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The availability of a tunable delay line with a chip-size footprint is a crucial step towards the 

full implementation of integrated microwave photonic signal processors. Achieving a large 

and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an 

appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-

long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters 

that can be tuned over the 0–50-GHz spectral band. The waveguide is capable of generating 

a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the 

delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully 

integrated device is feasible, also featuring more complex and elaborate filter functions. 
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M 
icrowave photonics (MWPs)1–3, which brings together the 
worlds of radiofrequency engineering and optoelectronics, 
has attracted great interest from both the research commu-

nity and the commercial sector over the past 30 years, and is set to 
have a bright future4. Its bene�t stems from the fact that it enables 
the realization of key functionalities in microwave systems that are 
either complex or even not directly possible in the radio frequency 
(RF) domain. An important example is microwave signal �ltering, 
which is ubiquitous in communications, radio-over-�bre, radar, radio 
astronomy and digital satellite communication systems5. Agility, 
recon�guratibily and tunability are highly desirable features, which 
are, however, not straightforward to implement using traditional 
electronic circuitry, for example, microstrip6 or coplanar waveguide 
lines7, substrate-integrated waveguides8 and superconducting  
circuits9. To this end, approaches based on ferroelectric materials are 
being investigated, such as barium strontium titanate10, semicon-
ductor varactors diodes6, metamaterials7, micro-electro-mechanical  
systems8 and SiGe BiCMOS-compatible structures11.

However, only MWP approaches have provided, to date, promis-
ing results in terms of tunability, recon�gurability and broadband 
operation. MWP signal processors reported so far12–16 have relied 
on discrete optoelectronic devices and standard optical �bre delay 
lines, and components leading to bulky, expensive and power- 
consuming architectures. Typical delay line footprints range from 
several tens of centimetres when using �bre Bragg gratings (FBGs) 
to a few kilometres when using standard optical �bres.

A solution to the above limitations of MWP �lters is contingent 
on the possibility of incorporating this functionality into an applica-
tion-speci�c photonic integrated circuit, which makes the former 
approaches based on extended delay lines inapplicable. Preliminary 
e�orts towards integration have relied on resonant delay lines pro-
vided by ring cavities and coupled resonant optical waveguides17–20. 
�ese approaches su�er from an intrinsic trade-o� between disper-
sion and bandwidth, preventing broadband operation. �us, the 
cornerstone towards the integration of MWP �lters resides in the 
availability of an integrated delay line, suitably designed to operate 
with MWP signals and providing enough dispersion. In this context,  
photonic crystal (PhC) waveguides are potential candidates, as the 
dispersion pro�le can be tailored to an extent that is no match with 
other photonic structures21,22.

In this work, we provide the �rst ever demonstration of tunable 
and recon�gurable MWP �lters based on a 1.5-mm-long GaInP/
GaAs highly dispersive PhC waveguide delay line optimized for RF 
signals. �e reduced waveguide loss in the slow light regime, owing 
to both design and fabrication optimization, is crucial to achieve the 
large dispersion values required for the integrated delay line. �e 
salient features include: notch and band-pass operation; a footprint 
reduced by several orders of magnitude compared to �lters based 
on FBG or �bre delay lines; broadband operation up to 50 GHz; and 
tunable free spectral ranges over 70 GHz. In addition, there is clear 
potential for the improvement of the selectivity, the main to second-
ary side-lobe (MSSL) ratio and the Q factor, thereby leading to high-
performance MWP �ltering owing to compatibility with sources of 
optical frequency combs23.

Results
Basic concept. �e most powerful and versatile approach for the 
implementation of MWP �lters is that based on incoherent discrete 
signal processing24. In particular, �nite impulse response5 �lters 
combine at their output a �nite set of delayed and weighted replicas 
or taps of the input optical intensity signal (a RF-modulated optical 
carrier)5. �e usual implementation of this concept in the context 
of MWPs can follow two approaches as shown in Fig. 1. In the 
�rst one (Fig. 1a), the delays set to multiples of T are obtained, for 
instance, by means of a set of N non-dispersive optical �bre coils 
where the length of the �bre in the k-th tap is c(k − 1)T/n, where 

c is the light velocity in the vacuum and n is the refractive index. 
�is simple scheme does not allow tuning, as this would require 
changing the value of T. An alternative approach (Fig. 1b) is based 
on the combination of a dispersive delay line and di�erent optical 
carriers. Here the optical sources emit at di�erent wavelengths so 
the spectral separation of a pair of consecutive modes implementing 
consecutive taps is ∆l , and the basic delay is given by T DL= ∆l,  
where L represents the length of the dispersive element and D its 
dispersion parameter. �us, the value of the basic delay T is changed 
by tuning the wavelength separation among the carriers, thereby  
allowing tunability25. Although in the �rst case the intensity or 
weight ak of the k-th tap can be changed by inserting loss/gain 
devices in the �bre coils, with the second approach, ak is readily 
adjusted by changing the optical power emitted by the optical 
sources12,25. In this work, we focus on the approach of Fig. 1b, as it 
is more �exible.

