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Abstract We study rigidity properties of lattices in Isom(Hn) ≃ SOn,1(R),
n ≥ 3, and of surface groups in Isom(H2) ≃ SL2(R) in the context of inte-

grable measure equivalence. The results for lattices in Isom(Hn), n ≥ 3, are
generalizations of Mostow rigidity; they include a cocycle version of strong
rigidity and an integrable measure equivalence classification. Despite the lack
of Mostow rigidity for n = 2 we show that cocompact lattices in Isom(H2)

allow a similar integrable measure equivalence classification.
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1 Introduction and statement of the main results

1.1 Introduction

Measure equivalence is an equivalence relation on groups, introduced by Gro-
mov [25] as a measure-theoretic counterpart to quasi-isometry of finitely gen-
erated groups. It is intimately related to orbit equivalence in ergodic theory,
to the theory of von Neumann algebras, and to questions in descriptive set
theory. The study of rigidity in measure equivalence or orbit equivalence
goes back to Zimmer’s paper [61], which extended Margulis’ superrigidity
of higher rank lattices [39] to the context of measurable cocycles and applied
it to prove strong rigidity phenomena in orbit equivalence setting. In the same
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paper [61, §6] Zimmer poses the question of whether these strong rigidity for
orbit equivalence results extend to lattices in rank one groups G �≃ PSL2(R);
and in [62] and later in a joint paper with Pansu [45] obtained some results
under some restrictive geometric condition.

The study of measure equivalence and related problems has recently expe-
rienced a rapid growth, with [14, 15, 21, 22, 26, 28, 29, 33, 35, 43, 46–49, 51]
being only a partial list of important advances. We refer to [17, 50, 56] for
surveys and further references. One particularly fruitful direction of research
in this area has been in obtaining the complete description of groups that are
measure equivalent to a given one from a well understood class of groups.
This has been achieved for lattices in simple Lie groups of higher rank [15],
products of hyperbolic-like groups [43], mapping class groups [33–35], and
certain amalgams of groups as above [36]. In all these results, the measure
equivalence class of one of such groups turns out to be small and to consist of
a list of “obvious” examples obtained by simple modifications of the original
group. This phenomenon is referred to as measure equivalence rigidity. On
the other hand, the class of groups measure equivalent to lattices in SL2(R)

is very rich: it is uncountable, includes wide classes of groups and does not
seem to have an explicit description (cf. [2, 23]).

In the present paper we obtain measure equivalence rigidity results for lat-
tices in the least rigid family of simple Lie groups Isom(Hn) ≃ SOn,1(R) for
n ≥ 2, including surface groups, albeit within a more restricted category of in-

tegrable measure equivalence, hereafter also called L1-measure equivalence

or just L1-ME. Let us briefly state the classification result, before giving the
precise definitions and stating more detailed results.

Theorem A Let Γ be a lattice in G = Isom(Hn), n ≥ 2; in the case n = 2
assume that Γ is cocompact. Then the class of all finitely generated groups

that are L1-measure equivalent to Γ consists of those Λ, which admit a short

exact sequence {1} → F → Λ → Λ̄ → {1} where F is finite and Λ̄ is a lattice

in G; in the case n = 2, Λ̄ is also cocompact in G = Isom(H2).

The integrability assumption is necessary for the validity of the rigidity
results for cocompact lattices in Isom(H2) ∼= PGL2(R). It remains possible,
however, that the L1-integrability assumption is superfluous for lattices in
Isom(Hn), n ≥ 3. We also note that a result of Fisher and Hitchman [12] can
be used to obtain L2-ME rigidity results similar to Theorem A for the family
of rank one Lie groups Isom(Hn

H
) ≃ Spn,1(R) and Isom(H2

O
) ≃ F4(−20);1 it

is possible that this L2-integrability assumption can be relaxed or removed
altogether.

1Here ≃ means locally isomorphic.
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The proof of Theorem A for the case n ≥ 3 proceeds through a cocycle
version of Mostow’s strong rigidity theorem stated in Theorems B and 1.8.
This cocycle version relates to the original Mostow’s strong rigidity theorem
in the same way in which Zimmer’s cocycle superrigidity theorem relates to
the original Margulis’ superrigidity for higher rank lattices. Our proof of the
cocycle version of Mostow rigidity, which is inspired by Gromov-Thurston’s
proof of Mostow rigidity using simplicial volume [59] and Burger-Iozzi’s
proof for dimension 3 [5], heavily uses bounded cohomology and other homo-
logical methods. A major part of the relevant homological technique, which
applies to general Gromov hyperbolic groups, is developed in the companion
paper [1]; in fact, Theorem 4.11 taken from [1] is the only place in this paper

where we require the integrability assumption.

Theorem A and the more detailed Theorem D are deduced from the strong
rigidity for integrable cocycles (Theorem B) using a general method de-
scribed in Theorem 2.1. The latter extends and streamlines the approach de-
veloped in [15], and further used in [43] and in [35].

The proof of Theorem A for surfaces uses a cocycle version of the fact
that an abstract isomorphism between uniform lattices in PGL2(R) is re-
alized by conjugation in Homeo(S1). The proof of this generalization uses
homological methods mentioned above and a cocycle version of the Milnor-
Wood-Ghys phenomenon (Theorem C), in which an integrable ME-cocycle
between surface groups is conjugate to the identity map in Homeo(S1). In
the case of surfaces in Theorem A, this result is used together with Theo-
rem 2.1 to construct a representation ρ : Λ → Homeo(S1). Additional argu-
ments (Lemma 2.5 and Theorem 5.2) are then needed to deduce that ρ(Λ) is
a uniform lattice in PGL2(R).

Let us now make precise definitions and describe in more detail the main
results.

1.2 Basic notions

1.2.1 Measure equivalence of locally compact groups

We recall the central notion of measure equivalence which was suggested
by Gromov [25, 0.5.E]. It will be convenient to work with general unimodu-
lar, locally compact second countable (lcsc) groups rather than just countable
ones.

Definition 1.1 Let G, H be unimodular lcsc groups with Haar measures mG

and mH . A (G,H)-coupling is a Lebesgue measure space (Ω,m) with a
measurable, measure-preserving action of G × H such that there exist finite
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measure spaces (X,μ), (Y, ν) and measure space isomorphisms

i : (G,mG) × (Y, ν)
∼=−→ (Ω,m) and j : (H,mH ) × (X,μ)

∼=−→ (Ω,m)

(1.1)
such that i is G equivariant and j is H equivariant, that is

i
(
gg′, y

)
= gi

(
g′, y

)
and j

(
hh′, x

)
= hj

(
h′, x

)

for every g ∈ G and h ∈ H and almost every g′ ∈ G, h′ ∈ H , y ∈ Y and
x ∈ X. Groups which admit such a coupling are said to be measure equivalent

(abbreviated ME).

In the case where G and H are countable groups, the condition on the
commuting actions G � (Ω,m) and H � (Ω,m) is that they admit finite m-
measure Borel fundamental domains X,Y ⊂ Ω with μ = m|X and ν = m|Y
being the restrictions.

As the name suggest, measure equivalence is an equivalence relation be-
tween unimodular lcsc groups. For reflexivity, consider the G × G-action on
(G,mG), (g1, g2) : g 
→ g1gg−1

2 . We refer to this as the tautological self cou-

pling of G. The symmetry of the equivalence relation is obvious. For transi-
tivity and more details we refer to Appendix A.1.

Example 1.2 Let Γ1,Γ2 be lattices in a lcsc group G.2 Then Γ1 and Γ2
are measure equivalent, with (G,mG) serving as a natural (Γ1,Γ2)-coupling
when equipped with the action (γ1, γ2) : g 
→ γ1gγ −1

2 for γi ∈ Γi . In fact, any
lattice Γ < G is measure equivalent to G, with (G,mG) serving as a natural
(G,Γ )-coupling when equipped with the action (g, γ ) : g′ 
→ gg′γ −1.

1.2.2 Taut groups

We now introduce the following key notion of taut couplings and taut groups.

Definition 1.3 (Taut couplings, taut groups) A (G,G)-coupling (Ω,m) is
taut if it has the tautological coupling as a factor uniquely; in other words if
it admits a unique, up to null sets, measurable map Φ : Ω → G so that for
m-a.e. ω ∈ Ω and all g1, g2 ∈ G3

Φ
(
(g1, g2)ω

)
= g1Φ(ω)g−1

2 .

Such a G×G-equivariant map Ω → G will be called a tautening map. A uni-
modular lcsc group G is taut if every (G,G)-coupling is taut.

2Any lcsc group containing a lattice is necessarily unimodular.
3If one only requires equivariance for almost all g1, g2 ∈ G one can always modify Φ on a
null set to get an everywhere equivariant map [63, Appendix B].
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The requirement of uniqueness for tautening maps in the definition of taut
groups is equivalent to the strongly ICC property for the group in question
(see Definition 2.2 and Lemmas A.7 and A.8(1) in the Appendix A.4 for a
proof of this claim). This property is rather common; in particular it is satis-
fied by all center-free semi-simple Lie groups and all ICC countable groups,
i.e. countable groups with infinite conjugacy classes. On the other hand the
existence of tautening maps for (G,G)-coupling is hard to obtain; in particu-
lar taut groups necessarily satisfy Mostow’s strong rigidity property.

Lemma 1.4 (Taut groups satisfy Mostow rigidity) Let G be a taut unimodu-

lar lcsc group. If τ : Γ1
∼=−→ Γ2 is an isomorphism of two lattices Γ1 and Γ2 in

G, then there exists a unique g ∈ G so that Γ2 = g−1Γ1g and τ(γ1) = g−1γg

for γ ∈ Γ1.

The lemma follows from considering the tautness of the measure equiv-
alence (G,G)-coupling given by the (G × G)-homogeneous space (G ×
G)/Δτ , where Δτ is the graph of the isomorphism τ : Γ1 → Γ2; see
Lemma A.3 for details.

The phenomenon, that any isomorphism between lattices in G is realized
by an inner conjugation in G, known as strong rigidity or Mostow rigidity,
holds for all simple Lie groups4 G �≃ SL2(R). More precisely, if X is an ir-
reducible non-compact, non-Euclidean symmetric space with the exception
of the hyperbolic plane H2, then G = Isom(X) is Mostow rigid. Mostow
proved this remarkable rigidity property for uniform lattices [44]. It was then
extended to the non-uniform cases by Prasad [52] (rk(X) = 1) and by Mar-
gulis [38] (rk(X) ≥ 2).

In the higher rank case, more precisely, if X is a symmetric space without
compact and Euclidean factors with rk(X) ≥ 2, Margulis proved a stronger
rigidity property, which became known as superrigidity [39]. Margulis’ su-
perrigidity for lattices in higher rank, was extended by Zimmer in the cocycle
superrigidity theorem [61]. Zimmer’s cocycle superrigidity was used in [15]
to show that higher rank simple Lie groups G are taut (albeit the use of term
tautness in this context is new). In [43] Monod and Shalom proved another
case of cocycle superrigidity and proved a version of tautness property for
certain products G = Γ1 × · · · × Γn with n ≥ 2. In [33, 35] Kida proved that
mapping class groups are taut. Kida’s result may be viewed as a cocycle gen-
eralization of Ivanov’s theorem [31].

1.2.3 Measurable cocycles

Let us elaborate on this connection between tautness and rigidity of measur-

able cocycles. Recall that a cocycle over a group action G � X to another

4For the formulation of Mostow rigidity above we have to assume that G has trivial center.
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group H is a map c : G × X → H such that for all g1, g2 ∈ G

c(g2g1, x) = c(g2, g1x) · c(g1, x).

Cocycles that are independent of the space variable are precisely homomor-
phisms G → H . One can conjugate a cocycle c : G × X → H by a map
f : X → H to produce a new cocycle cf : G × X → H given by

cf (g, x) = f (g . x)−1c(g, x)f (x).

In our context, G is a lcsc group, H is lcsc or, more generally, a Polish group,
and G � (X,μ) is a measurable measure-preserving action on a Lebesgue
finite measure space. In this context all maps, including the cocycle c, are
assumed to be μ-measurable, and all equations should hold μ-a.e.; we then
say that c is a measurable cocycle.

Let (Ω,m) be a (G,H)-coupling and H × X
j−→ Ω

i−1

−−→ G × Y be as in
(1.1). Since the actions G � Ω and H � Ω commute, G acts on the space of
H -orbits in Ω , which is naturally identified with X. This G-action preserves
the finite measure μ. Similarly, we get the measure preserving H -action on
(Y, ν). These actions will be denoted by a dot, g : x 
→ g . x, h : y 
→ h.y, to
distinguish them from the G×H action on Ω . Observe that in Ω one has for
g ∈ G and almost every h ∈ H and x ∈ X,

gj (h, x) = j
(
hh−1

1 , g . x
)

for some h1 ∈ H which depends only on g ∈ G and x ∈ X, and therefore may
be denoted by α(g, x). One easily checks that the map

α : G × X → H

that was just defined, is a measurable cocycle. Similarly, one obtains a mea-
surable cocycle β : H × Y → G. These cocycles depend on the choice of the
measure isomorphisms in (1.1), but different measure isomorphisms produce
conjugate cocycles. Identifying (Ω,m) with (H,mH ) × (X,μ), the action
G × H takes the form

(g,h)j
(
h′, x

)
= j

(
hh′α(g, x)−1, g . x

)
. (1.2)

Similarly, cocycle β : H × Y → G describes the G × H -action on (Ω,m)

when identified with (G,mG)× (Y, ν). In general, we call a measurable cocy-
cle G×X → H that arises from a (G,H)-coupling as above an ME-cocycle.

The connection between tautness and cocycle rigidity is in the observa-
tion (see Lemma A.4) that a (G,G)-coupling (Ω,m) is taut iff the ME-
cocycle α : G × X → G is conjugate to the identity isomorphism, α(g, x) =
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f (g . x)−1gf (x) by a unique measurable f : X → G. Hence one might say
that

G is taut if and only if it satisfies a cocycle version of Mostow rigidity.

1.2.4 Integrability conditions

Our first main result—Theorem B below—shows that G = Isom(Hn), n ≥ 3,
are 1-taut groups, i.e. all integrable (G,G)-couplings are taut. We shall now
define these terms more precisely.

A norm on a group G is a map | · | : G → [0,∞) so that |gh| ≤ |g| +
|h| and |g−1| = |g| for all g,h ∈ G. A norm on a lcsc group is proper if it
is measurable and the balls with respect to this norm are pre-compact. Two
norms | · | and | · |′ are equivalent if there are a, b > 0 such that |g|′ ≤ a · |g|+b

and |g| ≤ a · |g|′ + b for every g ∈ G. On a compactly generated group5 G

with compact generating symmetric set K the function |g|K = min{n ∈ N |
g ∈ Kn} defines a proper norm, whose equivalence class does not depend on
the chosen K . Unless stated otherwise, we mean a norm in this equivalence
class when referring to a proper norm on a compactly generated group.

Definition 1.5 (Integrability of cocycles) Let H be a compactly generated
group with a proper norm |·| and G be a lcsc group. Let p ∈ [1,∞]. A mea-
surable cocycle c : G × X → H is Lp-integrable if for a.e. g ∈ G

∫

X

∣∣c(g, x)
∣∣p dμ(x) < ∞.

For p = ∞ we require that the essential supremum of |c(g,−)| is finite for
a.e. g ∈ G. If p = 1, we also say that c is integrable. If p = ∞, we say that c

is bounded.

The integrability condition is independent of the choice of a norm within a
class of equivalent norms. Lp-integrability implies Lq -integrability whenever
1 ≤ q ≤ p. In the Appendix A.2 we show that, if G is also compactly gen-
erated, the Lp-integrability of c implies that the above integral is uniformly
bounded on compact subsets of G.

Definition 1.6 (Integrability of couplings) A (G,H)-coupling (Ω,m) of
compactly generated, unimodular, lcsc groups is Lp-integrable, if there ex-
ist measure isomorphisms as in (1.1) so that the corresponding ME-cocycles
G × X → H and H × Y → G are Lp-integrable. If p = 1 we just say that
(Ω,m) is integrable. Groups G and H that admit an Lp-integrable (G,H)-
coupling are said to be Lp-measure equivalent.

5Every connected lcsc group is compactly generated [57, Corollary 6.12 on p. 58].
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For each p ∈ [1,∞], being Lp-measure equivalent is an equivalence re-
lation on compactly generated, unimodular, lcsc groups (see Lemma A.1).
Furthermore, Lp-measure equivalence implies Lq -measure equivalence if
1 ≤ q ≤ p. So among the Lp-measure equivalence relations, L∞-measure
equivalence is the strongest and L1-measure equivalence is the weakest one;
all being subrelations of the (unrestricted) measure equivalence.

Let Γ < G be a lattice, and assume that G is compactly generated and Γ

is finitely generated; as is the case for semi-simple Lie groups G. Then the
(Γ,G)-coupling (G,mG) is Lp-integrable iff Γ is an Lp-integrable lattices in
G; if there exists a Borel cross-section s : G/Γ → G of the projection, so that
the cocycle c : G × G/Γ → Γ , c(g, x) = s(g . x)−1gs(x) is Lp-integrable.
In particular L∞-integrable lattices are precisely the uniform, i.e. cocompact
ones. Integrability conditions for lattices appeared for example in Margulis’s
proof of superrigidity (cf. [40, V. §4]), and in Shalom’s [55].

Definition 1.7 A lcsc group G is p-taut if every Lp-integrable (G,G)-
coupling is taut.

1.3 Statement of the main results

Theorem B The groups G = Isom(Hn), n ≥ 3, are 1-taut.

This result has an equivalent formulation in terms of cocycles.

Theorem 1.8 (Integrable cocycle strong rigidity) Let G = Isom(Hn), n ≥ 3,
G � (X,μ) be a probability measure preserving action, and c : G × X → G

be an integrable ME-cocycle. Then there is a measurable map f : X → G,
which is unique up to null sets, such that for μ-a.e. x ∈ X and every g ∈ G

we have

c(g, x) = f (g . x)−1 g f (x).

Note that this result generalizes Mostow-Prasad rigidity for lattices in these
groups. This follows from the fact that any 1-taut group satisfies Mostow
rigidity for L1-integrable lattices, and the fact, due to Shalom, that all lattices
in groups G = Isom(Hn), n ≥ 3, are L1-integrable.

Theorem 1.9 ([55, Theorem 3.6]) All lattices in simple Lie groups not lo-

cally isomorphic to Isom(H2) ≃ PSL2(R), Isom(H3) ≃ PSL2(C), are L2-

integrable, hence also L1-integrable. Further, lattices in Isom(H3) are L1-

integrable.

The second assertion is not stated in this form in [55, Theorem 3.6] but
the proof therein shows exactly that. In fact, for lattices in Isom(Hn) Shalom
shows Ln−1−ǫ-integrability.
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Lattices in G = Isom(H2) ∼= PGL2(R), such as surface groups, admit
a rich space of deformations—the Teichmüller space. In particular, these
groups do not satisfy Mostow rigidity, and therefore are not taut (they are not
even ∞-taut). However, it is well known viewing G = Isom(H2) ∼= PGL2(R)

as acting on the circle S1 ∼= ∂H2 ∼= R P1, any abstract isomorphism τ : Γ →
Γ ′ between cocompact lattices Γ,Γ ′ < G can be realized by a conjugation
in Homeo(S1), that is,

∃f ∈Homeo(S1) ∀γ∈Γ π ◦ τ(γ ) = f −1 ◦ π(γ ) ◦ f,

where π : G → Homeo(S1) is the imbedding as above. (Such f is the
“boundary map” constructed in Mostow’s proof of strong rigidity: the isomor-
phism τ : Γ → Γ ′ gives rise to a quasi-isometry of H2, and Morse-Mostow
lemma is used to extend this quasi-isometry to a (quasi-symmetric) homeo-
morphism f of the boundary S1 = ∂H2.) Motivated by this observation we
generalize the notion of tautness as follows.

