairwise equal, that is M◦j = M•j for all j ∈ {1,2, 3}.
This assertion can be proven with a bit of algebraic manipulations. To this end, it is conve-
nient to use a slightly adapted notation and introduce matrices Y ◦j = i M◦j + (ζ j − ζ3)1 (and

analogously for Y •j variables)13 in terms of which

L(λ; M j) = λ31+ Yj . (129)

Furthermore, by redefining the spectral parameter as λ→ λ− ζ3 and expanding Eq. (128) in
powers λ, we obtain the following systems of matrix equations

Y ◦3 + Y ◦2 + Y ◦1 = Y •3 + Y •2 + Y •1 , (130)

Y ◦3 Y ◦2 + Y ◦3 Y ◦1 + Y ◦2 Y ◦1 = Y •3 Y •2 + Y •3 Y •1 + Y •2 Y •1 , (131)

Y ◦3 Y ◦2 Y ◦1 = Y •3 Y •2 Y •1 . (132)

Rewriting Eq. (132) as

Y ◦3 Y ◦2 Y ◦1 + Y ◦3 Y ◦3 Y ◦2 + Y ◦3 Y ◦3 Y ◦1 − Y ◦3 + Y ◦3 + Y ◦2 + Y ◦1 =

Y •3 Y •2 Y •1 + Y •3 Y •3 Y •2 + Y •3 Y •3 Y •1 − Y •3 + Y •3 + Y •2 + Y •1 , (133)

13Notice that variables Yj are no longer anti-involutory, with the exception of Y3.
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subtracting from it Eq. (130), and finally factoring out Y3 from the left, we find

Y ◦3 (Y
◦

2 Y ◦1 + Y ◦3 Y ◦2 + Y ◦3 Y ◦1 −1) = Y •3 (Y
•

2 Y •1 + Y •3 Y •2 + Y •3 Y •1 −1). (134)

Since both terms in the brackets are equal as per Eq. (131), assuming that they are generically
non-vanishing, we deduce

Y ◦3 = Y •3 . (135)

Having shown this, we can simply act on Eq. (128) from the left by an inverse of the Lax
matrix and thus reduce the problem to that of a two-body factorization. The latter can be then
solved in a manner analogous to the above procedure. In this way we have established that
M◦j = M•j is the unique solution to Eq. (88). As a matter of fact, using the same logic (shifting
the spectral parameter, introducing the Y -variables, expanding in λ, adding and subtracting
terms using the conservation law at the order λ0 to factor out the remaining anti-involutory
variable YL) one can establish uniqueness of factorization for an arbitrary monodromy matrix
of length L.

B Symplectic properties

Here we present a direct proof that Eq. (8) provides a symplectic map (i.e. symplectomor-
phism) on the product of two Grassmannians manifolds M1 ×M1 and, as a consequence,
conserves the product Liouville measure. To establish this, it suffices to demonstrate that the
Poisson bracket is preserved under the time-evolution. It proves convenient to carry out this
computation using the Sklyanin bracket.

We first treat the bracket involving a pair of variables on the same space M1. Separating
out the twist dependence,

{M ′2 ⊗, M ′2}= AdF⊗F{SτM1S−1
τ
⊗, SτM1S−1

τ }, (136)

and subsequently expanding everything out using the Leibniz derivation rule, a tedious calcu-
lation yields

{SτM1S−1
τ
⊗, SτM1S−1

τ }= (SτM1S−1
τ ⊗ SτM1S−1

τ ){Sτ ⊗, Sτ}(S−1
τ ⊗ S−1

τ )

+ {Sτ ⊗, Sτ}(M1S−1
τ ⊗M1S−1

τ ) + (Sτ ⊗ Sτ){M1
⊗, M1}(S−1

τ ⊗ S−1
τ )

+ (Sτ ⊗1){M1
⊗, M1}(S−1

τ ⊗M1S−1
τ )

+ (1⊗ Sτ){M1
⊗, M1}(M1S−1

τ ⊗ S−1
τ )

− (SτM1S−1
τ ⊗1){Sτ ⊗, Sτ}(S−1

τ ⊗M1S−1
τ )

− (1⊗ SτM1S−1
τ ){Sτ ⊗, Sτ}(M1S−1

τ ⊗ S−1
τ )

− (SτM1S−1
τ ⊗ Sτ){M1

⊗, M1}(S−1
τ ⊗ S−1

τ )

− (Sτ ⊗ SτM1S−1
τ ){M1

⊗, M1}(S−1
τ ⊗ S−1

τ ). (137)

The obtained expression be further simplified with aid of general matrix identities,

(A⊗ B){M1,2
⊗, M1,2}(C ⊗ D) = i

�

(AM1,2D⊗ BC)− (AD⊗ BM1,2C)
�

Π, (138)

(A⊗ B){Sτ ⊗, Sτ}(C ⊗ D) = i
�

(ASτD⊗ BC)− (AD⊗ BSτC)
�

Π, (139)

which hold for any set of dummy N -dimensional matrices {A, B, C , D}.14 Using these, Eq. (137)
can be brought into the form

�

M2
⊗, M2

	

= i
�

M ′2 ⊗1−1⊗M ′2
�

Π= −
i
2

�

Π, M ′2 ⊗1−1⊗M ′2
�

, (140)

14Note that to arrive at Eq. (139), the specific form of Sτ has to be taken into account.

33

https://scipost.org
https://scipost.org/SciPostPhys.9.3.038


SciPost Phys. 9, 038 (2020)

in agreement with Eq. (45). To establish ultra-locality of the Poisson bracket (cf. Eq. (46)) we
need to additionally verify that

{M ′1 ⊗, M ′2}= AdF⊗F{SτM2S−1
τ , SτM1S−1

τ }= 0. (141)

This can once again be confirmed with an explicit but lengthy computation,

{SτM2S−1
τ
⊗, SτM1S−1

τ }= (SτM2S−1
τ ⊗ SτM1S−1

τ ){S ⊗, S}(S−1
τ ⊗ S−1

τ )

+ {Sτ ⊗, Sτ}(M2S−1τ⊗M1S−1
τ )

+ (Sτ ⊗1){M2
⊗, M2}(S−1

τ ⊗M1S−1
τ )

+ (1⊗ Sτ){M1
⊗, M1}(M2S−1

τ ⊗ S−1
τ )

− (SτM2S−1
τ ⊗1){Sτ ⊗, Sτ}(S−1

τ ⊗M1S−1
τ )

− (1⊗ SτM1S−1
τ ){Sτ ⊗, Sτ}(M2S−1

τ ⊗ S−1
τ )

− (SτM2S−1
τ ⊗ Sτ){M1

⊗, M1}(S−1
τ ⊗ S−1

τ )

− (Sτ ⊗ SτM1S−1
τ ){M2

⊗, M2}(S−1
τ ⊗ S−1

τ )
�

, (142)

which can be eventually simplified to zero.