Implementation of the PhC delay line. A PhC waveguide results 
from a missing line in a regular lattice of holes on a self-standing 
dielectric (here GaInP) slab, as shown in Fig. 2a,b. Owing to the 
inherently complex waveguiding mechanisms originating from 
Bragg scattering in the photonic lattice, the dispersion of such 
waveguides departs from that of their more conventional counter-
parts, such as, for instance, rib-loaded structures. A decade ago, it 
was demonstrated that in a PhC waveguide the group velocity might 
vary from c/5 up to c/90, thereby laying the foundations of a chip-
sized optical delay-line21. Since then, PhC waveguides have been 
intensively investigated for generating slow-light26.

Propagation loss in PhC waveguides can be as low as a few 
dB cm − 1 (ref. 27). However, it systematically increases when the 
group velocity is reduced, because of the enhanced impact of the 
fabrication imperfections, mainly roughness at the etched interfaces. 
�is has been preventing the achievement of large optical delays with 
moderate attenuation and, thereby, practical use for implement-
ing functions in the domain of optical signal processing until very 
recently28. By engineering the �eld distribution of the propagation 
mode, O’Faolain et al.29 have demonstrated a substantial reduction 
of backscattering and an improvement of the transmission of modes 
with group velocity smaller than c/30 in silicon-based PhCs.

It has been pointed out29 that the attenuation (dB) per delay 
(ns) is more appropriate than attenuation per distance (dB cm − 1), 
when referring to delay lines. In this respect, a remarkable �gure of 
25 dB ns − 1 has been reported29. Still, here it is implicitly assumed 
that this �gure, measured in short (a few hundreds of micrometres) 
waveguides, can be extrapolated to any length. Indeed, the the-
ory supports this claim for single mode, missing line defect PhC 
waveguides, so long the disorder is assumed random and with the 
same statistics all long the waveguide30. It must also be pointed out 
that the attenuation (measured or calculated) is de�ned as an aver-
age over a large number. �ese points must be considered when 
considering the actual use of these waveguides in applications.

For application in MWPs, a tunable delay as large as 100 ps is 
needed, which implies the use of a long waveguide, for example, 
in the millimetre range. �us, the probability of multiple coherent 
scattering events is much stronger relative to a shorter (for example, 
100 µm) waveguide that is operated at the same group velocity. �is 
results in distortion of the transmission spectrum31,32, even leading 
to sharp resonant peaks, even when the group index (ng = c/vg) is 
relatively small (~15). �is is even more detrimental for applications 
than the mere (averaged) value of the attenuation.

Furthermore, the fabrication of long PhC waveguides implies a 
mechanical displacement of the sample; each time the maximum 
writing area of the electron beam system (typically a few hundreds 
of micrometres) is reached. �at might lead to ‘dislocations’ (simi-
larly to crystals) in the PhC pattern, thereby altering the statistics of 
the disorder along the waveguide.
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For all these reasons, the suitability of a PhC waveguide as a delay 
line for MWPs must be assessed under more realistic conditions, as 
follows. First, the total insertion losses, including input and output 
coupling, must be considered relative to the actual time delay (for 
example, 100 ps), and not extrapolated. Second, the delay should be 
continuously tunable, for example, transmission should not change 
abruptly when changing the operating point of the device. Finally, 
the signal distortion, due to coherent multiple scattering, must be 
taken into account by characterizing the sample with a signal with 
realistic bandwidth.

Here, we report the design, fabrication and characterization of 
an optical delay line based on a PhC waveguide that meets these 
requirements. �e use of the PhC waveguide was reported for the 
�rst time33 using a simple missing line defect PhC waveguide. 
�e delay achieved there was a few tens of picoseconds, strongly 
distorted by Fabry–Perot interference due to re�ections at the  
as-cleaved waveguide ends.