Definition 1.10 Let G be a unimodular lcsc group, G a Polish group, π :
G → G a continuous homomorphism. A (G,G)-coupling is taut relative to
π : G → G if there exists a up to null sets unique measurable map Φ : Ω → G

such that for m-a.e. ω ∈ Ω and all g1, g2 ∈ G

Φ
(
(g1, g2)ω

)
= π(g1)Φ(ω)π(g2)

−1.

We say that G is taut (resp. p-taut) relative to π : G → G if all (resp. all
Lp-integrable) (G,G)-couplings are taut relative to π : G → G .

Observe that G is taut iff it is taut relative to itself. Note also that if Γ <

G is a lattice, then G is taut iff Γ is taut relative to the inclusion Γ < G;
and G is taut relative to π : G → G iff Γ is taut relative to π |Γ : Γ → G

(Proposition 2.9). If Γ < G is Lp-integrable, then these equivalences apply
to p-tautness.

Theorem C The group G = Isom(H2) ∼= PGL2(R) is 1-taut relative to the

natural embedding G < Homeo(S1). Cocompact lattices Γ < G are 1-taut

relative to the embedding Γ < G < Homeo(S1).

We skip the obvious equivalent cocycle reformulation of this result.

Remark 1.11

(1) The L1-assumption cannot be dropped from Theorem C. Indeed, the free
group F2 can be realized as a lattice in PSL2(R), but most automorphisms
of F2 cannot be realized by homeomorphisms of the circle.
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(2) Realizing isomorphisms between surface groups in Homeo(S1), one ob-
tains somewhat regular maps: they are Hölder continuous and quasi-
symmetric. We do not know (and do not expect) Theorem C to hold with
Homeo(S1) being replaced by the corresponding subgroups.

We now state the L1-ME rigidity result which is deduced from Theorem B,
focusing on the case of countable, finitely generated groups.

Theorem D (L1-Measure equivalence rigidity) Let G = Isom(Hn) with

n ≥ 3, and Γ < G be a lattice. Let Λ be a finitely generated group, and let

(Ω,m) be an integrable (Γ,Λ)-coupling. Then

(1) there exists a short exact sequence

1 → F → Λ → Λ̄ → 1

where F is finite and Λ̄ is a lattice in G,
(2) and a measurable map Φ : Ω → G so that for m-a.e. ω ∈ Ω and every

γ ∈ Γ and every λ ∈ Λ

Φ
(
(γ, λ)ω

)
= γΦ(ω)λ̄−1.

Moreover, if Γ × Λ � (Ω,m) is ergodic, then

(2a) either the push-forward measure Φ∗m is a positive multiple of the Haar

measure mG or mG0 ;
(3a) or, one may assume that Γ and Λ̄ share a subgroup of finite index and

Φ∗m is a positive multiple of the counting measure on the double coset

Γ eΛ̄ ⊂ G.

This result is completely analogous to the higher rank case considered in
[15], except for the L1-assumption. We do not know whether Theorem D
remains valid in the broader ME category, that is, without the L1-condition,
but should point out that if the L1 condition can be removed from Theorem B
then it can also be removed from Theorem D.

Theorem D can also be stated in the broader context of unimodular lcsc
groups, in which case the L1-measure equivalence rigidity states that a com-
pactly generated unimodular lcsc group H that is L1-measure equivalent to
G = Isom(Hn), n ≥ 3, admits a short exact sequence 1 → K → H → H̄ → 1
where K is compact and H̄ is either G, or its index two subgroup G0, or is a
lattice in G.

Measure equivalence rigidity results have natural consequences for (stable,

or weak) orbit equivalence of essentially free probability measure-preserving
group actions (cf. [14, 34, 43, 49]). Two probability measure preserving ac-
tions Γ � (X,μ), Λ � (Y, ν) are weakly, or stably, orbit equivalent if there



U. Bader et al.

exist measurable maps p : X → Y , q : Y → X with p∗μ ≪ ν, q∗ν ≪ μ so
that a.e.

p(Γ . x) ⊂ Λ . p(x), q(Λ . y) ⊂ Γ . q(y),

q ◦ p(x) ∈ Γ . x, p ◦ q(y) ∈ Λ . y

(see [14, §2] for other equivalent definitions). If Γ1,Γ2 are lattices in some
lcsc group G, then Γ1 � G/Γ2 and Γ2 � G/Γ1 are stably orbit equivalent
via p(x) = s1(x)−1, q(y) = s2(y)−1, where si : G/Γi → G are measurable
cross-sections. Moreover, given any (essentially) free, ergodic, probability
measure preserving (p.m.p.) action Γ1 � (X1,μ1) and Γ1-equivariant quo-
tient map π1 : X1 → G/Γ2, there exists a canonically defined free, ergodic
p.m.p. action Γ2 � (X2,μ2) with equivariant quotient π2 : X2 → G/Γ1
so that Γi � (Xi,μi) are stably orbit equivalent in a way compatible to
πi : Xi → G/Γ3−i [14, Theorem C].

We shall now introduce integrability conditions on weak orbit equivalence,
assuming Γ and Λ are finitely generated groups. Let | · |Γ , | · |Λ denote some
word metrics on Γ , Λ respectively, and let Γ � (X,μ) be an essentially
free action. Define an extended metric dΓ : X × X → [0,∞] on X by setting
dΓ (x1, x2) = |γ |Γ if γ . x1 = x2 and set dΓ (x1, x2) = ∞ otherwise. Let dΛ

denote the extended metric on Y , defined in a similar fashion. We say that
Γ � (X,μ) and Λ � (Y, ν) are Ls -weakly/stably orbit equivalent, if there
exists maps p : X → Y , q : Y → X as above, and such that for every γ ∈ Γ ,
λ ∈ Λ

(
x 
→ dΛ

(
p(γ . x),p(x)

))
∈ Ls(X,μ),

(
x 
→ dΓ

(
q(λ . y), q(y)

))
∈ Ls(Y, ν).

Note that the last condition is independent of the choice of word metrics.
The following result6 is deduced from Theorem D in essentially the same

way Theorems A and C in [14] are deduced from the corresponding measure
equivalence rigidity theorem in [15]. The only additional observation is that
the constructions respect the integrability conditions.

Theorem E (L1-Orbit equivalence rigidity) Let G = Isom(Hn) where n ≥ 3,
and Γ < G be a lattice. Assume that there is a finitely generated group Λ and

essentially free, ergodic, p.m.p actions Γ � (X,μ) and Λ � (Y, ν), which

admit a stable L1-orbit equivalence p : X,→ Y , q : Y → X as above. Then

either one the following two cases occurs:

6The formulation of the virtual isomorphism case in terms of induced actions is due to
Kida [34].
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Virtual isomorphism: There exists a short exact sequence 1 → F → Λ →
Λ̄ → 1, where F is a finite group and Λ̄ < G is a lattice with Δ = Γ ∩ Λ̄

having finite index in both Γ and Λ̄, and an essentially free ergodic

p.m.p. action Δ � (Z, ζ ) so that Γ � (X,μ) is isomorphic to the induced

action Γ � Γ ×Δ (Z, ζ ), and the quotient action Λ̄ � (Ȳ , ν̄) = (Y, ν)/F

is isomorphic to the induced action Λ̄ � Λ̄ ×Δ (Z, ζ ), or

Standard quotients: There exists a short exact sequence 1 → F → Λ →
Λ̄ → 1, where F is a finite group and Λ̄ < G is a lattice, and for G′ = G

or G′ = G0 (only if Λ̄,Γ < G0), and equivariant measure space quotient

maps

π : (X,μ) →
(
G′/Λ̄,mG′/Λ̄

)
, σ : (Y, ν) →

(
G′/Γ,mG′/Γ

)

with π(γ . x) = γ . π(x), σ(λ . y) = λ̄ . σ (y). Moreover, the action Λ̄ �

(Ȳ , ν̄) = (Y, ν)/F is isomorphic to the canonical action associated to Γ �

(X,μ) and the quotient map π : X → G′/Λ̄.

The family of rank one simple real Lie groups Isom(Hn) is the least rigid
one among simple Lie groups. As higher rank simple Lie groups are rigid with
respect to measure equivalence, one wonders about the remaining families of
simple real Lie groups: Isom(Hn

C
) ≃ SUn,1(R), Isom(Hn

H
) ≃ Spn,1(R), and

the exceptional group Isom(H2
O
) ≃ F4(−20). The question of measure equiv-

alence rigidity (or Lp-measure equivalence rigidity) for the former family
remains open, but the latter groups are rigid with regard to L2-measure equiv-
alence. Indeed, recently, using harmonic maps techniques (after Corlette [9]
and Corlette-Zimmer [10]), Fisher and Hitchman [12] proved an L2-cocycle
superrigidity result for isometries of quaternionic hyperbolic space Hn

H
and

the Cayley plane H2
O

. This theorem can be used to deduce the following.

Theorem 1.12 (Corollary of [12]) The rank one Lie groups Isom(Hn
H
) ≃

Spn,1(R) and Isom(H2
O
) ≃ F4(−20) are 2-taut.

Using this result as an input to the general machinery described above one
obtains:

Corollary 1.13 The conclusions of Theorems D and E hold for all lattices

in Isom(Hn
H
) and Isom(H2

O
) provided the L1-conditions are replaced by L2-

ones.

1.4 Organization of the paper

In Sect. 2 we show that all taut groups are ME-rigid; this is stated in The-
orems 2.1 and the more detailed version in Theorem 2.6. In Sects. 3 and 4
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we develop the tools for proving tautness of G = Isom(Hn)—the statement
that generalizes Mostow rigidity, Theorem B (n ≥ 3), and a generalization
of Milnor-Wood-Ghys phenomenon, Theorem C (n = 2). More precisely, in
Sect. 3 we study the effect of an ME cocycle on boundary actions and bound-
ary maps. This section contains various technical results on the crossroad
of ergodic theory and geometry. In Sect. 4 these results are used to analyze
the effect of the boundary map on cohomology and bounded cohomology,
and specifically on the volume form and the Euler class. At a crucial point,
when estimating the norm of the Euler class, Corollary 4.13, we use a result
from our companion paper [1], which relies on the integrability of the cou-
pling. This is the only place where the integrability assumption is used. The
main theorems stated in the introduction are then proved in Sect. 5. General
facts about measure equivalence which are used throughout are collected in
Appendix A. In order to improve the readability of Sect. 4 we also added
Appendix B which contains a brief discussion of bounded cohomology.

2 Measure equivalence rigidity for taut groups

This section contains general tools related to the notion of taut couplings
and taut groups. The results of this section apply to general unimodular lcsc
groups, including countable groups, and are not specific to Isom(Hn) or semi-
simple Lie groups. Whenever we refer to Lp-integrability conditions, we as-
sume that the groups are also compactly generated. We rely on some basic
facts about measure equivalence which are collected in Appendix A. The ba-
sic tool is the following:

Theorem 2.1 Let G be a unimodular lcsc group that is taut (resp. p-taut).
Any unimodular lcsc group H that is measure equivalent (resp. Lp-measure

equivalent) to G admits a short exact sequence with continuous homomor-

phisms

1 → K → H → H̄ → 1,

where K is compact and H̄ is a closed subgroup in G such that G/H̄ carries

a G-invariant Borel probability measure.

Theorem 2.6 below contains a more technical statement that applies to
more general situations.

2.1 The strong ICC property and strongly proximal actions

We need to introduce a notion of strongly ICC group G and, more generally,
the notion of a group G being strongly ICC relative to a subgroup G0 < G .
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Definition 2.2 A Polish group G is strongly ICC relative to G0 < G if G \ {e}
does not support any Borel probability measure that is invariant under the
conjugation action of G0 on G \ {e}. A Polish group G is strongly ICC if it is
strongly ICC relative to itself.

The key properties of this notion are discussed in Appendix A.4. Recall
that a countable discrete group is said to be ICC (short for Infinite Conjugacy
Classes) if all its non-trivial conjugacy classes are infinite. Note that for a
discrete group ICC condition is equivalent to the above strong ICC condition.
We will be concerned also with some other examples, that are given in the
following proposition.

Proposition 2.3

(1) Any connected, center-free, semi-simple Lie group G without compact

factors is strongly ICC relative to any unbounded Zariski dense subgroup.
In particular, G itself is strongly ICC.

(2) For a semi-simple Lie group without compact factors G, and a parabolic

subgroup Q < G, the Polish group Homeo(G/Q) is strongly ICC relative

to G.
In particular, Homeo(S1) is strongly ICC relative to PGL2(R), or any

lattice in PGL2(R).

Before proving this proposition let us recall the notion of minimal and

strongly proximal action. A continuous action G � M of a (lcsc) group G

on a compact metrizable space M is called minimal if there are no closed
G-invariant nontrivial subsets in a compact metrizable space M , and strongly

proximal if every G-invariant weak∗-closed set of probability measures on M

contains some Dirac measures. Clearly, the action G � M is both minimal
and strongly proximal if every G-invariant weak∗-closed set of probability
measures on M contains all the Dirac measures. Thus, being minimal and

strongly proximal is easily seen to be equivalent to each of the following
conditions:

(1) For every Borel probability measure ν ∈ Prob(M) and every non-empty
open subset V ⊂ M one has

sup
g∈G

g∗ν(V ) = 1.

(2) For every ν ∈ Prob(M) the convex hull of the G-orbit g∗ν is dense in
Prob(M) in the weak-* topology.

We need the following general statement.
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Lemma 2.4 Let M be a compact metrizable space and G < Homeo(M)

be a subgroup which acts minimally and strongly proximally on M . Then

Homeo(M) is strongly ICC relative to G.

Proof Let μ be a probability measure on Homeo(M). The set of μ-stationary

probability measures on M

Probμ(M) =
{
ν ∈ Prob(M) | ν = μ ∗ ν =

∫
f∗ν dμ(f )

}

is a non-empty convex closed (hence compact) subset of Prob(M), with re-
spect to the weak∗ topology. Suppose μ is invariant under conjugations by
g ∈ G. Since

g∗(μ ∗ ν) = μg ∗ (g∗ν) = μ ∗ (g∗ν)

it follows that Probμ(M) is a G-invariant set. Minimality and strong proxi-
mality of the G-action implies that Probμ(M) = Prob(M). In particular, every
Dirac measure νx is μ-stationary; hence μ{f | f (x) = x} = 1. It follows that
μ = δe. �

Proof of Proposition 2.3

(1) See [16, Proof of Theorem 2.3].
(2) This follows from Lemma 2.4, as by [40, Theorem 3.7 on p. 205] the

action of G on M = G/Q is minimal and strongly proximal. �

Next consider two measure equivalent (countable) groups Γ1 and Γ2, and a
continuous action Γ2 � M on some compact metrizable space M . Let (Ω,m)

be a (Γ1,Γ2)-coupling. Choosing a fundamental domain X for Γ2 � Ω we
obtain a probability measure-preserving action Γ1 � (X,μ) and a measur-
able cocycle α : Γ1 × X → Γ2, that can be used to define a Γ1-action on
X × M by

γ . (x,p) =
(
γ . x,α(γ, x) . p

)
(x ∈ X, p ∈ M, γ ∈ Γ1).

The space X × M and the above action Γ1 � (X × M) combine ergodic-
theoretic base action Γ1 � (X,μ) and topological dynamics in the fibers
Γ2 � M . In [19, §3 and 4] Furstenberg defines notions of minimality and
(strong) proximality for such actions. We shall only need the former notion:
the action Γ1 � X × M is minimal if there are only trivial measurable α-
equivariant families {Ux ⊂ M | x ∈ X} of open subsets Ux ⊂ M . More specif-
ically, whenever a measurable family of open subsets Ux ⊂ M satisfies for all
γ ∈ Γ1 and μ-a.e. x ∈ X

Uγ.x = α(γ, x)Ux (2.1)
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one either has μ{x ∈ X | Ux = ∅} = 1 or μ{x ∈ X | Ux = M} = 1.
We shall need the following lemma (generalizing [19, Proposition 4.4]):

Lemma 2.5 Let Ω be an ergodic (Γ1,Γ2)-coupling, and Γ2 � M a mini-

mal and strongly proximal action. Then the induced action Γ1 � X × M is

minimal in the above sense.

Proof Let i : Γ2 ×X ∼= Ω be a measure space isomorphism as in (1.1). Given
a family (Ux) as in (2.1), consider the measurable family {Oω} of open sub-
sets of M indexed by ω ∈ Ω , defined by Oi(γ,x) = γUx . Then for ω = i(γ, x)

and γi ∈ Γi we have

O(γ1,γ2)ω = γ2γα(γ1, x)−1Uγ1.x = γ2γUx = γ2Oω.

Note that ω → Oω is invariant under the action of Γ1. Therefore it descends
to a measurable family of open sets {Vy} indexed by y ∈ Y ∼= Ω/Γ1, and
satisfying a.e. on Y

Vγ2.y = γ2Vy (γ2 ∈ Γ2).

The claim about {Ux | x ∈ X} is clearly equivalent to the similar claim about
{Vy | y ∈ Y }. By ergodicity, it suffices to reach a contradiction from the as-
sumption that Vy �= ∅,M for ν-a.e. y ∈ Y , where ν is the probability measure
associated to (Ω,m).

The assumption that (Ω,m) is Γ1 × Γ2-ergodic is equivalent to ergodic-
ity of the probability measure preserving action Γ2 � (Y, ν). Since M has
a countable base for its topology, while μ({y | Vy �= ∅}) = 1, it follows that
there exists a non-empty open set W ⊂ M for which

A = {y ∈ Y | W ⊂ Vy}

has ν(A) > 0. Since M \ Vy �= ∅ for ν-a.e. y ∈ Y , there exists a measurable
map s : Y → M with s(y) /∈ Vy for ν-a.e. y ∈ Y . Let σ ∈ Prob(M) denote the
distribution of s(y), i.e., σ(E) = ν{y ∈ Y | s(y) ∈ E}. Then for any γ2 ∈ Γ2

σ
(
γ −1

2 W
)
= ν

{
y ∈ Y | s(y) ∈ γ −1

2 W
}

≤ ν
(
Y \ γ −1

2 A
)
+ ν

{
y ∈ γ −1

2 A | s(y) ∈ γ −1
2 Vγ2.y = Vy

}

= 1 − ν
(
γ −1

2 A
)
= 1 − ν(A).

So σ(γ −1
2 W) ≤ 1 − ν(A) < 1 for all γ2 ∈ Γ2, contradicting the assumption

that the action Γ2 � M is minimal and strongly proximal. �
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2.2 Tautness and the passage to self couplings

Theorem 2.1 is a direct consequence of the following, more technical state-
ment that constructs a representation for arbitrary groups measure equivalent
to a given group G, provided some specific (G,G)-coupling is taut.

Theorem 2.6 Let G, H be unimodular lcsc groups, (Ω,m) a (G,H)-

coupling, G a Polish group, and π : G → G a continuous homomorphism.
Assume that G is strongly ICC relative to π(G) and the (G,G)-coupling

Ω ×H Ω∗ is taut relative to π : G → G .
Then there exists a continuous homomorphism ρ : H → G and a measur-

able map Ψ : Ω → G so that a.e.:

Ψ
(
(g,h)ω

)
= π(g)Ψ (ω)ρ(h)−1 (g ∈ G, h ∈ H)

and the unique tautening map Φ : Ω ×H Ω∗ → G is given by

Φ
(
[ω1,ω2]

)
= Ψ (ω1) · Ψ (ω2)

−1.