B.1 Symplectic generator

The aim of this section is to reformulate the two-body symplectic map (7) as a Hamiltonian
equation of motion of the form

d
dt

M1,2 = {M1,2,H (k,N)
τ }, (143)

such that at time t = τ the continuous–time evolution generated by H (k,N)
τ matches the two-

body time-propagator (7). The exact form of the symplectic generator depends on the matrix
dimension N , rank k and the time-step parameter τ.

For simplicity we shall assume here the absence of a magnetic field, i.e. set the twist to
F = 1. The generator H (k,N)

τ can be sought as a function

H (k,N)
τ =H (k,N)

τ (s2, s4, . . . ), (144)

of the scalar invariants of S0 ≡ M1 +M2, namely

sm = Tr(Sm
0 )≡ Tr

�

(M1 +M2)
m
�

, m ∈ N. (145)

These can alternatively be expressed as linear combinations of real invariants of hermitian
involutory matrices of the form Tr(M1M2M1M2 . . . M1M2). It is not difficult to recognize that
traces of odd powers are all proportional to s1 = Tr(M1 +M2) = 2(N − 2k),

s2m+1 = 4ms1, m ∈ Z≥0. (146)

It is thus only the even invariants s2k that are non-trivial functions of the dynamical variables.
By application of Leibniz’s rule, the equations of motion are therefore put in the form

dM1,2

dt
=
∞
∑

k=0

∂H (k,N)
τ

∂ s2k
{M1,2, s2k}, (147)
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where for the time being no upper limit in the summation has been imposed. The vital part of
the derivation is to compute the Poisson brackets {M1,2, s2k}, which can be achieved by using
partial traces. Exploiting a useful identity,

Tr2

�

�

Π, A⊗1−1⊗ A
�

(1⊗ B)
�

= −2[A, B], (148)

we proceed by evaluating the Poisson bracket

{M1,2, sm}= Tr2

�

{M1,2
⊗, (M1 +M2)

m}
�

= −
im
2

Tr2

�

(1⊗ (M1 +M2)
m−1)

�

Π, M1,2 ⊗1−1⊗M1,2

�

�

= im
�

M1,2, (M1 +M2)
m−1

�

. (149)

This readily allows us to deduce the equations of motion

dM1,2

dt
= i

∞
∑

m=1

2m
∂H (k,N)

τ

∂ s2m

�

M1,2, (M1 +M2)
2m−1

�

. (150)

From this expression it is manifest that the sum M1+M2 is conserved under the time evolution,
permitting us to write the Heisenberg equation of motion

d
dt

M1,2(t) = i[M1,2(t),F
(k,N)
τ ], F (k,N)

τ ≡
∞
∑

m=1

2m
∂H (k,N)

τ

∂ s2m
(M1 +M2)

2m−1, (151)

with the solution

M1,2(t) = exp
�

−i tF (k,N)
τ

�

M1,2(0)exp
�

i tF (k,N)
τ

�

. (152)

Noticing another useful property of the map (7) at t = 0,

M1,2 = S−1
0 M2,1S0, (153)

the solution can be cast in the form

M1,2(t) = exp
�

−i tF (k,N)
τ

�

S0M2,1(0)S
−1
0 exp

�

i tF (k,N)
τ

�

. (154)

Evaluating now the solution at t = τ we can deduce a neat time-translation property,

Sτ = exp
�

−iτF (k,N)
τ

�

S0, (155)

which rewards us with a remarkably simple expression for F (k,N)
τ ,

F (k,N)
τ =

i
τ

log
�

1+ iτS−1
0

�

. (156)

By expanding the logarithm into a Taylor series, multiplying by Sm
0 and taking the trace, we

find an infinite system of linear partial differential equations

∞
∑

m=1

2m
∂H (k,N)

τ

∂ s2m
s2m+n−1 =

i
τ

∞
∑

j=1

(−iτ) j

j
sn− j , n ∈ Z. (157)

There are sufficiently many independent equations to ensure the solution to this system. This
provides us with the symplectic generator H (k,N)

τ , uniquely up to additive constants. Indeed,
the solution is guaranteed to exist by symplecticity of the time-propagator Φτ.
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The infinite system (157) can be further reduced to a finite closed system of differential
equations by performing a resummation of the matrix invariants sk. This can achieved by
means of the Cayley–Hamilton theorem which states that every N -dimensional matrix A satis-
fies its own characteristic polynomial,

p(ξ) = Det(ξ1− A), p(A) =
N
∑

j=0

c jA
j = 0. (158)

Coefficients c j are provided by traces of powers of A, a j ≡ Tr Aj ,

cN− j =
(−1) j

j!
B j

�

0!a1,−1!a2, 2!a3, . . . , (−1) j( j − 1)!a j

�

, (159)

with B j denoting the exponential Bell polynomials. The key observation here is that a matrix
of dimension N possesses only N independent scalar invariants (for instance a j up to j = N).
Specifically, we define the Cayley–Hamilton polynomial corresponding to the signature Σ(k,N)

as
pk,N (ξ) = Det(ξ1− S0). (160)

We can accordingly proceed by solving the following truncated system of partial differential
equations

bN/2c
∑

m=1

2m
∂H (k,N)

τ

∂ s2m
s2m+n−1 =

i
τ

∞
∑

j=1

(−iτ) j

j
sn− j , n ∈ Z. (161)

We shall not attempt to find its general solution here, but instead rather consider the few
simplest instances for small matrix dimensions N .