�e waveguide design is characterized by an anti-symmetric  
shi� of the �rst row of holes34–36, as indicated in Fig. 2c (see 
details in Methods). �is modi�cation of the waveguide symmetry  
induces a coupling between the even and odd mode resulting in a 

‘hump’-shaped dependence of the group index on the wavelength 
(see Fig. 2d). Details are discussed in Colman et al.36 �e group 
delays for both TE (de�ned as the E �eld parallel to the mem-
brane and perpendicular to the direction of propagation) and TM 
modes have been measured with an interferometric technique (see  
Methods). �e calculated dispersion for both TE and TM modes is 
also plotted, with excellent agreement.

�e fabricated device is 1.5 mm long and contains mode adapters37,  
as shown in Fig. 2a, owing to which the total insertion loss (mini-
mum value at low group index) is reduced to about 7 dB (from �bre 
to �bre, including propagation in the waveguide and �bre/PhC cou-
pling). In addition, undesirable Fabry–Perot fringes in the trans-
mission spectra are removed, as apparent in Fig. 3a. �e residual 
modulation results from multiple coherent scattering31. �e cor-
responding group index is also plotted in the same �gure. �e 
important point here is the moderate (3.5 dB) optical transmission  
penalty, as the group velocity is reduced to c/14. �us, a delay of 
70 ps is achieved with total insertion loss 10 dB from �bre to �bre.

We point out that not only the improvement of the fabrication 
process is important but also the choice of the waveguide design 
has a role. Figure 3b represents the transmission plotted against the 
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Figure 1 | General schematics of a MWP multi-tap filter. (a) Traditional approach based on a single optical source in combination with multiple non-

dispersive short fibre coils. The basic delay T is implemented by means of a dispersionless fibre coil of length cT/n, where c stands for the speed of light 

in vacuum and n is the refractive index of the core. The RF-modulated optical signal is divided by a 1×N coupler into N taps or samples. The weight of 

each sample can be changed by means of an individual attenuator or amplifier. For instance, the k-th tap is weighted in power by the attenuator/amplifier 

providing a value of ak and it is delayed by (k − 1)T by means of a fibre coil of length (k − 1)cT/n. The signal samples are combined by means of a N×1 

coupler and fed to the photodetector. The boxes connected with green arrows show the time and frequency domain structure of the signals at selected 

points of the layout. (b) A more compact approach based on a multi-wavelength optical source together with a single dispersive element. The optical 

sources emit at different wavelengths so the spectral separation of a pair of consecutive modes implementing consecutive taps is ∆l , and their basic 

delay is given by T DL= ∆l  where L represents the length of the dispersive element and D its dispersion parameter. Here, the intensity or weight ak of the  

k-th tap can be adjusted by changing the optical power emitted by the optical sources. The boxes connected with black arrows show the time and 

frequency domain structure of the signals at selected points of the layout.
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group index. Two samples, fabricated within the same processing 
batch and only di�ering by the design, are compared. It is apparent 
that the design used for the delay line performs much better than 
the older design, represented with the red pattern.

Consistently with the discussion above, we have assessed the 
performance of the PhC waveguide as a delay-line for microwave 
signals by measuring both the RF power and delay as a function 
of the wavelength of the optical carrier for the TE polarization 
mode (see Methods). �e baseline used for the normalization was 
obtained by measuring the transfer function of the microwave 
link when the PhC was by-passed. �e delay, which is de�ned as 
τRF = dk/dω and is plotted in Fig. 3c, involves the measurement of 
the microwave signal phase. Consistent with the interferometric 
measurements in Fig. 3a, a delay increase of 70 ps was achieved 
by sweeping the carrier wavelength from 1,532 to 1,552 nm. 
Besides, a �at response was obtained over the entire (0–50 GHz) 
RF frequency band of the microwave link, whatever the delay. �e 
microwave bandwidth was limited by the measurement equipment 
(the modulator, detector and vector network analyzer (VNA)). 
�ereby, no appreciable signal degradation was introduced by the 
PhC waveguide.

�e amplitude transfer function is shown in Fig. 3d. A power 
variation of 7 dB, corresponding to a 3.5-dB change of the opti-
cal transmission, was experienced by the RF signal while tuning 
the delay by 70 ps, which is in perfect agreement with the optical 
transmission measurements described above. �is �gure guarantees 
a range of incremental delays between two di�erent wavelengths, 
which is enough for �ltering signals in the 10–100-GHz band. From 
the application standpoint, this change in amplitude, which can  
be easily compensated, is relatively small compared with other  
photonic approaches, particularly those based on resonant-type 
schemes. �is point has considerable practical implications. �e 
large bandwidth handling capability is a clear advantage. �is  
large electrical bandwidth is still a small fraction of the optical 
transmission band (20 nm, hence about 3 THz), which explains why 
distortion can be reduced to a manageable level.