The pair (Ψ,ρ) is unique up to conjugations (Ψ x, ρx) by x ∈ G , where

Ψ x(ω) = Ψ (ω)x−1, ρx(h) = xρ(h)x−1.

If, in addition, π : G → G has compact kernel and closed image Ḡ = π(G),
then the same applies to ρ : H → G , and there exists a Borel measure m̄ on

G , which is invariant under

(g,h) : x 
→ π(g)x ρ(h)

and descends to finite measures on π(G)\G and G/ρ(H). In other

words, (G, m̄) is a (π(G),ρ(H))-coupling which is a quotient of

(Ker(π) × Ker(ρ))\(Ω,m).

Proof We shall first construct a homomorphism ρ : H → G and the G × H -
equivariant map Ψ : Ω → G . Consider the space Ω3 = Ω × Ω × Ω and the
three maps p1,2,p2,3, p1,3, where

pi,j : Ω3 −→ Ω2 −→ Ω ×H Ω∗

is the projection to the i-th and j -th factor followed by the natural projection.
Consider the G3 × H -action on Ω3:

(g1, g2, g3, h) : (ω1,ω2,ω3) 
→
(
(g1, h)ω1, (g2, h)ω2, (g3, h)ω3

)
.
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For i ∈ {1,2,3} denote by Gi the corresponding G-factor in G3. For i, j ∈
{1,2,3} with i �= j the group Gi × Gj < G1 × G2 × G3 acts on Ω ×H Ω∗

and on G by

(gi, gj ) : [ω1,ω2] 
→ [giω1, gjω2],

(gi, gj ) : x 
→ π(gi) x π(gj )
−1 (x ∈ G)

respectively. Let {i, j, k} = {1,2,3}. The map pi,j : Ω3 → Ω ×H Ω∗ is
Gk × H -invariant and Gi × Gj -equivariant. This is also true of the maps

Fi,j = Φ ◦ pi,j : Ω3 pi,j−−→ Ω ×H Ω∗ Φ−→ G,

where Φ : Ω ×H Ω∗ → G is the tautening map. For {i, j, k} = {1,2,3}, the
three maps Fi,j , F−1

j,i and Fi,k · Fk,j are all Gk × H -invariant, hence factor
through the natural map

Ω3 → Σk = (Gk × H)\Ω3.

By an obvious variation on the argument in Appendix A.1.3 one verifies
that Σk is a (Gi,Gj )-coupling. The three maps Fi,j , F−1

j,i and Fi,k · Fk,j

are Gi × Gj -equivariant. Since G is strongly ICC relative to π(G), there
is at most one Gi × Gj -equivariant measurable map Σk → G according to
Lemma A.8. Therefore, we get m3-a.e. identities

Fi,j = F−1
j,i = Fi,k · Fk,j . (2.2)

Denote by Φ̄ : Ω2 → G the composition Ω2−→Ω ×H Ω∗ Φ−→G . By Fubini’s
theorem, (2.2) implies that for m-a.e. ω2 ∈ Ω , for m × m-a.e. (ω1,ω3)

Φ̄(ω1,ω3) = Φ̄(ω1,ω2) · Φ̄(ω2,ω3) = Φ̄(ω1,ω2) · Φ̄(ω3,ω2)
−1.

Fix such a generic ω2 ∈ Ω and define Ψ : Ω → G by Ψ (ω) = Φ̄(ω,ω2).
Then for a.e. [ω,ω′] ∈ Ω ×H Ω

Φ
([

ω,ω′]) = Φ̄
(
ω,ω′) = Ψ (ω) · Ψ

(
ω′)−1

. (2.3)

We proceed to construct a representation ρ : H → G . Equation (2.3) implies
that for every h ∈ H and for a.e. ω,ω′ ∈ Ω :

Ψ (hω)Ψ
(
hω′)−1 = Φ̄

(
hω,hω′) = Φ̄

(
ω,ω′) = Ψ (ω)Ψ

(
ω′)−1

,

and in particular, we get

Ψ (hω)−1Ψ (ω) = Ψ
(
hω′)−1

Ψ
(
ω′).
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Observe that the left hand side is independent of ω′ ∈ Ω , while the right hand
side is independent of ω ∈ Ω . Hence both are m-a.e. constant, and we denote
by ρ(h) ∈ G the constant value. Being coboundaries the above expressions
are cocycles; being independent of the space variable they give a homomor-
phism ρ : H → G . To see this explicitly, for h,h′ ∈ H we compute using
m-a.e. ω ∈ Ω :

ρ
(
hh′) = Ψ

(
hh′ω

)−1
Ψ (ω)

= Ψ
(
hh′ω

)−1
Ψ

(
h′ω

)
Ψ

(
h′ω

)−1
Ψ (ω)

= ρ(h)ρ
(
h′).

Since the homomorphism ρ is measurable, it is also continuous [63, Theo-
rem B.3 on p. 198]. By definition of ρ we have for h ∈ H and m-a.e. ω ∈ Ω :

Ψ (hω) = Ψ (ω)ρ(h)−1. (2.4)

Since Ψ (ω) = Φ̄(ω,ω2), it also follows that for g ∈ G and m-a.e. ω ∈ Ω

Ψ (gω) = π(g)Ψ (ω). (2.5)

Consider the collection of all pairs (Ψ,ρ) satisfying (2.4) and (2.5). Clearly,
G acts on this set by x : (Ψ,ρ) 
→ (Ψ x, ρx) = (Ψ · x, x−1ρx); and we claim
that this action is transitive. Let (Ψi, ρi), i = 1,2, be two such pairs in the
above set. Then

Φ̃i

(
ω,ω′) = Ψi(ω)Ψi

(
ω′)−1

(i = 1,2)

are G×G-equivariant measurable maps Ω ×Ω → G , which are invariant un-
der H . Hence they descend to G × G-equivariant maps Φi : Ω ×H Ω∗ → G .
The assumption that G is strongly ICC relative to π(G), implies a.e. identities
Φ1 = Φ2, Φ̃1 = Φ̃2. Hence for a.e. ω,ω′

Ψ1(ω)−1Ψ2(ω) = Ψ1
(
ω′)−1

Ψ2
(
ω′).

Since the left hand side depends only on ω, while the right hand side only on
ω′, it follows that both sides are a.e. constant x ∈ G . This gives Ψ1 = Ψ x

2 . The
a.e. identity

Ψ1(ω)ρ1(h) = Ψ1
(
h−1ω

)
= Ψ2

(
h−1ω

)
x = Ψ2(ω)ρ2(h)x = Ψ1(ω)x−1ρ2(h)x

implies ρ1 = ρx
2 . This completes the proof of the first part of the theorem.

Next, we assume that Ker(π) is compact and π(G) is closed in G , and will
show that the kernel K = Ker(ρ) is compact, the image H̄ = ρ(H) is closed
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in G , and that G/H̄ , π(G)\G carry finite measures. These properties will be
deduced from the assumption on π and the existence of the measurable map
Ψ : Ω → G satisfying (2.4) and (2.5). We need the next lemma, which says
that Ω has measure space isomorphisms as in (1.1) with special properties. �

Lemma 2.7 Let ρ : H → G and Ψ : Ω → G be as above. Then there exist

measure space isomorphisms i : G × Y ∼= Ω and j : H × X ∼= Ω as in (1.1)
that satisfy in addition

Ψ
(
i(g, y)

)
= π(g), Ψ

(
j (h, x)

)
= ρ(h).

Proof We start from some measure space isomorphisms i0 : G × Y ∼= Ω and
j0 : H × X ∼= Ω as in (1.1) and will replace them by

i(g, y) = i0(ggy, y), j (h, x) = j0(hhx, x)

for some appropriately chosen measurable maps Y → G, y 
→ gy and X →
H , x 
→ hx . The conditions (1.1) remain valid after any such alteration.

Let us construct y 
→ gy with the required property; the map x 
→ hx can
be constructed in a similar manner. By (2.5) for mG × ν-a.e. (g1, y) ∈ G × Y

the value

π(g)−1Ψ ◦ i0(gg1, y)

is mG-a.e. independent of g; denote it by f (g1, y) ∈ G . Fix g1 ∈ G for which

Ψ ◦ i0(gg1, y) = π(g)f (g1, y)

holds for mG-a.e. g ∈ G and ν-a.e. y ∈ Y . There exists a Borel cross section
G → G to π : G → G . Using such, we get a measurable choice for gy so that

π(gy) = f (g1, y)−1π(g1).

Setting i(g, y) = i0(ggy, y), we get mG × ν-a.e. that Ψ ◦ i(g, y) = π(g). �

Lemma 2.8 Given a neighborhood of the identity V ⊂ H and a compact

subset Q ⊂ G , the set ρ−1(Q) can be covered by finitely many translates

of V :

ρ−1(Q) ⊂ h1V ∪ · · · ∪ hNV.

Proof Since π : G → G is assumed to be continuous, having closed image
and compact kernel, for any compact Q ⊂ G the preimage π−1(Q) ⊂ G is
also compact. Let W ⊂ H be an open neighborhood of identity so that W ·
W−1 ⊂ V ; we may assume W has compact closure in H . Then π−1(Q) · W
is precompact. Hence there is an open precompact set U ⊂ G with π−1(Q) ·
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W ⊂ U . Consider subsets A = j (W × X), and B = i(U × Y) of Ω , where i

and j are as in the previous lemma. Then

m(A) = mH (W) · ν(Y ) > 0, m(B) = mG(U) · μ(X) < ∞.

Let {h1, . . . , hn} ⊂ ρ−1(Q) be such that hkW ∩ hlW = ∅ for k �= l ∈
{1, . . . , n}. Then the sets hkA = j (hkW × X) are also pairwise disjoint and
have m(hkA) = m(A) > 0 for 1 ≤ k ≤ n. Since

Ψ (hkA) = ρ(hkW) = ρ(hk)ρ(W) ⊂ Q · ρ(W) ⊂ ρ(U),

it follows that hkA ⊂ B for every 1 ≤ k ≤ n. Hence n ≤ m(B)/m(A). Choos-
ing a maximal such set {h1, . . . , hN }, we obtain the desired cover. �

Continuation of the proof of Theorem 2.6 Lemma 2.8 implies that the closed
subgroup K = Ker(ρ) is compact. More generally, it implies that the contin-
uous homomorphism ρ : H → G is proper, that is, preimages of compact sets
are compact. Therefore H̄ = ρ(H) is closed in G .

We push forward the measure m to a measure m̄ on G via the map
Ψ : Ω → G . The measure m̄ is invariant under the action x 
→ π(g)x ρ(h).
Since H̄ = ρ(H) ∼= H/ker(ρ) is closed in G , the space G/H̄ is Hausdorff. As
Ker(ρ) and Ker(π) are compact normal subgroups in H and G, respectively,
the map Ψ : Ω → G factors through

(Ω,m)−→
(
Ω ′,m′) =

(
Ker(π) × Ker(ρ)

)
\(Ω,m)

Ψ ′
−→ G.

Let Ḡ = G/Ker(π). Starting from measure isomorphisms as in Lemma 2.7,
we obtain equivariant measure isomorphisms (Ω ′,m′) ∼= (H̄ × X,mH̄ × μ)

and (Ω ′,m′) ∼= (Ḡ×Y,mḠ ×ν). In particular, (Ω ′,m′) is a (Ḡ, H̄ )-coupling.
The measure m̄ on G descends to the Ḡ-invariant finite measure on G/H̄

obtained by pushing forward μ. Similarly, m̄ descends to the H̄ -invariant
finite measure on Ḡ\G obtained by pushing forward ν. This completes the
proof of Theorem 2.6. �

Proof of Theorem 2.1 Theorem 2.1 immediately follows from Theorem 2.6.
In case of Lp-conditions, one observes that if (Ω,m) is an Lp-integrable
(G,H)-coupling, then Ω ×H Ω∗ is an Lp-integrable (G,G)-coupling
(Lemma A.2); so it is taut under the assumption that G is p-taut. �

2.3 Lattices in taut groups

Proposition 2.9 (Taut groups and lattices) Let G be a unimodular lcsc group,
G a Polish group, π : G → G a continuous homomorphism. Assume that G is
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strongly ICC relative to π(G) and let Γ < G be a lattice (resp. a p-integrable

lattice).
Then G is taut (resp. p-taut) relative to π : G → G iff Γ is taut (resp. p-

taut) relative to π |Γ : Γ → G . In particular, G is taut iff any/all lattices in G

are taut relative to the inclusion Γ < G.

For the proof of this proposition we shall need the following.

Lemma 2.10 (Induction) Let G be a unimodular lcsc group, G a Polish

group, π : G → G a continuous homomorphism, and Γ1,Γ2 < G lattices.
Let (Ω,m) be a (Γ1,Γ2)-coupling, and assume that the (G,G)-coupling

Ω̄ = G ×Γ1 Ω ×Γ2 G is taut relative to π : G → G . Then there exists a

Γ1 × Γ2-equivariant map Ω → G .

Proof It is convenient to have a concrete model for Ω̄ . Choose Borel cross-
sections σi from Xi = G/Γi to G, and form the cocycles ci : G × Xi → Γi

by

ci(g, x) = σi(g . x)−1gσi(x) (i = 1,2).

Then, suppressing the obvious measure from the notations, Ω̄ identifies with
X1 × X2 × Ω , while the G × G-action is given by

(g1, g2) : (x1, x2,ω) 
→
(
g1 . x1, g2 . x2, (γ1, γ2)ω

)
where γi = ci(gi, xi).

By the assumption there exists a measurable map Φ̄ : Ω̄ → G so that

Φ̄
(
(g1, g2)(x1, x2,ω)

)
= π(g1) · Φ̄(x1, x2,ω) · π(g2)

−1 (g1, g2 ∈ G)

for a.e. (x1, x2,ω) ∈ Ω̄ . Fix a generic pair (x1, x2) ∈ X1 × X2, denote hi =
σi(xi) and consider gi = γ

hi

i (= hiγih
−1
i ), where γi ∈ Γi for i ∈ {1,2}. Then

gi . xi = xi , ci(gi, xi) = γi and the map Φ ′ : Ω → G defined by Φ ′(ω) =
Φ̄(x1, x2,ω) satisfies m-a.e.

Φ ′((γ1, γ2)ω
)
= Φ̄

(
(g1, g2)(x1, x2,ω)

)
= π(g1) · Φ ′(ω) · π(g2)

−1

= π
(
γ

h1
1

)
· Φ ′(ω) · π

(
γ

h2
2

)−1
.

Thus Φ(ω) = π(h1)
−1Φ ′(ω)π(h2) is a Γ1 × Γ2-equivariant measurable map

Ω → G , as required. �

Proof of Proposition 2.9 Assuming that G is taut relative to π : G → G and
Γ < G is a lattice, we shall show that Γ is taut relative to π |Γ : Γ → G .

Let (Ω,m) be a (Γ,Γ )-coupling. Then the (G,G)-coupling Ω̄ = G ×Γ

Ω ×Γ G is taut relative to G , and by Lemma 2.10, Ω admits a Γ × Γ -
tautening map Φ : Ω → G . Since G is strongly ICC relative to π(G) < G ,
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the map Φ : Ω → G is unique as a Γ × Γ -equivariant map (Lemma A.8.(3)).
This shows that Γ is taut relative to G .

Observe, that if G is assumed to be only p-taut, while Γ < G to
be Lp-integrable, then the preceding argument for the existence of
Γ × Γ -tautening map for a Lp-integrable (Γ,Γ )-coupling Ω still applies.
Indeed, the composed coupling Ω̄ = G ×Γ Ω ×Γ G is then Lp-integrable
and therefore admits a G × G-tautening map Φ̄ : Ω̄ → G , leading to a
Γ × Γ -tautening map Φ : Ω → G . Finally, G is strongly ICC relative to
π(Γ ) by Lemma A.6, and the uniqueness of the Γ tautening map follows
from Lemma A.8(1).

Next assume that Γ < G is a lattice and Γ is taut (resp. p-taut) relative
to π |Γ : Γ → G . Let (Ω,m) be a (G,G)-coupling (resp. a Lp-integrable
one). Then (Ω,m) is also a (Γ,Γ )-coupling (resp. a Lp-integrable one).
Since Γ is assumed to be taut (resp. p-taut) there is a Γ × Γ -equivariant
map Φ : Ω → G . As G is strongly ICC relative to π(G) it follows from (4)
in Lemma A.8 that Φ : Ω → G is automatically G × G-equivariant. The
uniqueness of tautening maps follows from the strong ICC assumption by
Lemma A.8(1). �

Remark 2.11 The explicit assumption that G is strongly ICC relative to π(G)

is superfluous. If no integrability assumptions are imposed, the strong ICC
follows from the tautness assumption by Lemma A.7. However, if one as-
sumes merely p-tautness, the above lemma yields strong ICC property for a
restricted class of measures; and the argument that this is sufficient becomes
unjustifiably technical in this case.

3 Some boundary theory

Throughout this section we refer to the following

Setup 3.1 We fix n ≥ 2 and introduce the following setting:

– G = Isom(Hn).
– Γ < G0 be a torsion-free uniform lattice in the connected component of

the identity.
– M = Γ \Hn is a compact hyperbolic manifold with Γ ≃ π1(M).
– The boundary ∂Hn is denoted by B; we identify it with the (n − 1)-sphere

and equip it with the Lebesgue measure ν.7

– (Ω,m) is an ergodic (Γ,Γ )-coupling.

7Any probability measure in the Lebesgue measure class would do it.
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– For better readability we denote the left copy of Γ by Γl and the right
copy by Γr . We fix a Γl-fundamental domain X ⊂ Ω , and denote by μ the
restriction of m to X.

– Identifying X with Γl\Ω , we get an ergodic action of Γr on (X,μ). We
denote by α : Γr × X → Γl < G the associated cocycle.

Boundary theory, in the sense of Furstenberg [18] (see [7, Corollary 3.2], or
[42, Proposition 3.3] for a detailed argument applying to our situation), yields
the existence of an essentially unique measurable map, called boundary map

or Furstenberg map,

φ : X × B → B satisfying φ(γ x, γ b) = α(γ, x)φ(x, b) (3.1)

for every γ ∈ Γ and a.e. (x, b) ∈ X × B .

Proposition 3.2 Let G < Homeo(B) be a closed subgroup containing Γ and

denote the inclusion Γ < G by π . If for a.e x ∈ X the function φ(x, ·) : B →
B coincides a.e with an element of G then Ω is taut with respect to the inclu-

sion π : Γ → G .

Proof Consider the set F(B,B) of measurable functions B → B , where two
functions are identified if they agree on ν-conull set. We endow F(B,B) with
the topology of convergence in measure. The Borel σ -algebra of this topol-
ogy turns F(B,B) into a standard Borel space [13, Sect. 2A]. By [32, Corol-
lary 15.2 on p. 89] the measurable injective map j : G → F(B,B) is a Borel
isomorphism of G onto its measurable image.

The map φ gives rise to a measurable map f : X → F(B,B) defined for
almost every x ∈ X by f (x) = φ(x, ·) [13, Corollary 2.9], which can be re-
garded as a measurable map f : X → G . Equation (3.1) gives

π ◦ α(γ, x) = f (γ . x)π(γ )f (x)−1, (3.2)

thus by Lemma A.4, there is a tautening map Ω → G .
Note that by Proposition 2.3(2), Homeo(B) is strongly ICC relative to G. It

follows by Lemma A.6 that it is also strongly ICC relative to Γ . Therefore G

is strongly ICC relative to Γ , and by Lemma A.8(1) the tautening is unique. �

3.1 Preserving maximal simplices of the boundary

Recall that a geodesic simplex in H̄n = Hn ∪ ∂Hn is called regular if any
permutation of its vertices can be realized by an element in Isom(Hn). The
set of ordered (n + 1)-tuples on the boundary B that form the vertex set of
an ideal regular simplex is denoted by Σ reg. The set Σ reg is a disjoint union
Σ reg = Σ

reg
+ ∪Σ

reg
− of two subsets that correspond to the positively and nega-

tively oriented ideal regular n-simplices, respectively. We denote by vmax the
maximum possible volume of an ideal simplex.
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Lemma 3.3 (Key facts from Thurston’s proof of Mostow rigidity)

(1) The diagonal G-action on Σ reg is simply transitive. The diagonal G0-

action on Σ
reg
− and Σ

reg
+ are simply transitive, respectively.