Case N = 2. In the case of 2×2 matrices we have s0 = Tr1= 2 and there is a single nontrivial
signature s1 = 0, implying that all positive odd sk vanish as well. The system (161) evaluated
at m= −1 simplifies to

4
∂H (1,2)

τ

∂ s2
=

i
τ

∞
∑

j=1

(−iτ) j

j
s− j−1. (162)

Invoking the Cayley-Hamilton theorem for N = 2,

p(A) = A2 − Tr(A)A−
1
2

�

Tr(A2)− Tr(A)2
�

1= 0, (163)

we arrive at a simple recursion relation for sk

s−k =
2s2−k

s2
, (164)

with the solution
s−2k+1 = 0, s−2k = 2(s2/2)

−k. (165)

This allows us to perform the resummation of the right-hand side of Eq. (162),

∂H (1,2)
τ

∂ s2
=

1
2τ

1
s̃

arctan
�τ

s̃

�

, s̃ =
Æ

s2/2, (166)

which can be readily integrated

H (1,2)
τ = log

�

s̃2 +τ2) +
2s̃
τ

arctan
�τ

s̃

�

. (167)

This is in agreement with the expression found previously in [24]. In the τ → 0 limit, this
yields (modulo a constant term) the Hamiltonian of the isotropic Landau-Lifshitz ferromagnet

lim
τ→0

H (1,2)
τ ' logTr

�

(M1 +M2)
2
�

. (168)
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Case N = 3. Now s0 = 3, and there are two possible signatures to consider: s1 = 2 (k = 1)
and s1 = −2 (k = 2). The system of equations (161) reduces to

6
∂H (k,3)

τ

∂ s2
=

i
τ

∞
∑

j=1

(−iτ) j

j
s− j−1. (169)

With the help of the Cayley-Hamilton polynomial for 3× 3 matrices,

A3 − Tr(A)A2 −
1
2

�

Tr(A2)− Tr(A)2
�

A−
1
6

�

(TrA)3 − 3Tr(A2)TrA+ 2Tr(A3)
�

1= 0, (170)

we find the following recursion relation

s3−m ∓ 2s2−m −
1
2
(s2 − 4)s1−m ± (s2 − 4)s−m = 0, (171)

with the solution

s−m = 2m/2
�

(±1)m2−3m/2 + (1+ (−1)m)(s2 − 4)−m/2
�

. (172)

The resummation of the infinite sum in the right-hand side of Eq. (169) now yields

6
∂H (k,3)

τ

∂ s2
=

1
2τ

�1
s̃

arctan
�τ

s̃

�

∓ i log
�

1± iτ/2
�

�

, s̃ =
Æ

(s2 − 4)/2, (173)

which can be readily integrated

H (k,3)
τ =

2
3

�

log
�

s̃2 +τ2) +
2s̃
τ

arctan
�τ

s̃

�

�

∓ i
s̃2 + 2

6τ
log

�

1± iτ/2
�

, k = 1,2. (174)

The first two terms in this expression exactly match the form of the N = 2 case above, apart
from a different multiplicative factor in front. Somewhat unexpectedly, the symplectic gener-
ator involves an imaginary term which only reduces to a real quantity in the τ→ 0 limit.

Case N = 4. We conclude our analysis by considering also the N = 4 case, which represents
the first instance where the generator involves two functionally independent matrix invariants
s2 and s4. Let us specialize to the traceless case with s2 j−1 = 0, i.e. signature Σ(2,4). Eq. (161)
thus provides us with two independent equations

8
∂H (2,4)

τ

∂ s2
+ 4
∂H (2,4)

τ

∂ s4
s2 =

i
τ

∞
∑

j=1

(iτ) j

j
s− j−1, (175)

2
∂H (2,4)

τ

∂ s2
s2 + 4

∂H (2,4)
τ

∂ s4
s4 =

i
τ

∞
∑

j=1

(iτ) j

j
s− j+1. (176)

Invoking once again the Cayley–Hamilton theorem, this time using that the odd trace invari-
ants are all zero, we arrive at the recursion of the form

sk+4 −
1
2

s2s2+k +
1
24
(3s2

2 − 6s4)sk = 0, s0 = 8, s1 = 0. (177)

The solution can still be found in closed form,

s2m = 2
�

(s+)
2m + (s−)

2m
�

, s± =
1
2

r

s2 ±
q

4s4 − s2
2, (178)
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whereas s2m+1 = 0. Performing the resummation, we find a system of two coupled PDEs

2
∂H (2,4)

τ

∂ s2
+
∂H (2,4)

τ

∂ s4
s2 =

1
τ

� 1
s−

arctan(τ/s−) +
1
s+

arctan(τ/s+)
�

, (179)

∂H (2,4)
τ

∂ s2
s2 + 2

∂H (2,4)
τ

∂ s4
s4 =

1
τ

�

s− arctan(τ/s−) + s+ arctan(τ/s+)
�

. (180)

We can now solve for ∂H (2,4)
τ /∂ s4, and after subsequently integrating the result we obtain

∫

ds4
∂H (2,4)

τ

∂ s4
=H (2,4)

τ + γ(s2), (181)

with

H (2,4)
τ =

∑

α=±

�

log(s2
α +τ

2) +
2sα
τ

arctan
� τ

sα

�

�

, (182)

uniquely up to an additive constant. By computing the partial derivative ∂H (2,4)
τ /∂ s2 and

comparing it to the solution to Eqs. (180), we conclude that the undetermined function γ is in
fact a constant, namely independent of s2. Expression (182) is therefore the final form of the
symplectic generator H (2,4)

τ . The result is indeed in agreement with expression (167) found
in the N = 2 case, the only difference being that here the additional (double) root of the
Cayley–Hamilton polynomial enters and that invariants now take a different functional form.