Demonstration of �ltering in the microwave domain. In our  
simplest implementation of the �lter on a PhC chip, we consider 
a two-tap MWP notch �lter exploiting the group index disparity  

between the TE and TM modes. �e principle is illustrated in  
Fig. 4a. �e key point is that the dispersion of the TM is negligi-
ble when compared with the TE mode. �erefore, when the optical 
carrier is coupled to the two polarization modes, the modulation 
envelope experiences a relative delay between the TE and TM taps, 
which is controlled by the carrier wavelength. In addition, by prop-
erly adjusting the polarization state of the input optical signal, the 
relative weight of the two taps is also controlled.

�e generic layout of this polarization multiplexing PhC-based 
MWP �lter is illustrated in Fig. 4b. �e optical carrier, modulated by 
the microwave signal si(t), is polarized to be coupled into both the TE 
and TM modes of the PhC waveguide. �e output electrical signal 
so(t), a�er propagation through the waveguide and photodetection, 
results from the incoherent superposition of the intensities of the 
TE and TM modes. �e contribution carried by the TM mode expe-
riences a group delay τTM = L×ng,TM/c (L is waveguide length), with 
ng,TM close to the e�ective index of the PhC slab, roughly ~2, weakly 
dependent on the wavelength of the optical carrier. Conversely, the 
signal carried by the TE mode is delayed by τTE = L×ng,TE(λ)/c, with 
ng,TE spanning between 5 and 20 (Fig. 2d).

�e �ltered electrical signal at the output of the photodiode  
is then:

s t s t s to i i( ) ( ) ( ),= − + −t tTM TE

which corresponds, in the microwave frequency domain, to the  
�lter transfer function H(f ):

H f e
j

f

( ) = +
− 





1

2p
FSR

being f the microwave frequency and FSR the free spectral range  
of the �lter, equal to c/(L(ng,TE(λ) − ng,TM)). By combining these 
equations with the calculated and measured dispersion curves for 
the TE and TM modes in Fig. 2d, the expected response of the �lter 
is readily obtained (see Fig. 4c).

Experimental results are in good agreement with the theory, par-
ticularly when the delay-line is operated with the group index below 
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10 (blue and green curves in Fig. 4c). Besides, it must be pointed 
out that, whatever the target frequency of the �lter, a notch depth 
of 50 dB is achieved. �is is a clear bene�t of the integrated nature 

of the delay line. A small deviation from the theory is observed at 
larger frequencies, corresponding to a decrease of the transmission 
minimum to 30 dB. �is is related to the residual distortion of the 
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transfer function (Fig. 2d), which makes it di�cult to adjust the tap 
weights perfectly all over the RF domain. More precisely; if α is the 
ratio of the electrical power between the taps, the �lter extinction 
ratio ER, or notch depth, is given by ER = + −( ) /( )1 12 2a a . A 30-dB 
notch depth thus corresponds to a 0.6-dB RF power �uctuation in 
the RF frequency span, which is precisely what is measured from 
Fig. 2d.

A more powerful con�guration for band-pass �ltering, in terms of 
the quality (Q)-factor and design �exibility, entails a larger number 
of taps. �e straightforward implementation, which we have chosen 
here, consists of a single dispersive channel and multi-carriers opti-
cal source (for example, a comb or wavelength division multiplexing 
source), all modulated by the same microwave signal. �is concept 
is illustrated in Fig. 5a and it was implemented using a long chirped 
FBG25 with maximum length about 40 cm (ref. 12). Equivalent con-
�gurations use dispersive optical �bre links (DOFL), with lengths 
up to 20 km (ref. 38), or dispersion-compensating �bres (DCFs)23.