(2) An ideal simplex has non-oriented volume vmax if and only if it is regular.
(3) Let n ≥ 3. Let σ,σ ′ be two regular ideal simplices having a common face

of codimension one. Let ρ be the reflection along the hyperspace spanned

by this face. Then σ = ρ(σ ′).

Proof (1) See the proof of [53, Theorem 11.6.4 on p. 568].
(2) The statement is trivial for n = 2, as all non-degenerate ideal triangles

in H̄2 are regular, and G acts simply transitively on them. The case n = 3
is due to Milnor, and Haagerup and Munkholm [27] proved the general case
n ≥ 3.

(3) This is a key feature distinguishing the n ≥ 3 case from the n = 2 case
where Mostow rigidity fails. See [53, Lemma 13 on p. 567]. �

We shall need the following lemma, which is due to Thurston [59,
p. 133/134] in dimension n = 3. Recall that B = ∂Hn is equipped with the
Lebesgue measure class. We consider the natural measure mΣ

reg
+

on Σ
reg
+ cor-

responding to the Haar measure on G0 under the simply transitive action of
G0 on Σ

reg
+ .

Lemma 3.4 Let n ≥ 3 and φ : B → B be a Borel map such that φn+1 =
φ × · · · × φ maps a.e. point in Σ

reg
+ into Σ

reg
+ . Then there exists a unique

g0 ∈ G0 = Isom+(Hn) with φ(b) = g0b for a.e. b ∈ B .

Proof Fix a regular ideal simplex σ = (b0, . . . , bn) ∈ Σ
reg
+ , and identify G0

with Σ
reg
+ via g 
→ gσ . Then there is a Borel map f : G0 → G0 such that for

a.e. g ∈ G0

(
φ(gb0), . . . , φ(gbn)

)
=

(
f (g)b0, . . . , f (g)bn

)
. (3.3)

Interchanging b0, b1 identifies Σ
reg
+ with Σ

reg
− , and allows to extend f to a

measurable map G → G satisfying (3.3) for a.e. g ∈ G. Let ρ0, . . . , ρn ∈ G

denote the reflections in the codimension one faces of σ . Then Lemma 3.3
(3) implies that

f (gρ) = f (g)ρ for a.e. g ∈ G

for ρ in {ρ0, . . . , ρn}. It follows that the same applies to each ρ in the count-
able group R < G generated by ρ0, . . . , ρn. We claim that there exists g0 ∈ G

so that f (g) = g0g for a.e. g ∈ G, which implies that φ(b) = g0b also holds
a.e. on B .

The case n = 3 is due to Thurston [59, p. 133/134]. So hereafter we fo-
cus on n > 3, and will show that in this case the group R is dense in G
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(for n = 2,3 it forms a lattice in G). Consequently the R-action on G is er-
godic with respect to the Haar measure. Since g 
→ f (g)g−1 is a measur-
able R-invariant map on G, it follows that it is a.e. a constant g0 ∈ G0, i.e.,
f (g) = g0g a.e. proving the lemma.

It remains to show that for n > 3, R is dense in G. Not being able to find a
convenient reference for this fact, we include the proof here.

For i ∈ {0, . . . , n} denote by Pi < G the stabilizer of bi ∈ ∂Hn, and let
Ui < Pi denote its unipotent radical. We shall show that Ui is contained in the
closure R ∩ Pi < Pi (in fact, R ∩ Pi = Pi but we shall not need this). Since
unipotent radicals of any two opposite parabolics, say U0 and U1, generate
the whole connected simple Lie group G0, this would show G0 < R̄ < G.
Since R is not contained in G0, it follows that R̄ = G as claimed.

Let fi : ∂Hn → En−1 ∪ {∞} denote the stereographic projection tak-
ing bi to the point at infinity. Then fiPif

−1
i is the group of similarities

Isom(En−1) ⋊ R×
+ of the Euclidean space En−1. We claim that the subgroup

of translations Rn−1 ∼= Ui < Pi is contained in the closure of Ri = R ∩ Pi .
To simplify notations we assume i = 0. The set of all n-tuples (z1, . . . , zn)

in En−1 for which (b0, f
−1
0 (z1), . . . , . . . , f

−1
0 (zn)) is a regular ideal simplex

in H̄n is precisely the set of all regular Euclidean simplices in En−1 [53,
Lemma 3 on p. 519]. So conjugation by f0 maps the group R0 = R ∩ P0 to
the subgroup of Isom(En−1) generated by the reflections in the faces of the
Euclidean simplex Δ = (z1, . . . , zn), where zi = f0(bi). For 1 ≤ j < k ≤ n

denote by rjk the composition of the reflections in the j th and kth faces of Δ;
it is a rotation leaving fixed the co-dimension two affine hyperplane Ljk con-
taining {zi | i �= j, k}. The angle of this rotation is 2θn, where θn is the dihedral
angle of the simplex Δ. One can easily check that cos(θn) = −1/(n − 1), us-
ing the fact that the unit normals vi to the faces of Δ satisfy v1 + · · ·+ vn = 0
and 〈vi, vj 〉 = cos(θn) for all 1 ≤ i < j ≤ n. Thus w = exp(θn

√
−1) satisfies

w + 1/w = −2/(n − 1). Equivalently, w is a root of

pn(z) = (n − 1)z2 + 2z + (n − 1).

This condition on w implies that θn is not a rational multiple of π . Indeed,
otherwise, w is a root of unit, and therefore is a root of some cyclotomic
polynomial

cm(z) =
∏

k∈{1..m−1|gcd(k,m)=1}

(
z − e

2πki
m

)

whose degree is Euler’s totient function deg(cm) = φ(m). The cyclotomic
polynomials are irreducible over Q. So pn(z) and cm(z) share a root only if
they are proportional, which in particular implies φ(m) = 2. The latter hap-
pens only for m = 3, m = 4 and m = 6; corresponding to c3(z) = z2 + z + 1,
c4(z) = z2 + 1, and c6(z) = z2 − z + 1. The only proportionality between
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these polynomials is p3(z) = 2c2(z); and it is ruled out by the assumption
n > 3.

Thus the image of R0 in Isom(En−1) is not discrete. Let

π : R ∩ P0 → Isom
(
En−1) → O

(
Rn−1)

denote the homomorphism defined by taking the linear part. Then π(rjk) is
an irrational rotation in O(Rn−1) leaving invariant the linear subspace paral-
lel to Ljk . The closure of the subgroup generated by this rotation is a sub-
group Cjk < O(Rn−1), isomorphic to SO(2). The group K < O(Rn−1) gen-
erated by all such Cjk acts irreducibly on Rn−1, because there is no sub-
space orthogonal to all Ljk . Since R ∩ P0 is not compact (otherwise there
would be a point in En−1 fixed by all reflections in faces of Δ), the epimor-
phism π : R ∩ P0 → K has a non-trivial kernel V < Rn−1, which is invari-
ant under K . As the latter group acts irreducibly, V = Rn−1 or, equivalently,
U0 < R ∩ P0. This completes the proof of the lemma. �

3.2 Boundary simplices in general position

Definition 3.5 For 0 ≤ k ≤ n, a (k + 1)-tuple of points in B , (z0, . . . , zk) ∈
Bk+1 is said to be in general position if the following equivalent conditions
hold:

(1) The k-volume of the ideal k-simplex with vertices {z0, . . . , zk} is positive,
(2) The points {z0, . . . , zk} lie on the boundary of a unique isometrically em-

bedded copy of Hk in Hn,
(3) The points {z0, . . . , zk} do not lie on the boundary of some isometrically

embedded copy of Hk−1 in Hn.

The set of (k + 1)-tuples in a general position in Bk+1 is denoted B(k+1).

We shall use the term (k − 1)-sphere to denote the boundary of an isomet-
rically embedded copy of Hk in Hn; with 0-spheres meaning pairs of distinct
points.

Lemma 3.6 Consider the boundary map φ(x, ·) = φx from (3.1). For μ ×
νn+1-a.e. point (x, b0, . . . , bn), the (n + 1)-tuple (φx(b0), . . . , φx(bn)) is in

general position.

Remark 3.7 In fact we prove a more general statement. The only important
properties of our setting are the fact that α is Zariski dense (in particular, is
not measurably cohomologous to a cocycle taking values in a stabilizer of
Hk ⊂ Hn with k < n) and that the diagonal measure class-preserving action

Γ � (X × B × B,μ × ν × ν)
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is ergodic, which, in our setting, follows from the Howe-Moore theorem.

Proof of Lemma 3.6 Denote by ηx ∈ Prob(B) the push-forward of ν under
the map φx : B → B . For k ∈ {2, . . . , n} and x ∈ X let

Ek =
{
x ∈ X | ηk+1

x

(
Bk+1 \ B(k+1)

)
> 0

}
.

This is a measurable subset of X, which is Γ -invariant since ηγ.x =
α(γ, x)∗ηx while B(k+1) is a Borel, in fact open, G-invariant subset of Bk+1.
Ergodicity of Γ � (X,μ) implies that μ(Ek) = 0 or μ(Ek) = 1. The sets Ek

are also nested: Ek−1 ⊂ Ek , because any subset of a (k + 1)-tuple in general
position, is itself in general position.

We claim that μ(En) = 0. By contradiction, let k be the smallest in-
teger in {2, . . . , n} with μ(Ek) > 0. Then, in fact, μ(Ek) = 1 by the er-
godicity argument above. Since μ(Ek−1) = 0 for μ-a.e. x ∈ X and νk-a.e.
(b1, . . . , bk) ∈ Bk the points (φx(b1), . . . , φx(bk)) are in general position, and
therefore define a unique (k − 2)-sphere

Sx(b1, . . . , bk) ⊂ B.

On the other hand, μ(Ek) = 1 means that for μ-a.e. x ∈ X

νk+1{(b0, . . . , bk) | φx(b0) ∈ Sx(b1, . . . , bk)
}

> 0.

By Fubini’s theorem, there is a measurable family of measurable subsets
Ax ⊂ Bk with νk(Ax) > 0, so that for (b1, . . . , bk) ∈ Ax

ηx

(
Sx(b1, . . . , bk)

)
> 0.

Denote by S the space of all (k − 2)-spheres S ⊂ B , and let

Sx =
{
S ∈ S | ηx(S) > 0

}
.

Using ηg.x = α(g, x)∗ηx we deduce that

Sγ.x = α(γ, x) Sx .

Hence the set {x ∈ X × B | Sx �= ∅} is measurable and Γ -invariant. We
just argued above that this set has positive measure, hence by ergodicity of
Γ � (X,μ), it has full measure.

Our main claim is that Sx consists of a single (k − 2)-sphere:

Sx = {Sx}. (3.4)
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This claim leads to a desired contradiction as follows: equivariance of Sx

becomes the μ-a.e. identity α(γ, x)Sx = Sγ.x . Fix a (k − 2)-sphere S0 and a
measurable map f : X → G with Sx = f (x)S0. Then the f -conjugate of α

αf (γ, x) = f (γ . x)−1α(γ, x)f (x)

takes values in the stabilizer of S0 in G, which is a proper algebraic subgroup
Isom(Hk) < Isom(Hn) = G. But this is impossible for an ME-cocycle.

It remains to show (3.4). Consider any two measurable families Sx, S
′
x ∈ Sx

indexed by x ∈ X, and let

F =
{
x ∈ X | Sx �= S′

x and ηx

(
Sx ∩ S′

x

)
> 0

}
.

We claim that μ(F) = 0. Indeed, for x ∈ F the intersection Rx = Sx ∩ S′
x is a

sphere of dimension ≤ (k − 3), and therefore k-tuples of points in Rx are not
in general position. This implies

ηk
x

(
Bk \ B(k)

)
≥ ηk

x

(
Rk

x

)
=

(
ηx(Rx)

)k
> 0

meaning that x ∈ Ek−1. As μ(Ek−1) = 0, it follows that μ(F) = 0.
We now claim that a.e. Sx has at most countably many elements (spheres).

It suffices to show that for every ǫ > 0 for μ-a.e. x the set

S
>ǫ
x =

{
S ∈ Sx | ηx(S) > ǫ

}
.

is finite. We will show that its cardinality is bounded by 1/ǫ. Otherwise it is
possible to find a positive measure set Y ⊂ X and m > 1/ǫ maps Si,y ∈ S >ǫ

y ,
y ∈ Y , 1 ≤ i ≤ m, so that for i �= j one has Si,y �= Sj,y . But this is impossible,
because for a.e. y ∈ Y one has ηy(Si,y ∩ Sj,y) = 0 for every pair i �= j , and
therefore

1 ≥ ηy

(
m⋃

i=1

Si,y

)
=

m∑

i=1

ηy(Si,y) > mǫ > 1.

Therefore, a.e. Sx is countable, and one can enumerate these collections by a
fixed sequence Sx = {Si,x}∞i=1 of (k − 2)-spheres with Si,x varying measur-
ably in x ∈ X. For x ∈ X let

Pi,x =
{(

b, b′) ∈ B × B | φx(b),φx

(
b′) ∈ Si,x

}
.

We have ν2(Pi,x) = ηx(Si,x)
2 > 0. The union

Px =
∞⋃

i=1

Pi,x =
{(

b, b′) | ∃S∈Sxφx(b),φx

(
b′) ∈ S

}
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satisfies α(γ, x)Px = Pγ.x . Therefore {(x, b, b′) | (b, b′) ∈ Px} is a measur-
able, Γ -invariant set of positive μ × ν × ν-measure. Hence from the ergodic-
ity of the measure-class preserving action Γ � (X × B × B,μ × ν × ν), this
set has full measure. In particular, for μ-a.e. x ∈ X, one has

∑

i

ηx(Si,x)
2 =

∑

i

ν2(Pi,x) = ν2(Px) = 1

while
∑

i

ηx(Si,x) = ηx

( ⋃

S∈Sx

S

)
≤ 1.

This is possible, only if exactly one Si,x has full ηx-measure, i.e., if Sx con-
sists of a single sphere Sx = {Sx}, as claimed. This completes the proof of the
lemma. �

3.3 A Lebesgue differentiation lemma

Lemma 3.8 Fix points o ∈ Hn and b0 ∈ ∂Hn. Denote by d = do the visual

metric on ∂Hn associated with o. Let {z(k)}∞k=1 be a sequence in Hn converg-

ing radially to b0. Let φ : B → B be a measurable map. For every ǫ > 0 and

for a.e. g ∈ G we have

lim
k→∞

νz(k)

{
b ∈ B | d

(
φ(gb),φ(gb0)

)
> ǫ

}
= 0.

Proof For the domain of φ, it is convenient to represent ∂Hn as the boundary
R̂n = {(x1, . . . , xn,0) | xi ∈ R} ∪ {∞} of the upper half space model

Hn =
{
(x1, . . . , xn+1) | xn+1 > 0

}
⊂ Rn+1.

We may assume that o = (0, . . . ,0,1) and b0 = 0 ∈ Rn ⊂ R̂n. The points z(k)

lie on the line l between o and b0. The subgroup of G consisting of reflec-
tions along hyperplanes containing l and perpendicular to {xn+1 = 0} leaves
the measures νz(k) invariant, i.e. each νz(k) is O(n)-invariant. Since the prob-
ability measure νz(k) is in the Lebesgue measure class, the Radon-Nikodym
theorem, combined with the O(n)-invariance, yields the existence of a mea-
surable functions hk : [0,∞) → [0,∞) such that for any bounded measurable
function l

∫
l dνz(k) =

∫ ∞

0

(
1

vol(B(0, r))

∫

B(0,r)

l(y) dy

)
hk(r) dr
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holds8 and
∫ ∞

0
hk(r) dr = 1.

Since the νz(k) weakly converge to the Dirac measure at 0 ∈ Rn, we have for
every r0 > 0

lim
k→∞

∫ ∞

r0

hk(r) dr = 0. (3.5)

For the target of φ, we represent B = ∂Hn as the boundary Sn−1 ⊂ Rn of
the Poincare disk model. The visual metric is then just the standard metric of
the unit sphere. Considering coordinates in the target, it suffices to prove that
every measurable function f : R̂n → [−1,1] satisfies

lim
k→∞

∫

R̂n

∣∣f (gx) − f (g0)
∣∣dνz(k)(x) = 0.

for a.e. g ∈ G. By the Lebesgue differentiation theorem the set Lf of points
x ∈ Rn with the property

lim
r→0

1

vol(B(0, r))

∫

B(x,r)

∣∣f (y) − f (x)
∣∣dy = 0 (3.6)

is conull in Rn. The subset of elements g ∈ G such that g0 ∈ Lf and g0 �= ∞
is conull with respect to the Haar measure. From now on we fix such an
element g ∈ G. By compactness there is L > 0 such that the diffeomorphism
of R̂n given by g has Lipschitz constant at most L and its Jacobian satisfies
|Jac(g)| > 1/L everywhere on Rn ⊂ R̂n. Let ǫ > 0. According to (3.6) choose
r0 > 0 such that for all r < r0

L

vol(B(0, r))

∫

B(g0,Lr)

∣∣f (y) − f (g0)
∣∣dy <

ǫ

2
. (3.7)

According to (3.5) choose k0 ∈ N such that

∫ ∞

r0

hk(r) dr <
ǫ

4

8vol(B(0, r)) is here the Lebesgue measure of the Euclidean ball of radius r around 0 ∈ Rn.
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for every k > k0. So we obtain that

∫

R̂n

∣∣f (gx) − f (g0)
∣∣dνz(k)

<

∫ r0

0

1

vol(B(0, r))

∫

B(0,r)

∣∣f (gx) − f (g0)
∣∣dx hk(r) dr + ǫ

2

≤
∫ r0

0

L

vol(B(0, r))

∫

gB(0,r)

∣∣f (y) − f (g0)
∣∣dy hk(r) dr + ǫ

2

for k > k0. Because of gB(0, r) ⊂ B(g0,Lr) and (3.7) we obtain that for
k > k0 ∫

R̂n

∣∣f (gx) − f (g0)
∣∣dνz(k) < ǫ. �

4 Cohomological tools

The aim of this section is to prove that the boundary map φx = φ(x, ·) : B →
B , which is associated to a (Γ,Γ )-coupling with Γ < Isom(Hn) and in-
troduced in Setup 3.1, satisfies the assumption of Lemma 3.4. This will be
achieved in Corollary 4.13. The conclusion of Lemma 3.4 is a crucial ingre-
dient in the proof of Theorem B. To prove Corollary 4.13 we have to develop
and rely on a fair amount of cohomological machinery. For the reader’s con-
venience a brief introduction to the subject of bounded cohomology is given
in Appendix B.

4.1 The cohomological induction map

The cohomological induction map associated to an arbitrary ME-coupling
was introduced by Monod and Shalom [43].