Conjecture. Despite the fact that we have not managed to find a general procedure for re-
ducing and solving the infinite system of PDEs (157), we can nonetheless conjecture, based
on the above considerations, the general form of the symplectic generators for the case of
traceless (s1 = 0) even-dimensional matrices for general even N , i.e. for signature matrices
Σ(N/2,N). Since all odd invariants s2m+1 vanish, the corresponding Cayley–Hamilton polynomi-
als involves only double roots {s̃ j}

N/2
j=1 , pN/2,N (s̃ j) = p′N/2,N (s̃ j) = 0. We conjecture the solutions

to Eqs. (161) in this case take the form (uniquely, modulo additive constants)

H (N/2,N)
τ =

N/2
∑

j=1

�

log
�

τ2 + s̃2
j

�

+
2s̃ j

τ
arctan

�τ

s̃ j

�

�

. (183)

C Lax representations

In this section we collect all the Lax (zero-curvature) representations for (i) discrete space and
time, (ii) continuous time and discrete space, and (iii) continuous space-time models.

First we shortly recall the space-time discrete zero-curvature representation for the light-
cone Lax matrix L(λ; M) = λ1+ i M with M ∈M1 satisfying the constraint M2 = 1,

F L(λ; M2)L(µ; M1) = L(µ; M ′2)L(λ; M ′1) F, (184)

which admits a unique solution Φτ : (M1, M2) 7→ (M ′1, M ′2),

M ′1 = AdFSτ(M2), M ′2 = AdFSτ(M1), Sτ ≡ M1 +M2 + iτ1, (185)

where F is a constant invertible complex matrix and AdA(B) = AB A−1.
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Semi-discrete limit. In the continuous time limit, τ → 0, the symplectic maps reduces to
the following equation of motion

dM`

dt
= −i

�

M`, (M`−1 +M`)
−1 + (M` +M`+1)

−1 − B
�

. (186)

The obtained equation of motion is generated by the Hamiltonian Hlattice, reading

dM`

dt
= {M`, Hlattice}, Hlattice '

L
∑

`=1

�

Tr
�

M`B
�

− Tr log(M` +M`+1)
�

, (187)

where the Poisson bracket is defined as

�

M`
⊗, M`′

	

= −
i
2

�

Π, M` ⊗1N −1N ⊗M`

�

δ`,`′ . (188)

Equation (186) plays the role of a compatibility condition for an auxiliary linear problem
in the form of a semi-discrete zero-curvature condition, see (98) in the main text.

For the subsequent derivation we omit the twist dependence and temporarily put F = 1
(equiv. B = 0); the latter can be easily incorporated back at the very end of computation. The
first step is to promote the Poission structure (188) to the level of Lax matrices which yields
the quadratic Sklyanin bracket

�

L`(λ) ⊗, L`′(λ
′)
	

=
�

r(λ,λ′), L`(λ)⊗ L`′(µ)
�

δ`,`′ , r(λ,λ′) =
Π

λ′ −λ
, (189)

where we have used a short-hand notation L`(λ) ≡ L(λ; M`). The time evolution of the Lax
matrix reads by definition

d
dt

L`(λ) = {L`(λ), Hlattice}= −{L`(λ), Tr log(M`−1 +M`) + Tr log(M` +M`+1)}. (190)

Writing L±
`
= L`(±i) = i(±1+M`) and introducing double-site matrices15

A`−1,` = 2i(M`−1 +M`) = L+`−1 + L−`−1 + L+` + L−` , (191)

the above expression can be put in the form (whilst dropping a constant term)

d
dt

L`(λ) = −{L`(λ), Tr log(A`−1,`) + Tr log(A`,`+1)}. (192)

By direct computation we then find

d
dt

L`(λ) = −Tr2

�

�

1⊗ (A−1
`−1,` + A−1

`,`+1)
�

{L`(λ)⊗ (L+` + L−` )}
�

. (193)

Making use of the Sklyanin bracket and the identity Tr2

�

[Π, A⊗ B](I ⊗ C)
�

= BCA−ACB, the
above expression can be brought into the form

d
dt

L`(λ) =−
1

i−λ
L+`
�

A−1
`−1,` + A−1

`,`+1

�

L`(λ)− L`(λ)
�

A−1
`−1,` + A−1

`,`+1

�

L+`

+
1

i+λ
L−`
�

A−1
`−1,` + A−1

`,`+1

�

L`(λ)− L`(λ)
�

A−1
`−1,` + A−1

`,`+1

�

L−` . (194)

15We note that this representation of operator A is not unique, but has been adopted for symmetry reasons.
Notice moreover that A is, apart from normalization, equal to Sτ=0.
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As a consequence of M2 = 1, the following swap operations hold

(M1 +M2)M1,2 = M2,1(M1 +M2), M1,2(M1 +M2)
−1 = (M1 +M2)

−1M2,1. (195)

Exploiting the above identities we have

A−1
`−1,`L`(λ) = L`−1(λ)A

−1
`−1,`, L`(λ)A

−1
`−1,` = A−1

`−1,`L`−1(λ), (196)

which readily yields a (non-standard) semi-discrete zero-curvature representation

d
dt

L`(λ) = V L
`+1(λ)L`(λ)− L`(λ)V

L
` (λ) + L`(λ)V

R
`+1(λ)− V R

` (λ)L`(λ), (197)

with ‘left’ and ‘right’ temporal propagators

V L
` (λ) = A−1

`−1,`

�

L−
`

i+λ
−

L+
`

i−λ

�

=
2λ
λ2 + 1

A−1
`−1,`L`(−λ

−1) (198)

V R
` (λ) = A−1

`−1,`

�

L+
`−1

i−λ
−

L−
`−1

i+λ

�

= −
2λ
λ2 + 1

A−1
`−1,`L`−1(−λ−1). (199)

The last step is to transform Eq. (197) into the standard form

d
dt

L`(λ) = V`+1(λ)L`(λ)− L`(λ)V`(λ), (200)

from where we can determine the temporal component of the Lax pair V`,`+1(λ). This can be
accomplished with aid of the following ‘inversion identities’ for the Lax matrices,

L`(λ)L`′(−λ−1) = L`(λ)L`′(λ)− (λ+λ−1)L`(λ), (201)

L`(−λ−1)L`′(λ) = L`(λ)L`′(λ)− (λ+λ−1)L`′(λ), (202)

which combined imply the ‘exchange relation’,

L`(λ)L`′(−λ−1) + L`(−λ−1)L`′(λ) = 2L`(λ)L`′(λ)− (λ+λ−1)
�

L`(λ) + L`′(λ)
�

. (203)