�e same concept is here implemented by replacing the FBG/
DOFL/DCF with an integrated PhC dispersive waveguide, thereby 
reducing the footprint of the key optical component by two orders of 
magnitude as compared with the FBG and six orders of magnitude 
as compared with the DOFL case. �e layout of the four-tap PhC-
based MWP �lter (see Fig. 5b) consists of four tunable lasers fol-
lowed by a common modulator. �e four replicas of the microwave 
signal are coupled into the TE mode of the PhC waveguide and, 
upon propagation, experience di�erent delays, set to form uniform 
time intervals ∆τ by a suitable choice of the carrier wavelengths. As 
the carriers are not correlated together, the detected electrical signal 
is the incoherent sum of the optical intensities of the four paths and 
the corresponding transfer function in the microwave �lter is:

H f a jk
f

k
k

( ) exp= − 



=

∑ 2

0

3 p
FSR

where FSR = 1/∆τ, and ak are the tap weights, adjusted by control-
ling the relative intensities of the tunable lasers. In the experimental  

(3)(3)

demonstration reported here, all the �lter taps ak were set to the 
same power level (that is, uniformly apodized �lter), but variation of 
coe�cients, leading to transfer function recon�guration, is straight-
forward5. Hence, with a single tunable delay line with a maximum 
delay τmax and N taps, the FSR can be tuned from (N − 1)/τmax to 
in�nity. �e experimental result is reported in Fig. 5c and it is in 
very good agreement with the model. As we limited the group delay 
to 80 ps, spectral range of the �lter is adjusted from 40 to 70 GHz. 
�e maximum extinction ratio is 50 dB, whereas the MSSL ratio is 
about 10 dB. �is �gure can be improved by increasing the number 
of channels; however, at the expense of the lower bound of the tun-
ing range. �e distortion of the RF signal is very low over a broad 
spectral range (0–50 GHz).

Towards integration. With the demonstration of the suitabil-
ity of a PhC waveguide as a delay line for microwave devices, all  
the key functionalities of the experimental setup described Fig. 5 
could now be assembled in an integrated device. Indeed, optical 
modulators, photodetectors, splitters/combiners and laser sources 
are now available in integrated photonics platforms. In particu-
lar, integrated tunable laser sources (TLS) have recently been 
demonstrated on a silicon platform, through hybrid integration,  
which exhibit 45 nm tuning range around 1.5 µm. Alternatively, 
a similar tunability has been achieved on an InP platform with 
13 dBm output power when followed by a co-integrated semicon-
ductor optical ampli�er (SOA)39. High-speed intensity modula-
tion on a silicon platform has also been extensively studied in the  
past years and is still a very active topic. Modulation of 40 Gb s − 1  
has recently been achieved within the Helios project consor-
tium with a Mach–Zehnder type device40. �e electro-absorption  
modulators in germanium PIN on SOI (silicon on insulator) also 
exhibit interesting features of high bandwidth (up to 30 GHz), small 
footprint (a few tens of microns in length), low insertion loss (less 
than 5 dB) and extinction ratio up to 7 dB (ref. 41). Fast (bandwidth 
>40 Gb s − 1) and e�cient (responsivity = 0.8A W − 1) photodetectors 
have also been demonstrated on the same platform (germanium  
on SOI)42.
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Figure 5 | Multi-wavelengh-based four-tap MWP filter. (a) The delay profiles, based on the experimental results obtained for the TE mode, for the TE and 

TM modes as a function of the wavelength for illustrative purposes of the filter operation. The green arrows show the spectral placement of the carriers 

and modulation sidebands (at 50 GHz) for all the four taps within the TE delay profile. This wavelength set is related to the green markers in figure (c), and 

corresponds to a constant group delay of 20 ps from tap to tap, which means a free spectral range of 50 GHz in the green filter transfer function in (c).  

(b) Experimental setup of the multi-wavelength filter. Four TLS (λ0 to λ3) are combined and intensity modulated to carry the input electrical signal si(t). 

The four wavelengths are then coupled into the photonic crystal delay line, along the TE mode, the RF delay for each tap being therefore a function of the 

tap wavelength. The polarization controllers perform the same functions as in the case of a single optical source. A photodetector provides the output 

filtered electrical signal so(t). (c) Calculated (dashed lines) and measured (colored squares) results for the filter response with different spectral scenarios 

of the emission wavelengths. The experimental wavelengths sets are 1,530, 1,546.4, 1,550.4, 1,552.6 nm (blue), 1,541.5, 1,548.9, 1,551, 1,552.7 nm (green), 

1,545.2, 1,549.9, 1,551.2, 1,552.6 nm (red) and 1,546.8, 1,550.4, 1,551.5, 1,552.6 nm (cyan).
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�us, the availability of a low-loss and tunable delay line, provid-
ing a large RF bandwidth, as demonstrated here, would complete 
the toolbox for the full integration of a MWPs �lter. A possible 
layout representing the integrated counterpart of the experiment 
described above is shown in Fig. 6.