Proposition 4.1 (Monod-Shalom) Let (Ω,m) be a (Γ,Λ)-coupling. Let Y ⊂
Ω be a measurable fundamental domain for the Γ -action. Let χ : Ω → Γ

be the measurable Γ -equivariant map uniquely defined by χ(ω)−1ω ∈ Y for

ω ∈ Ω . The maps

C•
b(χ) : C•

b

(
Γ,L∞(Ω)

)
→ C•

b

(
Λ,L∞(Ω)

)

Ck
b(χ)(f )(λ0, . . . , λk)(y) = f

(
χ

(
λ−1

0 y
))

, . . . , χ
(
λ−1

k y
)
(y)

defines a Γ × Λ-equivariant chain morphism with regard to the following

actions: The Γ × Λ-action on C•
b(Γ,L∞(Ω)) ∼= L∞(Γ •+1 × Ω) is induced
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by Γ acting diagonally on Γ •+1 ×Ω and by Λ acting only on Ω . The Γ ×Λ-

action on C•
b(Λ,L∞(Ω)) ∼= L∞(Λ•+1 × Ω) is induced by Λ acting diago-

nally on Λ•+1 × Ω and by Γ acting only on Ω .
The chain map C•

b(χ) induces, after taking Γ ×Λ-invariants and identify-

ing L∞(Γ \Ω) with L∞(Ω)Γ and similarly for Λ, an isometric isomorphism

H•
b(χ) : H•

b

(
Γ,L∞(Λ\Ω)

) ∼=−→ H•
b

(
Λ,L∞(Γ \Ω)

)
.

in cohomology. This map does not depend on the choice of Y , or equivalently

χ , and will be denoted by H•
b(Ω). We call H•

b(Ω) the cohomological induc-
tion map associated to Ω .

Proof Apart from the fact that the isomorphism is isometric, this is exactly
Proposition 4.6 in [43] (with S = Ω and E = R). The proof therein relies
on [41, Theorem 7.5.3 in §7], which also yields the isometry statement. �

Proposition 4.2 Retain the setting of the previous proposition. Let α : Λ ×
Y → Γ be the corresponding ME-cocycle. Let BΓ and BΛ be standard Borel

spaces endowed with probability Borel measures and measure-class preserv-

ing Borel actions of Γ and Λ, respectively. Let φ : BΛ × Γ \Ω → BΓ be

a measurable α-equivariant map (upon identifying Y with Γ \Ω). Then the

chain morphism (see Appendix B.1 for notation)

C•
b(φ) : B

∞(
B•+1

Γ ,R
)
→ L∞

w∗
(
B•+1

Λ ,L∞(Ω)
)

Ck
b(φ)(f )(. . . , bi, . . . )(ω) = f

(
. . . , χ(ω)φ

(
bi, [ω]

)
, . . .

)

is Γ × Λ-equivariant with regard to the following actions: The action on

B∞(B•+1
Γ ,R) is induced from Γ acting diagonally B•+1 and Λ acting triv-

ially. The action on L∞
w∗(B

•+1
Λ ,L∞(Ω)) ∼= L∞(B•+1

Λ × Ω) is induced from

Λ acting diagonally on B•+1
Λ × Ω and from Γ acting only on Ω .

Proof Firstly, we show equivariance of C•
b(φ). By definition we have

C•
b(φ)

(
(γ, λ)f

)
(. . . , bi, . . . )(ω) = f

(
. . . , γ −1χ(ω)φ

(
bi, [ω]

)
, . . .

)
.

By definition, Γ -equivariance of χ , and α-equivariance of φ we have

C•
b(φ)(f )

(
. . . , λ−1bi, . . .

)(
γ −1λ−1ω

)

= f
(
. . . , γ −1χ

(
λ−1ω

)
α
(
λ−1, [ω]

)
φ
(
bi, [ω]

)
, . . .

)
.

It remains to check that

χ
(
λ−1ω

)
α
(
λ−1, [ω]

)
= χ(ω).
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Since both sides are Γ -equivariant, we may assume that ω ∈ Y , i.e.,
χ(ω) = 1. In this case it follows from the defining properties of χ and α. �

Remark 4.3 The map C•
b(φ) cannot be defined on L∞(B•+1

Γ ,R) since we
do not assume that φ preserves the measure class. The idea to work with the
complex B∞(B•+1

Γ ,R) to circumvent this problem in the context of boundary
maps is due to Burger and Iozzi [4].

4.2 The Euler number in terms of boundary maps

In this subsection we retain the notation in Setup 3.1. In Burger-Monod’s
functorial theory of bounded cohomology [6, 41] the measurable map

dvolb : Bn+1 → R (4.1)

that assigns to (b0, . . . , bn) the oriented volume of the geodesic, ideal simplex
with vertices b0, . . . , bn is a Γ -invariant (even G0-invariant) cocycle and de-
fines an element dvolb ∈ Hn

b(Γ,R) (Theorem B.4). The forgetful map (com-
parison map) from bounded cohomology to ordinary cohomology is denoted
by

comp• : H•
b(Γ,R) → H•(Γ,R).

We consider the induction homomorphism

H•
b(Ω) : H•

b

(
Γl,L∞(Γr\Ω)

)
→ H•

b

(
Γr ,L∞(Γl\Ω)

)

in bounded cohomology associated to Ω (see Sect. 4.1). Let

H•
b

(
j•) : H•

b(Γl,R) → H•
b

(
Γl,L∞(Γr\Ω)

)

H•
b

(
I•

)
: H•

b

(
Γr ,L∞(Γl\Ω)

)
→ H•

b(Γr ,R)

be the homomorphisms induced by inclusion of constant functions in the co-
efficients and by integration in the coefficients, respectively. Inspired by the
classical Euler number of a surface representation we define:

Definition 4.4 (Higher-dimensional Euler number) Denote by [Γ ] ∈
Hn(Γ,R) ∼= Hn(Γ \Hn,R) the homological fundamental class of the man-
ifold Γ \Hn. The Euler number eu(Ω) of Ω is the evaluation of the cohomol-
ogy class compn ◦Hn

b(I
•) ◦ Hn

b(Ω) ◦ Hn
b(j

•)(dvolb) against the fundamental
class [Γ ]

eu(Ω) =
〈
compn ◦Hn

b

(
I•

)
◦ Hn

b(Ω) ◦ Hn
b

(
j•)(dvolb), [Γ ]

〉
. (4.2)
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In a recent paper [3] Bucher-Burger-Iozzi use a related notion to study
maximal (in a similar sense as in Corollary 4.12) representations of SOn,1. In
the Burger-Monod approach to bounded cohomology one can realize bounded
cocycles in the bounded cohomology of Γ as cocycles on the boundary B .
However, it is not immediately clear how the evaluation of a bounded n-
cocycle realized on B at the fundamental class of Γ \Hn can be explicitly
computed since the fundamental class is not defined in terms of the bound-
ary. Lemma 4.6 below achieves just that. Let us now describe two important
ingredients that enter the proof of Lemma 4.6.

The first ingredient is the cohomological Poisson transform which is ex-
pressed by the visual measures on B = ∂Hn.

Definition 4.5 For z ∈ Hn let νz be the visual measure at z on the boundary
B = ∂Hn at infinity, that is, νz is the push-forward of the Lebesgue measure
on the unit tangent sphere T1

zHn under the homeomorphism T1
zHn → ∂Hn

given by the exponential map. For a (k + 1)-tuple σ = (z0, . . . , zk) of points
in Hn we denote the product of the νzi

on Bk+1 by νσ .

The measure νz is the unique Borel probability measure on B that is in-
variant with respect to the stabilizer of z. All visual measures are in the same
measure class. Moreover, we have

νgz = g∗νz = νz

(
g−1_

)
for every g ∈ G.

The cohomological Poisson transform (see Definition B.5 for its general for-
mulation) is the Γ -morphism of chain complexes PT• : L∞(B•+1,R) →
C•

b(Γ,R) with

PTn(f )(γ0, . . . , γn) =
∫

Bn+1
f (γ0b0, . . . , γnbn) dνx0 . . . dνx0

=
∫

Bn+1
f (b0, . . . , bn) dν(γ0x0,...,γnx0) (4.3)

where x0 ∈ Hn is a base point. The map PT• is independent of the choice of
x0 (see the remark after Definition B.5).

The second ingredient is Thurston’s description of singular homology by
measure cycles [59]: Let M be a topological space. We equip the space
Sk(M) = Map(Δk,M) of continuous maps from the standard k-simplex to
M with the compact-open topology. The group Cm

k (M) is the vector space of
all signed, compactly supported Borel measures on Sk(M) with finite total
variation. The usual face maps ∂i : Sk(M) → Sk−1(M) are measurable, and
the maps Cm

k (M) → Cm
k−1(M) that send μ to

∑k
i=0(−1)i(∂i)∗μ turn Cm

• (M)
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into a chain complex. The map

D• : C•(M) → Cm
• (M), σ 
→ δσ

that maps a singular simplex σ to the point measure concentrated at σ is a
chain map that induces an (isometric) homology isomorphism provided M is
homeomorphic to a CW-complex [37, 60].

Next we recall Thurston’s smearing construction, which describes an ex-
plicit representative of the fundamental class of a closed hyperbolic manifold
M = Γ \Hn.

For any positively oriented geodesic n-simplex σ in Hn, let sm(σ ) denote
the push-forward of the normalized Haar measure on G0 = Isom(Hn)0 under
the measurable map

Γ \G0 → Map
(
Δn,Γ \Hn

)
, g 
→ pr(gσ ).

Let ρ ∈ G be the orientation reversing isometry that maps (z0, z1, . . . , zn) to
(z1, z0, . . . , zn). By [53, Theorem 11.5.4 on p. 551] the image of the funda-
mental class in Hn(Γ \Hn,R) under the map Hn(D•) is represented by the
signed measure9

vol(Γ \Hn)

2 vol(σ0)

(
sm(σ0) − sm(ρ ◦ σ0)

)
(4.4)

for any positively oriented geodesic n-simplex σ0 in Hn.

Lemma 4.6 Let Γ ⊂ G0 be a torsion-free and uniform lattice. Let σ0 =
(z0, . . . , zn) be a positively oriented geodesic simplex in Hn. Let [Γ ] ∈
Hn(Γ,R) ∼= Hn(Γ \Hn,R) be the fundamental class of Γ \Hn. Let f ∈
L∞(Bn+1,R)Γ be an alternating cocycle. Then

〈
compn ◦Hn

b

(
PT•)([f ]

)
, [Γ ]

〉

= vol(Γ \Hn)

vol(σ0)

∫

Bn+1

∫

Γ \G0
f (gb0, . . . , gbn) dνσ0 dg.

Proof Fix a basepoint x0 ∈ Hn. Consider the Γ -equivariant chain homomor-
phism jk : Ck(Γ ) → Ck(H

n) that maps (γ0, . . . , γk) to the geodesic simplex
with vertices (γ0x0, . . . , γkx0). Let B∞(S•(Hn),R) ⊂ C•(Hn,R) be the sub-
complex of bounded measurable singular cochains on Hn. From (4.3) we see
that the Poisson transform PT• factorizes as

L∞(
B•+1,R

) P•
−→ B

∞(
S•

(
Hn

)
,R

) R•
−→ C•

b(Γ,R)

9The reader should note that in loc. cit. the Haar measure is normalized by vol(Γ \Hn) whereas
we normalize it by 1.
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where

Pk(l)(σ ) =
∫

Bk+1
l(b0, . . . , bk) dνσ for σ ∈ Sk

(
Hn

)
, and

Rk(f ) = f ◦ jk.

For every k ≥ 0 there is a Borel section sk : Sk(Γ \Hn) → Sk(H
n) of the

projection [37, Theorem 4.1]. The following pairing is independent of the
choice of sk and descends to cohomology:

〈_,_〉m : B
∞(

S•
(
Hn

)
,R

)Γ ⊗ Cm
•
(
Γ \Hn

)
→ R

〈l,μ〉m =
∫

S•(Γ \Hn)

l
(
s•(σ )

)
dμ(σ)

One sees directly from the definitions that for every x ∈ Hn(Γ,R)

〈
compn ◦Hn

(
PT•)([f ]

)
, x

〉
=

〈
compn ◦Hn

(
R•) ◦ Hn

(
P•)(f ), x

〉

=
〈
Hn

(
P•)([f ]

)
,Hn(D• ◦ j•)(x)

〉
m
. (4.5)

Now we plug in x = [Γ ]. Since the homology class Hn(D• ◦ j•)([Γ ]) is rep-
resented by the measure cycle (4.4) and f is alternating, the assertion is im-
plied. �

Theorem 4.7 is known to experts; we prove it for the lack of a good refer-
ence. Although it can be seen as a special case of Theorem 4.8 we separate
the proofs. The proofs of Theorems 4.7 and 4.8 are given at the end of the
subsection.

Theorem 4.7 Let Γ ⊂ G0 be a torsion-free and uniform lattice. Then

〈
compn(dvolb), [Γ ]

〉
= vol

(
Γ \Hn

)
.

Equivalently, this means that compn(dvolb) = dvol.

Theorem 4.8 Let (Ω,m) be an ergodic (Γ,Γ )-coupling of a torsion-free

and uniform lattice Γ ⊂ G0. Let

φ : X × B → B

be the α-equivariant boundary map from (3.1), where α : Γ × X → Γ is a

ME-cocycle for Ω . If σ = (z0, . . . , zn) with zi ∈ B is a positively oriented

ideal regular simplex, then the Euler number of Ω satisfies

eu(Ω) = vol(Γ \Hn)

vmax

∫

Γ \G0

∫

X

vol
(
φx(gz0), . . . , φx(gzn)

)
dμ(x)dg,
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where vmax is the volume of a positively oriented ideal maximal simplex in

Bn+1 and the quotient Γ \G0 carries the normalized Haar measure.

Note that the function

g 
→
∫

X

vol
(
φx(gz0), . . . , φx(gzn)

)
dμ(x)

in the previous statement is Γ -invariant by α-equivariance of φ, G0-
invariance of the volume, and Γ -invariance of μ. So the integral in Theo-
rem 4.8 makes sense.

The following immediate corollary, which we will not use in this paper,
can be viewed as a higher-dimensional cocycle analog of the Milnor-Wood
inequality for homomorphisms of a surface group into Homeo+(S1). We will
present an independent stronger result, valid under an integrability assump-
tion, in Corollary 4.12.

Corollary 4.9 (Higher-dimensional Milnor-Wood inequality) In the setting

of Theorem 4.8 we have |eu(Ω)| ≤ vol(Γ \Hn).

We shall need the auxiliary Lemma 4.10 before we conclude the proof
of Theorem 4.8 at the end of this subsection. We retain the setting of Theo-
rem 4.8 for the rest of this subsection.

Lemma 4.10 If σ = (z0, . . . , zn) with zi ∈ Hn is a positively oriented

geodesic simplex, then the Euler number of Ω satisfies

eu(Ω) = vol(Γ \Hn)

vol(σ )

×
∫

Bn+1

∫

G0/Γ

∫

X

vol
(
φx(gb0), . . . , φx(gbn)

)
dμ(x)dg dνσ .

Proof For better readability, we keep the notational distinction between Γl

and Γr from Setup 3.1 and denote the copy of B on which Γl acts by Bl ;
similarly for Br .

Consider the diagram below. The unlabeled maps are the obvious ones,
sending a function to its equivalence class up to null sets and inclusion of
constant functions.

All the maps are Γl × Γr -equivariant chain morphisms as explained now.
On L∞

w∗(B
•+1
l ,R) and C•

b(Γl,R) we have the usual Γl-actions and the trivial
Γr -actions. The Poisson transform in the lower row is then clearly Γl × Γr -
equivariant. The actions on the domain and target of the maps C•

b(χ) and
C•

b(φ) are defined in Propositions 4.1 and 4.2, and is proved there that these
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maps are Γl ×Γr -equivariant. The Poisson transform in the upper row, which
is Γr -equivariant, is also Γl-equivariant, since Γl acts only by its natural ac-
tion on Ω .

B∞(B•+1
l ,R)

C•
b(φ)

L∞
w∗(B

•+1
r ,L∞(Ω))

PT•
C•

b(Γr ,L∞(Ω))

L∞
w∗(B

•+1
l ,R)

PT•
C•

b(Γl,R) C•
b(Γl,L∞(Ω))

C•
b(χ)

The diagram describes two Γl × Γr -equivariant chain morphisms

φ,ψ : B
∞(

B•+1
l ,R

)
→ C•

b

(
Γr ,L∞(Ω)

)

for which we want to prove, using Theorem B.1, that they are Γl × Γr -chain
homotopic. By Proposition B.3 the source B∞(B•+1

l ,R) is a strong Γl ×
Γr -resolution of R. It is shown in [43, Proof of Proposition 4.6.] that the
target C•

b(Γr ,L∞(Ω)) is a relatively injective and strong Γl × Γr -resolution
of L∞(Ω). Both φ and ψ as the lower map make the diagram

R L∞(Ω)

C•
b(Γr ,L∞(Ω)) C•

b(Γr ,L∞(Ω))

where the upper map is the inclusion of constant functions, commutative, that
is, φ and ψ are morphisms between the augmented resolutions. By Theo-
rem B.1, φ and ψ are equivariantly chain homotopic. Taking invariants and
cohomology, this means that the following diagram is commutative:

Hn(B∞(B•+1
l ,R)Γl )

Hn(φ)

Hn(L∞
w∗(B

•+1
r ,L∞(Γl\Ω)))

Hn(PT•)
Hn

b(Γr ,L∞(Γl\Ω))

Hn(L∞
w∗(B

•+1
l ,R)Γl )

Hn(PT•)
Hn

b(Γl,R)
Hn

b(j•)
Hn

b(Γl,L∞(Γr\Ω))

Hn
b(Ω)

The volume cocycle dvolb, which we defined as a cocycle in L∞
w∗(B

n+1,R),
is everywhere defined and everywhere Γ -invariant and strictly satisfies the
cocycle condition; hence it lifts to a cocycle in B∞(Bn+1,R) which we de-
note by dvolstrict. Now we have

eu(Ω) =
〈
compn ◦Hn

b

(
I•

)
◦ Hn

b(Ω) ◦ Hn
b

(
j•) ◦ Hn

b

(
PT•)(dvolb), [Γ ]

〉
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=
〈
compn ◦Hn

b

(
I•

)
◦ Hn

b

(
PT•) ◦ Hn

b(φ)(dvolstrict), [Γ ]
〉

=
〈
compn ◦Hn

b

(
PT•) ◦ Hn

b

(
I•

)
◦ Hn

b(φ)(dvolstrict), [Γ ]
〉
.

Here the first equality is just the definition of the Euler class as in Defini-
tion 4.4; just be aware that there we denoted Hn

b(PT•)(dvolb) by the same
symbol dvolb since Hn

b(PT•) is a canonical isomorphism between two reso-
lutions computing bounded cohomology in the functorial approach. The sec-
ond equality follows by the commutativity of the above diagram. The third
equality is true since the cohomological Poisson transform is natural in the
coefficients, hence the integration Hn

b(I
•) in the coefficients and Hn

b(PT•) in-
terchange. We invoke Lemma 4.6 with [f ] = Hn

b(I
•) ◦ Hn

b(φ)(dvolstrict) to
conclude the proof. �

Proofs of Theorems 4.7 and 4.8 We start with the proof of Theorem 4.8. For
every i ∈ {0, . . . , n} we pick a sequence (z

(k)
i )k∈N on the geodesic ray from

a basepoint o ∈ Hn to zi converging to zi . Let σk be the geodesic simplex
spanned by the vertices z

(k)
0 , . . . , z

(k)
n . By Lemma 4.10,

eu(Ω) = vol(Γ \Hn)

vol(σ )

×
∫

Bn+1

∫

Γ \G0

∫

X

vol
(
φx(gb0), . . . , φx(gbn)

)
dμ(x)dg dνσ .