Using these, the right propagators appearing in L`(λ)V R
`+1(λ)− V R

`
(λ)L`(λ) in Eq. (197) can

be brought to the left in the following manner:

L`(λ)V
R
`+1(λ)− V R

` (λ)L`(λ)

= −
2λ

1+λ2

�

L`(λ)A
−1
`,`+1 L`(−λ−1)− A−1

`−1,`L`−1(−λ−1)L`(λ)
�

= −
2λ

1+λ2

�

A−1
`,`+1 L`+1(λ)L`(−λ−1)− A−1

`−1,`L`−1(−λ−1)L`(λ)
�

= −
2λ

1+λ2

�

A−1
`,`+1

�

2L`+1(λ)L`(λ)− L`+1(−λ−1)L`(λ)− (λ+λ−1)(L`+1(λ) + L`(λ))
�

− A−1
`−1,`

�

2L`−1(λ)L`(λ)− L`−1(λ)L`(−λ−1)− (λ+λ−1)(L`−1(λ) + L`(λ))
�

�

=
2λ

1+λ2

�

A−1
`,`+1

�

L`+1(−1/λ)− 2L`+1(λ)
�

L`(λ)− L`(λ)A
−1
`−1,`

�

L`(−1/λ)− 2L`(λ)
�

+ 2(A−1
`,`+1

�

L`+1(λ) + L`(λ)
�

− A−1
`−1,`

�

L`−1(λ) + L`(λ)
�

�

. (204)

The first two terms in the obtained expression are already in the desired form. The last two
terms can be further simplified with the use of 1= −(λ2 + 1)−1 L`(−λ)L`(λ), yielding

L`(λ)V
R
`+1(λ)− V R

` (λ)L`(λ) = eV`+1(λ)L`(λ)− L`(λ)eV`, (205)
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with
eV`(λ) =

2λ
1+λ2

�

A−1
`−1,`

�

L`(−λ−1)− 2L`(λ)− 2L`−1(−λ)
�

�

. (206)

By substituting this result back into the ‘non-canonical’ zero-curvature condition (197), we
eventually restore the standard form (200), with the temporal component V`(λ) reading

V`(λ) =
4λ

1+λ2

�

A−1
`−1,`(L`(−λ

−1)− L`(λ)− L`−1(−λ))
�

+ iB

= −
4λ
λ2 + 1

A−1
`−1,`L`−1(λ

−1) + i B (207)

=
−2λ
λ2 + 1

(L` (0) + L`−1 (0))
−1 L`−1(λ

−1) + i B, (208)

where we have simultaneously reinstated the magnetic field.

Zero-curvature formulation in continuous space-time. Having derived the semi-discrete
version of the zero-curvature representation, we are in a position to take the continuum theory
limit and infer also the zero-curvature representation of the PDE

Mt = {M(x , t), Hc}=
1
2i

�

M , Mx x

�

+ i[B, M]. (209)

First we recall the continuum counterpart of the lattice Hamiltonian (187),

Hc =

∫

dx
�

1
4

Tr
�

M2
x

�

+ Tr(M B)
�

, (210)

which (using the Poisson bracket (97)) generates Eq. (209).
This is achieved in the usual manner by expanding the semi-discrete zero-curvature

condition (200) to lowest non-trivial order in lattice spacing ∆ and regarding
lattice variables M`(t) as smoothly varying field configurations M(x , t), namely
M`+1 = M +∆Mx +

∆2

2 Mx x +O(∆3). Expanding Eq. (200) to the quadratic order O(∆2),
we find

iMt =
∆2

4
(M Mx x −Mx x M)− [B, M] =

∆2

2
(M Mx x −M2

x )− [B, M], (211)

where we have used M Mx = −Mx M and M Mx x +Mx x M = −2M2
x . Dividing subsequently by

λ and simultaneously rescaling time and magnetic field as t → (2/∆2)t, B → (∆2/2)B, we
arrive at the following Lax pair

U (λ; x , t) =
i
λ

M , V (λ; x , t) =
2i
λ2

M −
1
λ

Mx M + iB, (212)

satisfying the continuous version of the zero-curvature condition

∂tU − ∂xV + [U ,V ] = 0. (213)

D Local conservation laws

One of the central implications of the Lax (zero-curvature) property is isospectrality, see Sec-
tion 2.4.1. As a direct corollary, the model possesses O(L) functionally independent conserved
phase-space functions in involution. In integrable systems with local interactions one can typ-
ically extract local conservation laws, i.e. conserved quantities that can be represented as a
spatially homogeneous sum of densities with a compact support. A common procedure to infer
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the local charge is to expand the logarithm of the transfer map as a power series in λ around
a distinguished point λ0. In the context of integrable matrix models introduced in Section 2,
natural candidates for such expansion points are

λ0 ∈
�

± i,±i−τ
	

. (214)

At these values one of the Lax matrices L(λ) or L(λ + τ) in the staggered monodromy
M(λ,µ; {M`}) degenerates into a projector,

L(∓i) = ∓2i P(±). (215)

Here P(+) ≡ P denotes a rank-k projector and P(−) = 1N − P(+) is its orthogonal complement
of rank N −k. In what follows we assume k ≤ N/2, in which case the Lax matrices degenerate
into P(+).

Employing the projector realization (18) with Eq. (27) and evaluating the transfer matrices
at the appropriate projection points, we obtain

T odd
τ (−i) = (−2i)L/2 Tr

L/2
∏

`=1

P0 g−1
2`+1 L2`(−i+τ)g2`−1, (216)

T even
τ (−i−τ) = (−2i)L/2 Tr

L/2
∏

`=1

P0 g−1
2`+2 L2`+1(−i−τ)g2`, (217)

where P0 and g` are defined in Eq. (18).
Local conserved quantities are typically produced by taking the logarithm of

Poisson-commuting transfer matrices. In general, it is not manifest from the above expres-
sions that their logarithms will generate strictly local object. The exception are only the k = 1
cases where the transfer matrices evaluated at λ0 = −i yield completely factorizable scalar
expressions which are considered below.