We now let k go to ∞. Note that the left hand side does not depend on k. First
of all, the volumes vol(σk) converge to vol(σ ) = vmax. By Lemma 3.8,

lim
k→∞

νσk

{
(b0, . . . , bn) | d

(
φx(gzi), φx(gbi)

)
< ǫ

}
= 1

for every ǫ > 0 and a.e. (x, g) ∈ X × G.
It is shown in [53, Theorem 11.4.2 on p. 541] that the volume, vol, is a

continuous function on the open set B(n+1) of all (n + 1)-tuples in general
position (see Definition 3.5). Thus, by Lemma 3.6, vol is continuous at a.e.
(φx(gz0), . . . , φx(gzn)), and therefore

lim
k→∞

∫

Bn+1
vol

(
φx(gb0), . . . , φx(gbn)

)
dνσk

= vol
(
φx(gz0), . . . , φx(gzn)

)
,

for a.e. (x, g) ∈ X × G, which finally yields Theorem 4.8 by the dominated
convergence theorem. The proof of Theorem 4.7 is even easier since it does
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not require Lemma 3.8. One obtains from Lemma 4.6 that
〈
compn(dvolb), [Γ ]

〉

= vol(Γ \Hn)

vol(σ )

∫

Bn+1

∫

Γ \G0

∫

X

vol(gb0, . . . , gbn) dμ(x) dg dνσ ,

which converges for k → ∞ to vol(Γ \Hn) by continuity of the function vol
at a.e. point (φx(gb0), . . . , φx(gbn)) ∈ Bn+1 (Lemma 3.6) and the weak con-
vergence of ν

z
(k)
i

to the point measure at zi for every i ∈ {0, . . . , n}. �

4.3 Adding integrability assumption

In this subsection we appeal to a general result from our companion paper [1],
which relies on the integrability of the coupling. We get that, in the pres-
ence of such an integrability assumption, the Milnor-Wood inequality given
in Corollary 4.9 becomes an equality, see Corollary 4.12 below.

Theorem 4.11 ([1, Theorem 5.12] and [1, Corollary 1.11]) Let M and

N be closed, oriented, negatively curved manifolds of dimension n. Let

(Ω,μ) be an ergodic, integrable ME-coupling (Ω,μ) of the fundamental

groups Γ = π1(M) and Λ = π1(N), and set c = μ(Λ\Ω)
μ(Γ \Ω)

. Suppose that

xb
Γ ∈ Hn

b(Γ,R) is an element that maps to the cohomological fundamental

class xΓ ∈ Hn(Γ,R) ∼= Hn(M,R) of M under the comparison map. Define

xΛ ∈ Hn(Λ,R) analogously. Then the composition

Hn
b(Γ,R)

Hn
b

(
j•

)
−−−−→ Hn

b

(
Γ,L∞(Λ\Ω)

) Hn
b(Ω)

−−−→ Hn
b

(
Λ,L∞(Γ \Ω)

)

Hn
b

(
I•
)

−−−−→ Hn
b(Λ,R)

compn

−−−→ Hn(Λ,R) (4.6)

sends xb
Γ to ±c · xΛ. Furthermore, if Γ ∼= Λ, then c = 1.

Corollary 4.12 (Maximality of the Euler class) Retain the setting of Theo-

rem 4.8. If, in addition, the coupling Ω is integrable, then

eu(Ω) = ±vol
(
Γ \Hn

)
. (4.7)

Proof We apply Theorem 4.11 to M = N = Γ \Hn and Λ = Γ . One has

dvol = vol(M) · xΓ

because the top degree cohomology is one-dimensional, and the evaluation
against the homological fundamental class gives the equality. By Theorem 4.7

dvol = compn(dvolb).
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Thus, xb
Γ = xb

Λ = dvolb /vol(M) satisfy the conditions of the theorem. Since
in this case c = 1, we conclude that dvolb is mapped to ±dvol under (4.6).
Equation (4.2) of Definition 4.4 gives

eu(Ω) =
〈
compn ◦ Hn

b

(
I•

)
◦ Hn

b(Ω) ◦ Hn
b

(
j•)(dvolb), [Γ ]

〉

=
〈
±dvol, [Γ ]

〉
= ±vol

(
Γ \Hn

)
. �

Recall that Σ
reg
+ (resp. Σ reg

− ) denotes the set of positively (resp. negatively)
oriented regular ideal simplices (see Sect. 3.1). We think of Σ

reg
+ and Σ

reg
− as

subsets of Bn+1—the (n + 1)-tuples of points on the boundary B = ∂Hn.
Since Σ

reg
+ (resp. Σ

reg
− ) is a single G0-orbit, terms like a.e. point on Σ

reg
+

refer to the Haar measure on G0.

Corollary 4.13 Retain the setting of Theorem 4.8. If, in addition, the coupling

Ω is integrable, then the Borel map

φn+1
x = φx × · · · × φx : Bn+1 → Bn+1

either maps a.e. point in Σ
reg
+ into Σ

reg
+ for μ-a.e x ∈ X, or a.e. point of Σ

reg
+

is mapped into Σ
reg
− for μ-a.e x ∈ X.

Proof Fix (z0, . . . , zn) ∈ Σ
reg
+ . Combining Corollary 4.12 with Theorem 4.8

we get
∫

Γ \G0

∫

X

vol
(
φx(gz0), . . . , φx(gzn)

)
dμ(x)dg = ±vmax.

By Lemma 3.3 (2), an ideal simplex has an oriented volume vmax iff it
is in Σ

reg
+ and −vmax iff it is in Σ

reg
− . Combining this with the fact that

the absolute value of the integrand on the left hand side in the above for-
mula is a priori at most vmax implies that either for a.e. (g, x) ∈ G0 × X,
(φx(gz0), . . . , φx(gzn)) ∈ Σ

reg
+ or for a.e. (g, x) ∈ G0 × X, (φx(gz0), . . . ,

φx(gzn)) ∈ Σ
reg
− . But by Lemma 3.3 (1), G0 acts simply transitive on Σ

reg
+ ,

thus for the set of g ∈ G0 satisfying the above generic condition, the set of
ideal simplices of the form (gz0, . . . , gzn) is of full measure in Σ

reg
+ . The

proof now follows by an application of Fubini’s theorem. �

5 Proofs of the main results

5.1 Proof of Theorems B and C

Proof of Theorem B We aim to show that the group G = Isom(Hn) is 1-taut
for any n ≥ 3. Fix a cocompact torsion-free lattice Γ < G0 in the connected
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component of e ∈ G. By Proposition 2.3 G is strongly ICC, thus Proposi-
tion 2.9 applies and it is enough to show that Γ is 1-taut relative to G (note
that a cocompact lattice is integrable). By Lemma A.5 (applied to Γ ) it is
enough to show that every integrable ergodic (Γ,Γ )-coupling is taut relative
to G.

Let (Ω,m) be an integrable ergodic (Γ,Γ )-coupling. We adopt the
Setup 3.1 and consider the boundary map (3.1) φ : X × B → B . Let
Σ

reg
+ ,Σ

reg
− ∈ Bn+1 denote the sets of positively and negatively oriented reg-

ular ideal simplices, as defined in Sect. 3.1. Then Corollary 4.13 implies that
either for μ-a.e x ∈ X, φn+1

x = φx × · · · × φx maps a.e. point in Σ
reg
+ into

Σ
reg
+ , or for μ-a.e x ∈ X, φn+1

x maps a.e. point in Σ
reg
+ into Σ

reg
− .

We now use the assumption that n ≥ 3, and apply Lemma 3.4 to deduce
that for a.e x ∈ X there exists a unique gx ∈ G with φx(b) = gxb for a.e.
b ∈ B . Proposition 3.2 applied to G being the image of G in Homeo(B) yields
that Ω is taut with respect to G. �

We now set the stage for the proof of Theorem C which deals with the
case n = 2. If we normalize the volume cocycle (4.1) by the volume vmax of a
non-degenerate positively oriented ideal 2-simplex in H2 ∪ H̄2—they all have
the same volume—we obtain the orientation cocycle c defined on triples of
points on the circle S1 = B = ∂H2 by

c(b0, b1, b3) = v−1
max · vol(b0, b1, b2).

It takes values in {−1,0,1} with c(b0, b1, b2) = 1 if the triple (b0, b1, b2)

consists of distinct points in the positive orientation/cyclic order, c = −1 if
the cyclic order is reversed, and c = 0 if the triple is degenerate. Let ν denote a
probability measure in the Lebesgue class, and suppose that φ : (S1, ν) → S1

is a measurable map so that for ν3-a.e. (b0, b1, b2):

c
(
φ(b0), φ(b1), φ(b2)

)
= c(b0, b1, b2).

It follows from [30, Proposition 5.5] that the following conditions on such
measurable orientation preserving φ : (S1, ν) → S1 are equivalent:

(1) The push-forward measure φ∗ν has full support;
(2) φ agrees a.e. with a homeomorphism f ∈ Homeo(S1).

Let Γ < G = Isom(H2) be a lattice. Let α : Γ × X → Γ be the ME-cocycle
associated with an ergodic (Γ,Γ )-coupling (Ω,m) and an identification
i : Γ × X → Ω . Let φx : (S1, ν) → S1, x ∈ X, be the boundary map 3.1
associated to α as in Sect. 3.

Proposition 5.1 If the orientation cocycle is preserved by φx a.e., that is,

c
(
φx(b0), φx(b1), φx(b2)

)
= c(b0, b1, b2) ν3-a.e.
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for a.e. x ∈ X, then the map φx agree a.e. with a homeomorphism fx ∈
Homeo(S1) for a.e. x ∈ X.

Proof We prove that the measurable family of open sets Ux = S1 \ supp(φxν)

satisfies a.e. Ux = ∅. The fact that ν is Γ -quasi-invariant and the identity

φγ.x(γ b) = α(γ, x)φx(b)

imply the following a priori equivariance of {Ux | x ∈ X}

Uγ.x = α(γ, x)Ux . (5.1)

Since Ux �= S1 for every x ∈ X, the proposition is implied by Lemma 2.5 and
the fact that the action of G = PSL2(R) and of its lattices on the circle S1 is
minimal and strongly proximal [19, Propositions 4.2 and 4.4]. �

Proof of Theorem C We fix a cocompact torsion-free lattice Γ < G0 (a sur-
face group) in the connected component of G = Isom(H2). We identify S1

as B = ∂H2 and embed G in the Polish group G := Homeo(S1) accordingly.
Exactly as at the start of the proof of Theorem B (n ≥ 3 was not needed for
that) one sees that it suffices to show that Γ is 1-taut relative to G .

By Lemma A.5 it is enough to show that every integrable ergodic (Γ,Γ )-
coupling is taut relative to G . Let (Ω,m) be such a coupling. We adopt the
Setup 3.1 and consider the boundary map (3.1) φ : X × B → B .

Corollary 4.13 implies that there is σ ∈ {1,−1} such that for μ-a.e. x ∈ X

and a.e. triple (b1, b2, b3) ∈ (S1)3:

c
(
φx(b1), φx(b2), φx(b3)

)
= σ · c(b1, b2, b3).

That is, either a.e. φx preserves the cyclic order of a.e. triple, or a.e. φx

reverses the cyclic order of a.e. triple. In either case, by Proposition 5.1
we conclude that for a.e. x ∈ X, φx agree a.e. with a homeomorphism
fx ∈ Homeo(S1). It follows with Proposition 3.2 that the ergodic integrable
(Γ,Γ )-coupling Ω is taut relative to G = Homeo(S1). �

5.2 Measure equivalence rigidity: Theorem D

Let G = Isom(Hn), n ≥ 3. Let Γ < G be a lattice, and Λ a finitely generated
group which admits an integrable (Γ,Λ)-coupling (Ω,m). By Lemma A.2
the (Γ,Γ )-coupling Ω ×Λ Ω∗ is integrable.

By Theorem B and Proposition 2.9 the lattice Γ is 1-taut relative to the
inclusion Γ < G. Hence the coupling Ω ×Λ Ω∗ is taut. By Proposition 2.3
the group G is strongly ICC relative to Γ < G. Applying Theorem 2.6 we
obtain a continuous homomorphism ρ : Λ → G with finite kernel F , image
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Λ̄ = ρ(Λ) being discrete in G, and a measurable idΓ ×ρ-equivariant map
Ψ : Ω → G.

To complete the proof of statement (1) of Theorem D and case n ≥ 3 of
Theorem A it remains to show that Λ̄ is not merely discrete, but is actually a
lattice in G. This can be deduced from the application of Ratner’s theorem be-
low which is needed for the precise description of the push-forward measure
Ψ∗m on G as stated in part (2) of Theorem D. Let us also give the following
direct argument which relies only on the strong ICC property of G.

Consider the composition (G,Λ)-coupling Ω̃ = G×Γ Ω , and the (G,G)-
coupling Ω̃ ×Λ Ω̃∗. Since Γ is an integrable lattice in G (Theorem 1.9) by
Lemma A.2 both Ω̃ and Ω̃ ×Λ Ω̃∗ are integrable couplings. Theorem B pro-
vides a unique tautening map

Φ̃ : Ω̃ ×Λ Ω̃∗ → G.

Applying Theorem 2.1 (a special case of Theorem 2.6 with G = G), we obtain
a homomorphism ρ̃ : Λ → G with finite kernel and image being a lattice in
G. There is also a IdG × ρ̃-equivariant measurable map

Ψ̃ : Ω̃ = G ×Γ Ω → G.

We claim that ρ, ρ̃ : Λ → G are conjugate representations. To see this observe
that since G is strongly ICC, there is only one tautening map Ω̃ ×Λ Ω̃∗ → G.
This implies the a.e. identity

Ψ̃
(
[g1,ω1]

)
Ψ̃

(
[g2,ω2]

)−1 = g1Ψ (ω1)Ψ (ω2)
−1g−1

2 .

Equivalently, we have a.e. identity

Ψ (ω1)
−1g−1

1 Ψ̃
(
[g1,ω1]

)
= Ψ (ω2)

−1g−1
2 Ψ̃

(
[g2,ω2]

)
.

Hence the value of both sides are a.e. equal to a constant g0 ∈ G. It follows
that for a.e. g ∈ G and ω ∈ Ω

g−1Ψ̃
(
[g,ω]

)
= Ψ (ω)g0.

Finally, the fact that Ψ , Ψ̃ are ρ-, ρ̃- equivariant respectively, implies:

ρ̃(λ) = g0ρ(λ)g−1
0 (λ ∈ Λ).

In particular, Λ̄ = g−1
0 ρ̃(Λ)g0 is a lattice in G.

We proceed with the proof of statement (2): given the IdΓ × ρ-equivariant
measurable map Ψ : Ω → G we shall describe the pushforward Ψ∗m on G.
(We shall use the discreteness of Λ̄ = ρ(Λ), but the fact that it is a lattice will
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not be needed; in fact, it will follow from the application of Ratner’s theorem.)
Recall that the measure Ψ∗m is invariant under the action x 
→ γ xρ(λ)−1, and
descends to a finite Γ -invariant measure μ on G/Λ̄ and to a finite Λ̄-invariant
measure ν on Γ \G. Assuming m was Γ × Λ-ergodic, μ and ν are ergodic
under the Γ - and Λ̄-action, respectively. One can now apply Ratner’s theorem
[54] to describe μ, and thereby Ψ∗m, as in [15, Lemma 4.6]. For the reader’s
convenience we sketch the arguments.

Let Λ0 = Λ̄ ∩ G0; so either Λ0 = Λ̄ or [Λ̄ : Λ0] = 2. In the first case
we set μ′ = μ, in the latter case let μ′ denote the 2-to-1 lift of μ to G/Λ0.
Let Γ 0 = Γ ∩ G0, and let μ0 be an ergodic component of μ′ supported on
G0/Λ0. We consider the homogeneous space Z = G0/Γ 0 × G0/Λ0 which is
endowed with the following probability measure

μ̃0 =
∫

G0/Γ 0
δgΓ 0 × g∗μ

0 dmG0/Γ 0 .

Observe that μ̃0 well defined because μ0 is Γ 0-invariant. Moreover, μ̃0 is
invariant and ergodic for the action of the diagonal Δ(G0) ⊂ G0 × G0 on
Z. Since G0 is a connected group generated by unipotent elements, Ratner’s
theorem shows that μ̃0 is homogeneous. This means that there is a connected
Lie subgroup L < G0 ×G0 containing Δ(G0) and a point z ∈ Z such that the
stabilizer Lz of z is a lattice in L and μ̃0 is the push-forward of the normalized
Haar measure mL/Lz to the L-orbit Lz ⊂ Z. Since G0 is a simple group, there
are only two possibilities for L: either (i) L = G0 × G0 or (ii) L = Δ(G0).

In case (i), μ̃0 is the Haar measure on G0/Γ 0 ×G0/Λ0, and μ0 is the Haar
measure on G0/Λ0. (In particular, Λ0 is a lattice in G0, and Λ is a lattice in
G.) The original measure μ may be either the G-invariant measure mG/Λ̄, or

a G0-invariant measure on G/Λ̄. In the latter case, by possibly multiplying
Φ and conjugating ρ with some x ∈ G \ G0, we may assume that μ is the
G0-invariant probability measure on G0/Λ̄.

In case (ii), the fact that Lz is lattice in L = Δ(G0), implies that μ0 and
the original measure μ are atomic. Since Γ acts ergodically on (G/Λ̄,μ),
this atomic measure is necessarily supported and equidistributed on a finite
Γ -orbit of some g0Λ̄ ∈ G/Λ̄. It follows that Γ ∩ g−1

0 Λ̄g0 has finite index
in Γ . (This also implies that Λ̄ is a lattice in G.) Upon multiplying Ψ and
conjugating ρ by g0 ∈ G, we may assume that Φ∗m is equidistributed on the
double coset Γ eΛ̄ and that Γ , Λ̄ are commensurable lattices. This completes
the proof of Theorem D.

5.3 Convergence actions on the circle: case n = 2 of Theorem A

Let Γ be a uniform lattice in G = Isom(H2) ∼= PGL2(R). The group G is a
subgroup of Homeo(S1) by the natural action of PGL2(R) on S1 ∼= R P1.
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Consider a compactly generated unimodular group H that is L1-measure
equivalent to Γ . We will prove a more general statement than in Theorem A,
which is formulated for discrete H = Λ. Since Γ is uniform, hence inte-
grable in G, we can induce any integrable (Γ,H)-coupling to an integrable
(G,H)-coupling (Lemma A.2). Let (Ω,m) be an integrable (G,H)-coupling
(Ω,m).

From Theorem 2.6 we obtain a continuous homomorphism ρ : H →
Homeo(S1) with compact kernel and closed image H̄ < Homeo(S1) and, by
pushing forward m, a measure m̄ on Homeo(S1) that is invariant under all
bilateral translations on f 
→ gfρ(h)−1 with g ∈ G and h ∈ H and descends
to a finite H̄ -invariant measure μ on G\Homeo(S1) and a finite G-invariant
measure ν on Homeo(S1)/H̄ .

The next step is to show that H̄ can be conjugated into G. To this end, we
shall use the existence of the finite H̄ -invariant measure μ on G\Homeo(S1),
which may be normalized to a probability measure. We need the following
theorem which we prove relying on the deep work by Gabai [20] and Casson-
Jungreis [8] on the determination of convergence groups as Fuchsian groups.

Theorem 5.2 Let μ be a Borel probability measure on G\Homeo(S1). Then

the stabilizer Hμ = {f ∈ Homeo(S1) | f∗μ = μ} for the action by the right

translations is conjugate to a closed subgroup of G.