Local conservations laws in projective models. We subsequently assume k = 1, corre-
sponding to integrable matrix models with complex projective spaces CPN−1 as target spaces.
The associated Lax matrices at two distinguished points λ0 = ±i degenerate into rank-1 pro-
jectors

L(∓i)` = ∓2i P(±)
`

, P(±)
`
= |Ψ(±)

`
〉 〈Ψ(±)

`
| . (218)

Let us remind that spatial subscripts, such as in Ψ±
`

, designate that the quantity depends on
the local matrix variable M`. As a consequence, the transfer maps completely factorize into
sequences of scalars (matrix elements)

T odd
τ (−i) = (−2i)L/2

L/2
∏

`=1

〈Ψ(+)2`+1| L2`(−i+τ) |Ψ(+)2`−1〉 , (219)

T even
τ (−i−τ) = (−2i)L/2

L/2
∏

`=1

〈Ψ(+)2`+2| L2`+1(−i−τ) |Ψ(+)2` 〉 . (220)

Here the spatial index should be understood modulo L, whereas the nomenclature ‘even’ and
‘odd’ here refers to the sub-lattices at which the degeneracy occurs. By exploiting the conju-
gation property of the Lax matrix,

[L(λ; M)]† = −L
�

− λ̄; M
�

, (221)
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we readily obtain the complex-conjugate counterparts of Eqs. (219) and (220),

T odd
τ (−i) = (2i)L/2

L/2
∏

`=1

〈Ψ(+)2`−1| L2`(−i−τ) |Ψ(+)2`+1〉 , (222)

T even
τ (−i−τ) = (2i)L/2

L/2
∏

`=1

〈Ψ(+)2` | L2`+1(−i+τ) |Ψ(+)2`+2〉 . (223)

As an immediate corollary of this construction, the logarithms of the square moduli of the
transfer matrices yield conserved quantities which are manifestly local and real,

Qodd(1)
τ = log

�

�T odd
τ (−i)

�

�

2
=

L/2
∑

`=1

qodd(1)
`

(τ), (224)

Qeven(1)
τ = log

�

�T even
τ (−i−τ)

�

�

2
=

L/2
∑

`=1

qeven(1)
`

(τ), (225)

with densities

qodd(1)
`

(τ) = log Tr
�

L2`+1(−i) L2`(−i+τ) L2`−1(−i) L2`(i−τ)
�

, (226)

qeven(1)
`

(τ) = logTr
�

L2`+2(−i) L2`+1(−i−τ) L2`(−i) L2`+1(−i+τ)
�

. (227)

An infinite tower of higher local conservation laws, labelled by integer n ∈ N, can then be
produced in an iterative fashion by means of logarithmic differentiation,

Qodd(n)
τ = ∂ n−1

λ log |Tτ(λ)|2
�

�

�

λ=−i
, Qeven(n)

τ = ∂ n−1
λ log |Tτ(λ)|2

�

�

�

λ=−i−τ
. (228)

In this way, we obtain two inequivalent sequences of local charges with densities supported
on 2n+ 1 adjacent lattice sites.16 It is worthwhile stressing here that there is no connection
between the lowest local conservation law in the hierarchy (whose density is supported on
three adjacent lattice sites) and the symplectic two-body propagator.

Hamiltonian limit. In the continuous time limit τ → 0 the degeneracy points
λ0 = {−i,−i − τ} collide with one another and the two towers of local conservation laws
merge together. This means in effect that an infinite family of local conservation laws can now
be generated from the logarithm of the homogeneous transfer map and λ-derivatives thereof.
In particular, for the lowest-degree conservation laws we find,

lim
τ→0

Qeven(1)
τ = lim

τ→0
Qodd(1)
τ = L log(4) +

L
∑

`=1

log Tr
�

P(+)
`+1P(+)

`

�

, (229)

yielding the Hamiltonian density in the form of the logarithmic overlap,

h(1)
`
= logTr

�

P(+)
`+1P(+)

`

�

= log
�

�

�〈Ψ(+)`+1|Ψ
(+)
`
〉
�

�

�

2
. (230)

Below we give an explicit parametrization using local affine coordinates

z` = (z1;`, z2;`, . . . , zN−1;`)
T, (231)

16The outlined construction is only meaningful as long as the support of the densities does not exceed the length
of the system, i.e. before ‘wrapping effects’ take place.
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in terms of which
|Ψ(+)
`
〉= (1+ 〈z`|z`〉)−1/2

�

1, z`;1, . . . , z`;N−1

�T
, (232)

with overlap coefficient 〈z`|z`′〉 ≡ z̄` ·z`′ =
∑N−1

j=1 z̄ j;`z j;`′ . The rank-1 projector P(+)
`

then reads

P(+)
`
(z) = (1+ 〈z`|z`〉)−1

�

1 z̄T
`

z` z` · z̄T
`

�

, (233)

and the leading density given by Eq. (230) takes the form

h(1)
`
= log

(1+ 〈z`+1|z`〉)(1+ 〈z`|z`+1〉)
(1+ 〈z`|z`〉)(1+ 〈z`+1|z`+1〉)

. (234)

Example. For illustration we consider the CP1 ∼= S2 case. The affine complex variable which
parametrizes the corresponding rank-1 projectors P`(z) is the local stereographic coordinate
z` = tan (θ`/2)exp (iφ`). We thus have

P`(z) =

�

1 −z̄`
z` 1

��

1 0
0 0

��

1 −z̄`
z` 1

�−1

=
1

1+ |z`|2

�

1 z̄`
z` |z`|2

�

. (235)

The outcome is the Hamiltonian density of the isotropic lattice Landau–Lifshitz model [85,108]

CP1 : h(1)
`
= log

1+ z̄`+1z` + z`+1z̄` + |z`|2|z`+1|2

(1+ |z`|2)(1+ |z`+1|2)
= log

�

1
2

�

1+ S` · S`+1

�

�

, (236)

where in the second line we have used the spin-field realization

S` = (sin (θ`) cos (φ`), sin (θ`) sin (φ`), cos (θ`))
T. (237)

Reintroducing the lattice spacing ∆ and performing the long-wavelength expansion,

S`(t)→ S(x = `∆, t), S`+1(t)→ S(x = `∆, t)+∆Sx(x , t)+
∆2

2
Sx x(x , t)+O(∆3), (238)

we find, at the leading order O(∆2) and with rescaling time (∆2/2)t → J t, the Hamiltonian
of the Landau–Lifshitz field theory (isotropic Heisenberg ferromagnet)

HLL = J

∫

dx S(x) · Sx x(x) = −J

∫

dx Sx(x)
2. (239)

E Semi-classical limits of integrable quantum spin chains

E.1 Time-dependent variational principle

We consider a single N -level quantum-mechanical degree of freedom in the Hilbert space CN ,
and a unitary time-evolution of a state |Ψ〉 = (ψ0,ψ1, . . . ,ψN−1)T under Hamiltonian Ĥ. By
regarding |Ψ(t)〉 as a variational wavefunction, its time-evolution corresponds to extremizing
a classical action S =

∫

dt L[Ψ] with Lagrangian L[Ψ(t)] = 〈Ψ(t)| i∂t − Ĥ |Ψ(t)〉. This ap-
proach is called the time-dependent variational principle. In practice it is convenient to operate
with an unnormalized wavefunction and treat the complex-conjugate field components ψ̄ j as
independent variational variables. With this in mind, we consider a Lagrangian of the form

L[Ψ, Ψ̄] =
i
2
〈Ψ|∂tΨ〉 − 〈∂tΨ|Ψ〉

〈Ψ|Ψ〉
−
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

. (240)
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We next derive time evolution generated by Ĥ using generalized coherent states. For sim-
plicity we restrict our considerations first to complex projective spaces
CPN−1 = SU(N)/S(U(N−1)×U(1)) where, in close analogy to the well-known spin-coherent
states of CP1 ∼= S2, we can define the CPN−1 coherent states by the ‘vacuum rotation’

|Ψ〉= g |0〉 , (241)

where g ∈ G = SU(N) and |0〉 is the highest-weight state of an irreducible finite-dimensional
representation of g= su(N). We shall consider here only the fundamental representation.

Note that while a general group element g is fully determined by N2 − 1 real parameters
(e.g. Euler angles), the number of independent parameters which parametrize |Ψ〉 is actually
smaller. This comes from the fact that the vacuum state |0〉 stays intact under SU(N − 1)
rotations in the orthogonal complement of |0〉. This means that the unit complex vector |Ψ〉
lies on the real sphere S2N−1. However, vectors which only differ by an overall U(1) phase
represent the same physical state and must thus be identified, meaning that |Ψ〉 is indeed
an element of a coset space S2N−1/U(1) ∼= CPN−1, a manifold or real dimension 2(N − 1).
A general un-normalized variational wavefunction |Ψ〉 ∈ CPN−1 is therefore parametrized
by N − 1 complex variables zi , namely local affine coordinates of complex projective spaces,
z= (z1, z2, . . . , zn)T. The Lagrangian takes the form

L(z, z̄) =
i
2

n
∑

i=1

�

żi
∂

∂ zi
− ˙̄zi

∂

∂ z̄ i

�

K(z, z̄)−H(z, z̄), (242)

where ż= dz/dt and K(z, z̄) is the Kähler potential of CPN−1 corresponding to the logarithm
of the normalization amplitude

K(z, z̄) = log〈Ψ(z)|Ψ(z)〉, (243)

representing a hermitian metric tensor η known as the Fubini–Study metric which can be
produced via differentiation

ηi j(z, z̄) =
∂ 2K(z, z̄)
∂ zi∂ z̄ j

. (244)

Taking the variation

δS =
∫

dt





n
∑

i, j=1

i(żiηi jδz̄ j − ˙̄ziη̄i jδz j)−δH(z, z̄)



 , (245)

we deduce the following Euler–Lagrange equations

∑

j

iη ji ż j =
∂ H(z, z̄)
∂ z̄i

,
∑

j

i η̄ ji ˙̄z j = −
∂ H(z, z̄)
∂ z j

. (246)

Since the metric tensor is non-degenerate, Det(η) 6= 0, Eqs. (246) can be readily inverted

żi = −i
∑

j

�

η−1
�

ji

∂ H
∂ z̄ j

. (247)

The inverse of the Fubini–Study metric reads explicitly
�

η−1
�

i j = (1+ z · z)
�

δi j(1+ z j z̄i) + (1−δi j)z j z̄i

�

. (248)
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The above construction can be straightforwardly lifted to complex Grassmannian manifolds
GrC(k, N). In this case the variational wavefunction Ψ becomes a complex matrix of dimension
N × k, whereas the Riemann metric tensor

η(k,N) =
N−k
∑

i, j=1

k
∑

a,b=1

η
(k,N)
ia, j b dzi,adz̄ j,b, (249)

can be again computed with aid of the Kähler potential K(Z , Z̄) = log〈Z |Z〉, where
〈Z1|Z2〉= Det(1+ Z†

1 Z2), reading

η
(k,N)
ia, j b =

�

(1N−k + Z Z†)−T
�

i j

�

(1k + Z†Z)
�

ab
. (250)

E.2 Coherent-state path integral

In this section we derive the effective classical action which governs the semi-classical eigen-
states in integrable quantum chains invariant under global SU(N) symmetry, described by
Hamiltonians of the form

Ĥ = J
L
∑

`=1

�

1−Π`,`+1

�

. (251)

Here J > 0 is the ferromagnetic exchange coupling and Π |α〉 ⊗ |β〉 = |β〉 ⊗ |α〉 is the per-
mutation matrix acting in CN ⊗ CN , i.e. in the tensor product of two fundamental su(N)
representations. Here and subsequently we shall keep dependence on N implicit throughout
the derivation. This class of integrable models, introduced in [87,88], can be diagonalized by
means of the Bethe Ansatz [13].