Proof We fix a metric d on the circle, say d(x, y) = ∡(x, y). Let Trp ⊂
S1 × S1 × S1 be the space of distinct triples on the circle. The group
Homeo(S1) acts diagonally on Trp. We denote elements in Trp by bold let-
ters x ∈ Trp; the coordinates of x ∈ Trp or y ∈ Trp will be denoted by xi

or yi where i ∈ {1,2,3}, respectively. For f ∈ Homeo(S1) we write f (x)

for (f (x1), f (x2), f (x3)). We equip Trp with the metric, also denoted by d ,
given by

d(x,y) = max
i∈{1,2,3}

d(xi, yi).

The following lemma will eventually allow us to apply the work of Gabai-
Casson-Jungreis. �

Lemma 5.3 For every compact subset K ⊂ Trp and every ǫ > 0 there is

δ > 0 so that for all h,h′ ∈ Hμ and y ∈ K ∩ h−1K and y′ ∈ K ∩ h′−1K one

has the implication:

d
(
y,y′) < δ and d

(
h(y), h′(y′)) < δ =⇒ sup

x∈S1
d
(
h(x),h′(x)

)
< ǫ.
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Proof For an arbitrary triple z ∈ Trp and x ∈ S1 \{z3} consider the real valued
cross-ratio

[x, z1; z2, z3] = (x − z1)(z2 − z3)

(x − z3)(z2 − z1)
.

In this formula we view the circle as the one-point compactification of the
real line. Denote by [z1, z2]z3 the circle arc from z1 to z2 not including z3. As
a function in the first variable, [_, z1; z2, z3] is a monotone homeomorphism
between the closed arc [z1, z2]z3 and the interval [0,1]. For f ∈ Homeo(S1)

and z ∈ Trp we define the function

Fz,f : [z1, z2]z3 → [0,1], Fz,f (x) =
[
f (x), f (z1);f (z2), f (z3)

]
.

Since the cross-ratio is invariant under G [53, Theorem 4.3.1 on p. 116],
we have Fz,gf (x) = Fz,f (x) for any g ∈ G. Hence we may and will use the
notation Fz,Gf (x). We now average Fz,Gf (x) with regard to the measure μ

and obtain the function F̄z : [z1, z2]z3 → [0,1] with

F̄z(x) =
∫

G\Homeo(S1)

Fz,Gf (x) dμ(Gf ).

The Hμ-invariance of μ implies that

F̄h(z)

(
h(x)

)
= F̄z(x) (5.2)

for every h ∈ Hμ and every x ∈ [z1, z2]z3 . Let us introduce the following
notation: Whenever K ⊂ Trp is a subset, we denote by K̃ the subset

K̃ =
{
(x, z) | z ∈ K,x ∈ [z1, z2]z3

}
⊂ S1 × S1 × S1 × S1.

Next let us establish the following continuity properties:

(1) For every compact K ⊂ Trp and every ǫ > 0 there is η > 0 such that:

∀(s,z),(t,z)∈K̃

(∣∣F̄z(t) − F̄z(s)
∣∣ < η ⇒ d(t, s) <

ǫ

5

)
.

(2) For every compact K ⊂ Trp and every η > 0 there is δ > 0 such that:

∀(t,y),(t,z)∈K̃

(
d(y, z) < δ ⇒

∣∣F̄y(t) − F̄z(t)
∣∣ <

η

2

)
.

Proof of (1): Let K ⊂ Trp be compact and ǫ > 0. Let f ∈ Homeo(S1). The
family of homeomorphisms F̄z,Gf : [z1, z2]z3 → [0,1] depends continuously
on z ∈ Trp. The inverses of these functions are equicontinuous when z ranges
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in a compact subset. Hence there exists θ(Gf ) > 0 such that for every z ∈ K

and all t, s ∈ [z1, z2]z3 we have the implication

∣∣Fz,Gf (t) − Fz,Gf (s)
∣∣ < θ(Gf ) ⇒ d(t, s) <

ǫ

5
.

The set G\Homeo(S1) is the union of an increasing sequence of measurable
sets

An =
{
Gf ∈ G\H | θ(Gf ) >

1

n

}
.

Fix n large enough so that μ(An) > 1/2. We claim that η = (2n)−1 satis-
fies (1). Suppose that z ∈ K and t, s ∈ [z1, z2]z3 satisfy d(t, s) > ǫ/5. Up to
exchanging t and s, we may assume that [s, z1; z2, z3] ≥ [t, z1; z2, z3]. Then
Fz,Gf (s) ≥ Fz,Gf (t) for all f ∈ Homeo(S1), and

F̄z(s) − F̄z(t) ≥
∫

An

(
Fz,Gf (s) − Fz,Gf (t)

)
dμ > μ(An) · 1

n
> η.

Proof of (2): Let K ⊂ Trp be compact, and let η > 0. Let f ∈ Homeo(S1).
Since K̃ is compact, F̄z(x) as a function on K̃ is equicontinuous. Hence there
is δ(Gf ) > 0 such that for all (x,y) ∈ K̃ and (x, z) ∈ K̃ with d(y, z) < δ(Gf )

we have
∣∣Fy,Gf (x) − Fz,Gf (x)

∣∣ <
η

2
.

The set G\Homeo(S1) is the union of an increasing sequence of measurable
sets

Bn =
{
Gf ∈ G\H | δ(Gf ) >

1

n

}
.

We choose n ∈ N with μ(Bn) > 1−η/2 and set δ = n−1. Then for (x,y) ∈ K̃

and (x, z) ∈ K̃ with d(y, z) < δ we have

∣∣F̄y(x) − F̄z(x)
∣∣ ≤

∫

Bn

∣∣Fy,Gf (x) − Fz,Gf (x)
∣∣dμ(Gf ) + η

2
< η,

proving (2).
We can now complete the proof of the lemma. Let K ⊂ Trp be a compact

subset. Let ǫ > 0. We can choose r > 0 such that

K ⊂
{
x ∈ Trp | d(x1, x2), d(x2, x3), d(x3, x1) ≥ r

}
.
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For the given ǫ and K let η > 0 be as in (1). For the given ǫ and K and this η

let δ > 0 be as in (2). We may also assume that

δ <
ǫ

5
<

r

3
.

Consider h,h′ ∈ Hμ and y,y′ ∈ K where z = h(y), z′ = h′(y′) are also
in KÅ, and assume that d(y,y′) < δ and d(z, z′) < δ. There are several
possibilities for the cyclic order of the points {y1, y

′
1, y2, y

′
2, y3, y

′
3}, but

since the pairs {yi, y
′
i} of corresponding points in the triples y,y′ are closer

(d(yi, y
′
i) < δ < r/3) than the separation between the points in the triples

(d(yi, yj ), d(y′
i, y

′
j ) ≥ r), these points define a partition of the circle into

three long arcs Lij separated by three short arcs Sk (possibly degenerating
into points) in the following cyclic order

S1 = L12 ∪ S2 ∪ L23 ∪ S3 ∪ L31 ∪ S1.

The end points of the arc Si are {yi, y
′
i}; and if (i, j, k) = (1,2,3) up to a

cyclic permutation, then

Lij = [yi, yj ]yk
∩

[
y′
i, y

′
j

]
y′
k
.

Note that for any x ∈ Lij we have

h(x),h′(x) ∈ [zi, zj ]zk
∩

[
z′
i, z

′
j

]
z′
k
.

Using (2) and (5.2) we obtain

∣∣F̄z

(
h(x)

)
− F̄z

(
h′(x)

)∣∣ ≤
∣∣F̄z

(
h(x)

)
− F̄z′

(
h′(x)

)∣∣

+
∣∣F̄z′

(
h′(x)

)
− F̄z

(
h′(x)

)∣∣

≤
∣∣F̄z

(
h(x)

)
− F̄z′

(
h′(x)

)∣∣ + η

2

=
∣∣F̄y(x) − F̄y′(x)

∣∣ + η

2
< η.

By (1) it follows that d(h(x), h′(x)) < ǫ/5 for every x ∈ L12 ∪ L23 ∪ L31. It
remains to consider points x ∈ Si , i = 1,2,3, which can be controlled via the
behavior of the endpoints yi, y

′
i of the short arc Si .

First observe that the image h(Si) of Si is the short arc defined by
h(yi), h(y′

i). Indeed, on one hand the two points are close:

d
(
h(yi), h

(
y′
i

))
≤ d

(
h(yi), h

′(y′
i

))
+ d

(
h′(y′

i

)
, h

(
y′
i

))
< δ + ǫ

5
<

2

5
ǫ.
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On the other hand, S1 \ Si of Si contains a point yj with j ∈ {1,2,3} \ {i};
therefore h(yj ) /∈ h(Si). Since h(y) ∈ K we have

d
(
h(yi), h(yj )

)
≥ r > 2ǫ/5.

Hence h(Si) is the short arc defined by 2ǫ/3-close points h(yi), h(y′
i), imply-

ing

d
(
h(x),h(yi)

)
<

2

5
ǫ (x ∈ Si).

Similarly, h′(Si) is the short arc defined by 2ǫ/5-close points h′(yi), h
′(y′

i),
and

d
(
h′(x), h′(yi)

)
<

2

5
ǫ (x ∈ Si).

Since yi ∈ Lij , d(h(yi), h
′(yi)) < ǫ/5. Therefore for any x ∈ Si

d
(
h(x),h′(x)

)
≤ d

(
h(x),h(yi)

)
+ d

(
h(yi), h

′(yi)
)

+ d
(
h′(x), h′(yi)

)
< ǫ. �

Continuation of the proof of Theorem 5.2 We claim that Hμ < Homeo(S1) is
a convergence group, i.e., for any compact subset K ⊂ Trp the set

H(μ,K) =
{
h ∈ Hμ | h−1K ∩ K �= ∅

}

is compact. In particular, the Polish group Hμ is locally compact. Let us fix
a compact subset K ⊂ Trp. Since H(μ,K) is a closed subset in the Polish
group Homeo(S1), it suffices to show that any sequence {hn}∞n=1 in H(μ,K)

contains a Cauchy subsequence. Choose triples yn ∈ h−1
n K ∩ K . Upon pass-

ing to a subsequence, we may assume that the points yn converge to some
y ∈ K and the points zn = hn(yn) converge to some z ∈ K . Let ǫ > 0. For the
given ǫ and K let δ > 0 be as in Lemma 5.3. Choose N ∈ N be large enough
to ensure that d(yn,ym) < δ and d(zn, zm) < δ for all n,m > N . It follows
from Lemma 5.3 that hn and hm are ǫ-close whenever n,m > N . This proves
that Hμ is a convergence group on the circle.

Finally, it follows that Hμ is conjugate to a closed subgroup of G. For
discrete groups this is a well known results of Gabai [20] and Casson–
Jungreis [8]. The case of non-discrete convergence group Hμ < Homeo(S1)

can be argued more directly. The closed convergence group Hμ is a locally
compact subgroup of Homeo(S1); the classification of all such groups is
well known, and the only ones with convergence property are conjugate to
PGL2(R) [24, pp. 345–348, 16, pp. 51–54]. �

We return to the proof of Theorem A in case of n = 2. Starting from an
integrable (G,H)-coupling (Ω,m) between G = PGL2(R) and an unknown
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compactly generated unimodular group H a continuous representation ρ :
H → Homeo(S1) with compact kernel and closed image was constructed.
Theorem 5.2 implies that, up to conjugation, we may assume that

H̄ = ρ(H) < G = PGL2(R).

Since H̄ is measure equivalent to G = PGL2(R), it is non-amenable.
Case (1): H̄ < G = PGL2(R) is non-discrete. (This does not occur in the

original formulation of Theorem A, but is included in the broader context of
lcsc H adapted in this proof.) There are only two non-discrete non-amenable
closed subgroups of G: the whole group G and its index two subgroup G0 =
PSL2(R). Both of these groups may appear as H̄ ; in fact, direct products of
the form H ∼= G × K or H ∼= G0 × K with compact K and certain almost
direct products G′ × K ′/C as in [16, Theorem A] give rise to an integrable
measure equivalence between H and G (cf. [16, Theorem C]).

Case (2): H̄ is discrete. We claim that such H̄ is a cocompact lattice in G.
Indeed, every finitely generated discrete non-amenable subgroup of G is ei-
ther cocompact or is virtually a free group F2. The latter possibility is ruled
out by the following.

Lemma 5.4 The free group F2 is not L1-measure equivalent to G.

Note that these groups are measure equivalent since F2 forms a lattice in G.

Proof Assuming F2 is L1-measure equivalent to G, one can construct an
integrable measure equivalence between G and the automorphism group
H = Aut(Tree4) of the 4-regular tree, which contains F2 as a cocompact
lattice. By Theorems C and 2.6 this would yield a continuous homomor-
phism H → Homeo(S1) with closed image. This leads to a contradiction,
because H is totally disconnected and virtually simple [58, Théorème 4.5],
while Homeo(S1) has no non-discrete totally disconnected subgroups [24,
Theorem 4.7 on p. 345]. �
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Appendix A: Measure equivalence

The appendix contains some general facts related to measure equivalence
(Definition 1.1), the strong ICC property (Definition 2.2), and the notions
of taut couplings and groups (Definition 1.3).

A.1 The category of couplings

Measure equivalence is an equivalence relation on unimodular lcsc groups.
Let us describe explicitly the constructions which show reflexivity, symmetry
and transitivity of measure equivalence.

A.1.1 Tautological coupling

The tautological coupling is the (G × G)-coupling (G,mG) given by
(g1, g2) : g 
→ g1gg−1

2 . It demonstrates reflexivity of measure equivalence.

A.1.2 Duality

Symmetry is implied by the following: Given a (G,H)-coupling (Ω,m) the
dual (Ω∗,m∗) is the (H,G)-coupling Ω∗ with the same underlying measure
space (Ω,m) and the H × G-action (h, g) : ω∗ 
→ (g,h)ω∗.

A.1.3 Composition of couplings

Compositions defined below shows that measure equivalence is a transi-
tive relation. Let G1,H,G2 be unimodular lcsc groups, and (Ωi,mi) be a
(Gi,H)-coupling for i ∈ {1,2}. We describe the (G1,G2)-coupling Ω1 ×H

Ω∗
2 modeled on the space of H -orbits on (Ω1 × Ω2,m1 × m2) with respect

to the diagonal H -action. Consider measure isomorphisms for (Ωi,mi) as
in (1.1): For i ∈ {1,2} there are finite measure spaces (Xi,μi) and (Yi, νi),
measure-preserving actions Gi � (Xi,μi) and H � (Yi, νi), measurable co-
cycles αi : Gi × Xi → H and βi : H × Yi → Gi , and measure space isomor-
phisms Gi × Yi

∼= Ωi
∼= H × Xi with respect to which the Gi × H -actions

are given by

(gi, h) :
(
h′, x

)

→

(
hh′αi(gi, x)−1, gi . x

)
,

(gi, h) :
(
g′, y

)

→

(
gig

′β(h, y)−1, h . y
)
.

The space Ω1 ×H Ω∗
2 with its natural G1 ×G2-action is equivariantly isomor-

phic to (X1 × X2 × H,μ1 × μ2 × mH ) endowed with the G1 × G2-action

(g1, g2) : (x1, x2, h) 
→
(
g1 . x1, g2 . x2, α1(g1, x1)hα2(g2, x2)

−1).
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To see that it is a (G1,G2)-coupling, we identify this space with Z × G1

equipped with the action

(g1, g2) :
(
g′, z

)

→

(
g1g

′c(g2, z)
−1, g2 . z

) (
g′ ∈ G1, z ∈ Z

)

where Z = X2×Y1, while the action G2 � Z and the cocycle c : G2×Z→G1

are given by

g2 : (x, y) 
→
(
g2 . x, α2(g2, x) . y

)
,

c
(
g2, (x, y)

)
= β1

(
α2(g2, x), y

)
.

(A.1)

Similarly, Ω1 ×H Ω∗
2

∼= W × G2, for W ∼= X1 × Y2.

A.1.4 Morphisms

Let (Ωi,mi), i ∈ {1,2}, be two (G,H)-couplings. Let F : Ω1 → Ω2 be a
measurable map such that for m1-a.e. ω ∈ Ω1 and every g ∈ G and every
h ∈ H

F
(
(g,h)ω

)
= (g,h)F (ω).

Such maps are called quotient maps or morphisms.

A.1.5 Compact kernels

Let (Ω,m) be a (G,H)-coupling, and let

{1} → K → G → Ḡ → {1}

be a short exact sequence where K is compact. Then the natural quo-
tient space (Ω̄, m̄) = (Ω,m)/K is a (Ḡ,H)-coupling, and the natural map
F : Ω → Ω̄ , F : ω 
→ Kω, is equivariant in the sense of F((g,h)ω) =
(ḡ, h)F (ω). This may be considered as an isomorphism of couplings up to

compact kernel.

A.1.6 Passage to lattices

Let (Ω,m) be a (G,H)-coupling, and let Γ < G be a lattice. By restrict-
ing the G × H -action on (Ω,m) to Γ × H we obtain a (Γ,H)-coupling.
Formally, this follows by considering (G,mG) as a Γ ×G-coupling and con-
sidering the composition G ×G Ω as Ω with the Γ × H -action.
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A.2 Lp-integrability conditions

Let G and H be compactly generated unimodular lcsc groups equipped with
proper norms | · |G and | · |H . Let c : G × X → H be a measurable cocycle,
and fix some p ∈ [1,∞). For g ∈ G we define

‖g‖c,p =
(∫

X

∣∣c(g, x)
∣∣p
H

dμ(x)

)1/p

.

For p = ∞ we use the essential supremum. Assume that ‖g‖c,p < ∞ for
a.e. g ∈ G. We claim that there are constants a,A > 0 so that for every g ∈ G

‖g‖c,p ≤ A · |g|G + a. (A.2)

Hence c is Lp-integrable in the sense of Definition 1.5. The key observation
here is that ‖ − ‖c,p is subadditive. Indeed, by the cocycle identity, subaddi-
tivity of the norm | − |H , and the Minkowski inequality, for any g1, g2 ∈ G

we get

‖g2g1‖c,p ≤
(∫

X

(∣∣c(g2, g1 . x)
∣∣
H

+
∣∣c(g1, x)

∣∣
H

)p
dμ(x)

)1/p

≤
(∫

X

∣∣c(g2,−)
∣∣p
H

dμ

)1/p

+
(∫

X

∣∣c(g1,−)
∣∣p
H

dμ

)1/p

= ‖g2‖c,p + ‖g1‖c,p.

For t > 0 denote Et = {g ∈ G : ‖g‖c,p < t}. We have Et · Es ⊆ Es+t for any
t, s > 0. Fix t large enough so that mG(Et ) > 0. By [11, Corollary 12.4 on
p. 235], E2t ⊇ Et · Et has a non-empty interior. Hence any compact subset of
G can be covered by finitely many translates of E2t . The subadditivity implies
that ‖g‖c,p is bounded on compact sets. This gives (A.2).

Lemma A.1 Let G,H ,L be compactly generated groups, G � (X,μ), H �

(Y, ν) be finite measure-preserving actions, and α : G×X → H and β : H ×
Y → L be Lp-integrable cocycles for some 1 ≤ p ≤ ∞. Consider Z = X ×Y

and G � Z by g : (x, y) 
→ (g . x,α(g, x) . y). Then the cocycle γ : G×Z →
L given by

γ
(
g, (x, y)

)
= β

(
α(g, x), y

)
.

is Lp-integrable.
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Proof For p = ∞ the claim is obvious. Assume p < ∞. Let A,a,B,b be
constants such that ‖h‖β,p ≤ B · |h|H + b and ‖g‖α,p ≤ A · |g|G + a. Then

‖g‖p
γ,p =

∫

X×Y

∣∣β
(
α(g, x), y

)∣∣p
L dμ(x)dν(y)

≤
∫

X

(
B ·

∣∣α(g, x)
∣∣
H

+ b
)p

dμ(x)

≤ max(B, b)p · ‖g‖p
α,p ≤ (C · |g|G + c)p

for appropriate constants c > 0 and C > 0. �

Lemma A.2 Let G1,H,G2 be compactly generated unimodular lcsc groups.
For i ∈ {1,2} let (Ωi,mi) be an Lp-integrable (Gi,H)-coupling. Then

Ω1 ×H Ω∗
2 is an Lp-integrable (G1,G2)-coupling.