In the basis of traceless hermitian generators X a ∈ g (cf. Eqs. (33) and (34)), the permu-
tation matrix assumes an expansion

Π=
1
N
+

N
∑

a,b=1

κabX a ⊗ X b, (252)

where κab ≡ 2δab.
Computing semi-classical limit of Eq. (251) amounts to completely neglect quantum cor-

relations in the variational wavefunction. This is achieved by projecting the Hamiltonian onto
the subspace of many-body (product) coherent states

|Ψ(t)〉=
L
⊗

`=1

|Ψ`(t)〉 , (253)

where |Ψ`(t)〉 is a CPN−1 coherent state inserted at position `. The variational states |Ψ〉
thus belong to the classical phase space ML which parametrizes the low-energy sector of the
quantum spin chain Hilbert space.

We now proceed with the path-integral computation. Fixing the ‘initial’ and ‘final’ states
|Ψ i〉 and |Ψ f〉, respectively, the task at hand is to compute the quantum-mechanical transition
amplitude

Tt(Ψ f,Ψ i) = 〈Ψ f|exp (−i t Ĥ) |Ψ i〉=
∫

D[Ψ(t)]exp
�

iS[Ψ(t)]
�

, (254)

and determine the classical action S[Ψ(t)]. Slicing the time interval [0, t] into N tiny intervals
of size ∆t – with intermediate time coordinates t i = (t/N)i – and inserting the resolution of
the identity,

1=

∫

ML

dΩ(i) |Ψ(i)〉 〈Ψ(i)| , |Ψ(i)〉 ≡ |Ψ(t i)〉 , (255)
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we find at the leading order O(∆t)

Tt(Ψ f,Ψ i) = lim
∆t→0

N−1
∏

i=0

∫

ML

dΩ(i) 〈Ψ(i+1)|1− i∆t Ĥ |Ψ(i)〉 . (256)

The boundary conditions can be set to |Ψ(N)〉 ≡ |Ψ f〉 and |Ψ(0)〉 ≡ |Ψ i〉. Notice that the action
involves two types of terms,

S = SWZ −Skin. (257)

The first term is a geometric contribution which stems from non-orthogonality of coherent
states located at two adjacent time slices,

〈Ψ(i+1)|Ψ(i)〉= 〈Ψ(t +∆t)|Ψ(t)〉= exp
�

−∆t〈Ψ(t)|∂tΨ(t)〉
�

+O(∆t2), (258)

which, in the ∆t → 0 limit, produces the Wess–Zumino term

SWZ =

∫

dt LWZ, LWZ = i〈Ψ|∂tΨ〉. (259)

The kinetic part Skin =
∫

dt
∫

dx Lkin(x) in Eq. (257) comes from spin interaction gov-
erned by the quantum Hamiltonian Ĥ. To extract the corresponding Lagrangian density, let us
initially specialize to M1

∼= CPN−1, where each coherent state can be represented by a rank-1
projector P = |Ψ〉 〈Ψ|. For computational purposes we instead define a hermitian traceless
matrix

Y = N g |0〉 〈0| g† −1N = N P −1N , (260)

which is subjected to the non-linear constraint

Y 2 = (N − 2)Y + (N − 1)1N . (261)

The expectation value of Ĥ in a many-body semi-classical state (253) is calculated as

〈Ĥ〉 ≡ Tr

�

Ĥ
L
⊗

`=1

Y`

�

= JL
�

N − 1
N

�

1− 2J
L
∑

`=1

N
∑

a

〈X a〉`〈X a〉`+1, (262)

where coherent-state averages of the su(N) generators read

〈X a〉` ≡ 〈Ψ`|X a
` |Ψ`〉= Tr(X aP`) =

1
N

Tr(X aY`). (263)

In order to take the continuum limit, we first recast Eq. (262) in the difference form. Exploiting
the completeness relation

∑

a,b κabTr(X aA)Tr(X bA) = Tr(A2), valid for an arbitrary traceless
N -dimensional matrix A, we have the sum rule

2
∑

a

[Tr(X aY )]2 = Tr Y 2 = N(N − 1). (264)

This allows us to write

〈Ĥ〉= J
L
∑

`=1

∑

a

�

〈X a〉` − 〈X a〉`+1

�2
, (265)

where we have used that 2
∑

a〈X
a〉`〈X a〉`+1 = 2

∑

a〈X
a〉2
`
−
∑

a(〈X
a〉` − 〈X a〉`+1)2. With the

aid of the long-wavelength expansion (assuming the lattice spacing ∆= 1/L)

Y`→ Y (x), Y`+1→ Y (x) +∆∂x Y (x) +
∆2

2
∂ 2

x Y (x) + . . . , (266)
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we can finally pass to the field-theory regime. At the leading order O(∆2) we deduce
�

Tr
�

X a(Y` − Y`−1)
��2
=∆2 [Tr(X aYx) +O(∆Yx x)]

2→∆2
�

Tr(X aYx)
�2

, (267)

where we have used the short-hand notation Yx ≡ ∂x Y (x) and similarly for higher partial
derivatives. Finally, replacing the sum

∑

` with an integral
∫

dx and introducing the renor-
malized coupling Jcl = J∆2/2, we arrive at a compact final result

〈Ĥ〉=
Jcl

N2

∫

dx Tr
�

Y 2
x

�

= Jcl

∫

dx Tr
�

P2
x

�

. (268)

The kinematic contribution to the Lagrangian density is therefore Lkin(x) = JclTr((∂x P(x))2).
To conclude with a simple example, in the case CP1 ∼= S2 we have Y (x)≡ M(x) = σ ·S(x),

and using 1
2Tr(M2

x ) = Sx · Sx we retrieve the Hamiltonian of the isotropic Landau–Lifshitz
magnet,

〈Ĥ〉CP1 ≡ HLL =
Jcl

2

∫

dx Sx(x) · Sx(x) = −
Jcl

2

∫

dx S(x) · Sx x(x), (269)

with the equation of motion

St = −S×
δHLL

δS
= JclS× Sx x . (270)

An explicit construction involving SU(N) coherent states for GrC(k, N)manifolds is slightly
more involved and for brevity we shall omit it. Note that the expectation values of the Lie
algebra generators still correspond to the momentum maps, that is traces with respect to rank-
k projectors P`. Up to a shift and rescaling, the latter is equivalent to the traceless hermitian
matrix variable Y = N P − k1N , obeying Y 2 = (N − 2k)Y + (N k − k2)1N . By repeating the
above derivation, one once again arrives at Eq. (268), apart from a constant shift.
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