Proof This follows from Lemma A.1 using the explicit description (A.1) of
the cocycles for Ω1 ×H Ω∗

2 . �

We conclude that for each 1 ≤ p ≤ ∞, Lp-measure equivalence is an
equivalence relation between compactly generated unimodular lcsc groups.

A.3 Tautening maps

Lemma A.3 Let G be a lcsc group, Γ a countable group and j1, j2 : Γ → G

be homomorphisms with Γi = ji(Γ ) being lattices in G. Assume that G is taut

(resp. p-taut and Γi are Lp-integrable). Then there exists g ∈ G so that

j2(γ ) = g j1(γ ) g−1 (γ ∈ Γ ).

If π : G → G is a continuous homomorphism into a Polish group and G is

taut relative to π : G → G (resp. G is p-taut relative to π : G → G and Γi

are Lp-integrable) then there exists y ∈ G with

π
(
j2(γ )

)
= yπ

(
j1(γ )

)
y−1 (γ ∈ Γ ).

Proof We prove the more general second statement. The group

Δ =
{(

j1(γ ), j2(γ )
)
∈ G × G | γ ∈ Γ

}

is a closed discrete subgroup in G × G. The G × G-space Ω = (G × G)/Δ

equipped with the G × G-invariant measure is easily seen to be a (G,G)-
coupling. It will be Lp-integrable if Γ1 and Γ2 are Lp-integrable lattices. Let
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Φ : Ω → G be the tautening map. There are a, b ∈ G and x ∈ G such that for
all g1, g2 ∈ G

Φ
(
(g1a, g2b)Δf

)
= π(g1)xπ(g2)

−1.

Since (a, b) and (j1(γ )a a, j2(γ )b b) are in the same Δ-coset, where gh =
hgh−1, we get for all g1, g2 ∈ G and every γ ∈ Γ

π(g1)xπ(g2)
−1 = π(g1)π

(
j1(γ )a

)
xπ

(
j2(γ )b

)−1
π(g2)

−1.

This implies that j1 and j2 are conjugate homomorphisms. �

The following lemma relates tautening maps Φ : Ω → G and cocycle
rigidity for ME-cocycles.

Lemma A.4 Let G be a unimodular lcsc group, G be a Polish group, π :
G → G a continuous homomorphism. Let (Ω,m) be a (G,G)-coupling and

α : G × X → G, β : G × Y → G be the corresponding ME-cocycles. Then

there is a tautening map Ω → G iff the G -valued cocycle π ◦ α is conjugate

to π , that is,

π ◦ α(g, x) = f (g . x)−1π(g)f (x).

Moreover, Ω is taut relative to π if such a measurable map f : X → G

is unique. This is also equivalent to π ◦ β being uniquely conjugate to π :
G → G .

Proof Let α : G × X → G be the ME-cocycle associated to a measure space
isomorphism i : (G,mG) × (X,μ) → (Ω,m) as in (1.1). In particular,

(g1, g2) : i(g, x) 
→ i
(
g2gα(g1, x)−1, g1 . x

)
.

We shall now establish a 1-to-1 correspondence between Borel maps f :
X → G with

π ◦ α(g, x) = f (g . x)−1π(g)f (x)

and tautening maps Φ : Ω → G . Given f as above one verifies that

Φ : Ω → G, Φ
(
i(g, x)

)
= f (x)π(g)−1

is G × G-equivariant.
For the converse direction, suppose Φ : Ω → G is a tautening map. Thus,

g1Φ(g0, x)g−1
2 = Φ

(
(g1, g2)(g0, x)

)
= Φ

(
g2g0α(g1, x)−1, g1 . x

)
.

For μ-a.e. x ∈ X and a.e. g ∈ G the value of Φ(g,x)g is constant f (x). If we
substitute g0 = g1 = g and g2 = gα(g, x)g−1 in the above identity, then we
obtain α(g, x) = f (g . x)−1gf (x). �
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Lemma A.5 Let G be a unimodular lcsc group, G be a Polish group,
π : G → G a continuous homomorphism. Then G is (p-)taut, that is every

(p-integrable) (G,G)-coupling is taut relative to π , iff every ergodic (p-

integrable) (G,G)-coupling is taut relative to π .

Proof We give the proof in the p-integrable case, the case without the inte-
grability condition being simpler. We assume that every ergodic p-integrable
(G,G)-coupling is taut relative to π and let (Ω,m) be an arbitrary
p-integrable coupling. We fix a fundamental domain (X,μ) for the second G

action such that the associated cocycle α : G × X → G is p-integrable.
Let μ =

∫
μt dη(t) be the G-ergodic decomposition of (X,μ). By [15,

Lemma 2.2] it corresponds to the (G × G)-ergodic decomposition of (Ω,m)

into ergodic couplings (Ω,mt ), so that m =
∫

mt dη(t).
Let |_| : G → N be the length function associated to some word-metric

on G. The p-integrability of α means that
∫ ∫

X

∣∣α(g, x)
∣∣p dμt (x) dη(t) =

∫

X

∣∣α(g, x)
∣∣p dμ(x) < ∞

for every g ∈ G. By Fubini’s theorem
∫
X

|α(g, x)|p dμt (x) < ∞ for η-a.e. t .
Hence (Ω,mt ) is p-integrable for η-a.e. mt , and in particular it is taut relative
to π , by our assumption. It follows by Lemma A.4 that the cocycle π ◦ α is
conjugate to the constant cocycle π over η-a.e. (X,μt). Then by [13, Corol-
lary 3.6]10 π ◦ α is conjugate to π over (X,μ). Again, by Lemma A.4 we
conclude that (Ω,m) is taut relative to π . �

A.4 Strong ICC property

Lemma A.6 Let G be a unimodular lcsc group, G a Polish group, π : G → G

a continuous homomorphism. Let Γ < G be a lattice. Then G is strongly ICC

relative to π(G) if and only if it is strongly ICC relative to π(Γ ).

Proof Clearly if G is strongly ICC relative to π(Γ ) then it is also strongly
ICC relative to π(G). The reverse implication follows by averaging a π(Γ )

invariant measure over G/Γ . �

Lemma A.7 Let G be a unimodular lcsc group, G a Polish group, π : G → G

a continuous homomorphism. Suppose that G is not strongly ICC relative to

π(G). Then there is a (G,G)-coupling (Ω,m) with two distinct tautening

maps to G .

10The target G is assumed to be locally compact in this reference but the proof therein works
the same for a Polish group G .
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Proof Let μ be a Borel probability measure on G invariant under conjuga-
tions by π(G). Consider Ω = G × G with the measure m = mG × μ where
mG denotes the Haar measure, and measure-preserving G × G-action

(g1, g2) : (g, x) 
→
(
g1gg−1

2 , π(g2) x π(g2)
−1).

This is clearly a (G,G)-coupling and the following measurable maps Φi :
Ω → G , i ∈ {1,2}, are G × G-equivariant: Φ1(g, x) = π(g) and Φ2(g, x) =
π(g) · x. Note that Φ1 = Φ2 on a conull set iff μ = δe. �

Lemma A.8 Let G be a unimodular lcsc group and G a Polish group. Assume

that G is strongly ICC relative to π(G). Let (Ω,m) be a (G,G)-coupling.
Then:

(1) There is at most one tautening map Φ : Ω → G .
(2) Let F : (Ω,m) → (Ω0,m0) be a morphism of (G,G)-couplings and sup-

pose that there exists a tautening map Φ : Ω → G . Then it descends to

Ω0, i.e., Φ = Φ0 ◦ F for a unique tautening map Φ0 : Ω0 → G .
(3) If Γ1,Γ2 < G are lattices, then Φ : Ω → G is unique as a Γ1 × Γ2-

equivariant map.
(4) If Γ1,Γ2 < G are lattices, and (Ω,m) admits a Γ1 ×Γ2-equivariant map

Φ : Ω → G , then Φ is G × G-equivariant.
(5) If η : Ω → Prob(G), ω 
→ ηω, is a measurable G × G-equivariant map

to the space of Borel probability measures on G endowed with the weak

topology, then it takes values in Dirac measures: We have ηω = δΦ(ω),
where Φ : Ω → G is the unique tautening map.

Proof We start from the last claim and deduce the other ones from it.
(5). Given an equivariant map η : Ω → Prob(G) consider the convolution

νω = η̌ω ∗ ηω,

namely the image of ηω × ηω under the map (a, b) 
→ a−1 · b. Then

ν(g,h)ω = νπ(g)
ω (g,h ∈ G),

where the latter denotes the push-forward of νω under the conjugation

a 
→ aπ(g) = π(g)−1aπ(g).

In particular, the map ω 
→ νω is invariant under the action of the second
G-factor. Therefore νω descends to a measurable map ν̃ : Ω/G → Prob(G),
satisfying

ν̃g.x = ν̃
π(g)
x (x ∈ X = Ω/G, g ∈ G).
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Here we identify Ω/G with a finite measure space (X,μ) as in (1.1). Con-
sider the center of mass

ν̄ = 1

μ(X)

∫

X

ν̃x dμ(x).

It is a probability measure on G , which is invariant under conjugations. By the
strong ICC property relative to π(G) we get ν̄ = δe. Since δe is an extremal
point of Prob(G), it follows that m-a.e. ν(ω) = δe. This implies that ηω =
δΦ(ω) for some measurable Φ : Ω → G . The latter is automatically G × G-
equivariant.

(1). If Φ1,Φ2 : Ω → G are tautening maps, then ηω = 1
2(δΦ1(ω) + δΦ2(ω))

is an equivariant map Ω → Prob(G). By (5) it takes values in Dirac measures,
which is equivalent to the m-a.e. equality Φ1 = Φ2.

(2). Disintegration of m with respect to m0 gives a G × G-equivariant
measurable map Ω0 → M(Ω), ω 
→ mω0 , to the space of finite measures
on Ω . Then the map η : Ω0 → Prob(G), given by

ηω0 = ‖mω0‖−1 · Φ∗(mω0)

is G × G-equivariant. Hence by (5), ηω0 = δΦ0(ω0) for the unique tautening
map Φ0 : Ω0 → G . The relation Φ = Φ0 ◦ F follows from the fact that Dirac
measures are extremal.

(3) follows from (4) and (1).
(4). The claim is equivalent to: For m-a.e. ω ∈ Ω the map Fω : G×G → G

with

Fω(g1, g2) = π(g1)
−1 Φ

(
(g1, g2)ω

)
π(g2)

is mG ×mG-a.e. constant Φ0(ω). Note that the family {Fω} has the following
equivariance property: For g1, g2, h1, h2 ∈ G we have

F(h1,h2)ω(g1, g2) = π(g1)
−1Φ

(
(g1h1, g2h2)ω

)
π(g2)

= π(h)−1
1 Fω(g1h1, g2h2)π(h2).

Since Φ is Γ1 × Γ2-equivariant, for m-a.e. ω ∈ Ω the map Fω descends to
G/Γ1 × G/Γ2. Let ηω ∈ Prob(G) denote the distribution of Fω(·, ·) over the
probability space G/Γ1 × G/Γ2, that is, for a Borel subset E ⊂ G

ηω(E) = mG/Γ1 × mG/Γ2

{
(g1, g2) | Fω(g1, g2) ∈ E

}
.

Since this measure is invariant under translations by G×G, it follows that ηω

is a G × G-equivariant maps Ω → Prob(G). By (5) one has ηω = δf (ω) for
some measurable G × G-equivariant map f : Ω → G . Hence Fω(g1, g2) =
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f (ω) for a.e. g1, g2 ∈ G; it follows that

Φ
(
(g1, g2)ω

)
= π(g1)Φ(ω)π(g2)

−1 (A.3)

holds for mG × mG × m-a.e. (g1, g2,ω). �

Corollary A.9 Let π : G → G be as above and assume that G is strongly

ICC relative to π(G). Then the collection of all (G,G)-couplings which are

taut relative to π : G → G is closed under the operations of taking the dual,
compositions, quotients and extensions.

Proof The uniqueness of tautening maps follow from the relative strong ICC
property (Lemma A.8.(1)). Hence we focus on the existence of such maps.

Let Φ : Ω → G be a tautening map. Then Ψ (ω∗) = Φ(ω)−1 is a tautening
map Ω∗ → G .

Let Φi : Ωi → G , i = 1,2, be tautening maps. Then Ψ ([ω1,ω2]) = Φ(ω1) ·
Φ(ω2) is a tautening map Ω1 ×G Ω2 → G .

If F : (Ω1,m1) → (Ω2,m2) is a quotient map and Φ1 : Ω1 → G is a
tautening map, then, by Lemma A.8.(2), Φ1 factors as Φ1 = Φ2 ◦ F for
a tautening map Φ2 : Ω2 → G . On the other hand, given a tautening map
Φ2 : Ω2 → G , the map Φ1 = Φ2 ◦ F is tautening for Ω1. �

Appendix B: Bounded cohomology

Our background references for bounded cohomology, especially for the func-
torial approach to it, are [6, 41]. We summarize what we need from Burger-
Monod’s theory of bounded cohomology. Since we restrict to discrete groups,
some results we quote from this theory already go back to Ivanov [31].

B.1 Banach modules

All Banach spaces are over the field R of real numbers. By the dual of a Ba-
nach space we understand the normed topological dual. The dual of a Banach
space E is denoted by E∗. Let Γ be a discrete and countable group. A Ba-

nach Γ -module is a Banach space E endowed with a group homomorphism
π from Γ into the group of isometric linear automorphisms of E. We use the
module notation γ · e = π(γ )(e) or just γ e = π(γ )(e) for γ ∈ Γ and e ∈ E

whenever the action is clear from the context. The submodule of Γ -invariant
elements is denoted by EΓ . Note that EΓ ⊂ E is closed.

If E and F are Banach Γ -modules, a Γ -morphism E → F is a Γ -
equivariant continuous linear map. The space B(E,F ) of continuous, linear
maps E → F is endowed with a natural Banach Γ -module structure via

(γ · f )(e) = γf
(
γ −1e

)
. (B.1)
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The contragredient Banach Γ -module structure E♯ associated to E is by def-
inition B(E,R) = E∗ with the Γ -action (B.1). A coefficient Γ -module is a
Banach Γ -module E contragredient to some separable continuous Banach
Γ -module denoted by E♭. The choice of E♭ is part of the data. The specific
choice of E♭ defines a weak-∗ topology on E. The only examples that appear
in this paper are E = L∞(X,μ) with E♭ = L1(X,μ) and E = E♭ = R.

For a coefficient Γ -module E let Ck
b(Γ,E) be the Banach Γ -module

L∞(Γ k+1,E) consisting of bounded maps from Γ k+1 to E endowed with
the supremum norm and the Γ -action:

(γ · f )(γ0, . . . , γk) = γ · f
(
γ −1γ0, . . . , γ

−1γk

)
. (B.2)

For a coefficient Γ -module E and a standard Borel Γ -space S with quasi-
invariant measure let L∞

w∗(S,E) be the space of weak-∗-measurable essen-
tially bounded maps from S to E, where maps are identified if they only
differ on a null set. The space L∞

w∗(S,E) is endowed with the essential supre-
mum norm and the Γ -action (B.2). For a measurable space X the Banach
space B∞(X,E) is the space of weak-∗-measurable bounded maps from X

to E endowed with supremum norm [4, Sect. 2] and the Γ -action (B.2).

B.2 Injective resolutions

Let Γ be a discrete group and E be a Banach Γ -module. The sequence of
Banach Γ -modules Ck

b(Γ,E), k ≥ 0, becomes a chain complex of Banach
Γ -modules via the standard homogeneous coboundary operator

d(f )(γ0, . . . , γk) =
k∑

i≥0

(−1)if (γ0, . . . , γ̂i, . . . , γk). (B.3)

The bounded cohomology H•
b(Γ,E) of Γ with coefficients E is the co-

homology of the complex of Γ -invariants C•
b(Γ,E)Γ . The bounded coho-

mology H•
b(Γ,E) inherits a semi-norm from C•

b(Γ,E): The (semi-)norm of
an element x ∈ Hk

b(Γ,E) is the infimum of the norms of all cocycles in the
cohomology class x.

Next we briefly recall the functorial approach to bounded cohomology
as introduced by Ivanov [31] for discrete groups and further developed by
Burger-Monod [6, 41]. We refer for the definition of relative injectivity of a
Banach Γ -module to [41, Definition 4.1.2 on p. 32]. A strong resolution E•

of E is a resolution, i.e. an acyclic complex,

0 → E → E0 → E1 → E2 → ·· ·
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of Banach Γ -modules that has a chain contraction which is contracting with
respect to the Banach norms. The key to the functorial definition of bounded
cohomology are the following two theorems:

Theorem B.1 ([6, Proposition 1.5.2]) Let E and F be Banach Γ -modules.
Let E• be a strong resolution of E. Let F • be a resolution F by relatively

injective Banach Γ -modules. Then any Γ -morphism E → F extends to a Γ -

morphism of resolutions E• → F • which is unique up to Γ -homotopy. Hence

E → F induces functorially continuous linear maps H•(E•Γ ) → H•(F •Γ ).

Theorem B.2 ([41, Corollary 7.4.7 on p. 80]) Let E be a Banach Γ -module.
The complex E → C•

b(Γ,E) with E → C0
b(Γ,E) being the inclusion of con-

stant functions is a strong, relatively injective resolution.

For a coefficient Γ -module, a measurable space X with measurable Γ -
action, and a standard Borel Γ -space S with quasi-invariant measure we ob-
tain chain complexes B∞(X•+1,E) and Lw∗(S•+1,E) of Banach Γ -modules
via the standard homogeneous coboundary operators (similar as in (B.3)).

The following result is important for expressing induced maps in bounded
cohomology in terms of boundary maps [4].

Proposition B.3 ([4, Proposition 2.1]) Let E be a coefficient Γ -module. Let

X be a measurable space with measurable Γ -action. The complex E →
B∞(X•+1,E) with E → B∞(X,E) being the inclusion of constant functions

is a strong resolution of E.

The next theorem is one of the main results of the functorial approach to
bounded cohomology by Burger-Monod:

Theorem B.4 ([6, Corollary 2.3.2, 41, Theorem 7.5.3 on p. 83]) Let S be a

regular Γ -space and be E a coefficient Γ -module. Then E → Lw∗(S•+1,E)

with E → Lw∗(S•+1,E) being the inclusion of constant functions is a strong

resolution. If, in addition, S is amenable in the sense of Zimmer [41, Defi-

nition 5.3.1], then each Lw∗(Sk+1,E) is relatively injective, and according

to Theorem B.1 the cohomology groups H•(Lw∗(S•+1,E)Γ ) are canonically

isomorphic to H•
b(Γ,E).

Definition B.5 Let S be a standard Borel Γ -space with a quasi-invariant
probability measure μ. Let E be a coefficient Γ -module. The Poisson trans-

form PT• : Lw∗(S•+1,E) → C•
b(Γ,E) is the Γ -morphism of chain com-

plexes defined by

PTk(f )(γ0, . . . , γk) =
∫

Sk+1
f (γ0s0, . . . , γksk) dμ(s0) · · ·dμ(sk).
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If S is amenable, then the Poisson transform induces a canonical isomor-
phism in cohomology (Theorem B.4). By the same theorem this isomorphism
does not depend on the choice of μ within a given measure class.
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