Beyond the issue of manufacturability, the prospective integrated 
device must be analyzed with respect to the expected performances, 
in particular the power budget of the entire microwave link. In a 
photonic microwave device, this scales as the square of the total 
optical losses and as the square of the e�ciency of the electro-optic 
intensity modulator. According to the literature, a 4:1 power com-
biner (for example, multimode interference coupler) and the inten-
sity modulation (including insertion losses and bias point losses) 
exhibit cumulated optical losses in the range of 8 dB43,44. Including 
the PhC delay line, one ends up with ~15 dB of total optical losses  
(a more accurate estimate must take into account the on-chip  
coupling loss, likely smaller than �bre-PhC insertion losses).

�us, considering an optical power of 10 dBm at the output of 
each of the TLS, the RF power budget of the device (that is, the ratio 
between output and input RF power) is approximately  − 45 dB. �is 
value is compatible with most practical system implementations.  
As a comparison, the power budget of a basic MWPs link (laser 
modulator �bre detector using discrete components) with 10 dBm 
optical power is already in the range of  − 25 dB.

Discussion
�e PhCs-based �lter is compared to other competing MWP imple-
mentations, as well as against purely electronic microwave devices. 
A summary of relevant results can be found in Table 1. First, a single 
PhC waveguide enables a very large operating bandwidth, mainly 
limited by the disorder-induced distortion of the transmission, the 
bandwidth of the photodetectors and group velocity dispersion. 
�e 50-GHz bandwidth reported here could be improved, through 
single-sideband modulation for instance. Although �lters based on 
stimulated Brillouin scattering can achieve similar bandwidths, the 
integration is not possible and the power consumption (inherent  
to the stimulated Brillouin scattering e�ect) is large45,46. Power  
consumption is also a concern for �lters based on SOAs47.

Because the proposed �lter is based on a dispersive delay line, its 
performance can be a�ected by the power fading e�ect if double-
sideband modulation is employed1–3. A straightforward measure to 
eliminate this limitation is to use single-sideband modulation1–3, 
which adds no signi�cant complexity to the modulator. However, 
even if double sideband modulation is employed, the fact that the 
delay line length L is very small and that the power fading e�ect 
penalty is more severe the higher the product of the dispersion D 
and L is makes it possible to observe no signi�cant penalty within 
the spectral range of interest. In our particular case, the power fad-
ing penalty was signi�cant only above 80 GHz, which was outside 
our measurement range.

�e hybrid integrated approach48 provides photodetector- 
limited bandwidth, combined with small footprint and very low 
loss. In addition, the tunability speed is very high. However, the 
tuning range is limited and the power consumption is not negligi-
ble as the structure integrates several active elements, such as SOAs. 
In terms of rejection level and bandpass/rejection bandwidth, the 
results reported here are still behind some of those achieved by 

Processing unit configuration:

Wavelengths: �
k

Powers: a
k

RF input

RF

output

Figure 6 | Layout of a fully integrated microwave photonics signal 

processor. The weighting coefficients ak of the impulse response of the 

processing unit are programmed through the relative power levels of 

the TLSs, whereas the selected wavelengths set the taps group delays 

τk, and hence the filter FSR. DL, photonic crystal delay line; IM, intensity 

modulator; PD, photodiode; Semiconductor optical amplifiers C, 4:1 optical 

combiner; TLS, tunable laser source. 

Table 1 | Comparison of the microwave filter with other technologies against the figures of merit.

Technology Filter type Bandpass/
rejected 

bandwidth 
(GHz)

Operational 
bandwidth 

(GHz)

Central 
frequency 

(GHz)

Size Insertion 
loss (dB)

Rejection 
level (dB)

Tunability 
speed

Tunability 
range (%)

Power 
consumption

PhC Bandpass/
Notch

8/1–2  > 40/PD 
and GVD 

limited

 > 40/PD 
and GVD 

limited

~mm 9  > 10/50 ms 100 —

SOA47 Notch 0.001 0.03 30 ~mm 10  > 30 ps 100 Medium
Brillouin45 Notch ~0.1 PD limited PD limited ~km fibre 0.5  > 30 µs 100 High
FBG51 Bandpass 0.5 20 6–7.5 ~cm 6  > 10 ms 70 —
Brillouin46 Bandpass 0.02 PD limited PD limited ~km fibre 0  > 30 µs 100 High
LCoS52 Bandpass 0.3  < 20 2–3 ~cm 1.75  > 30 s 25 —
Frequency 
comb23

Bandpass 0.17–0.36 10 (RF gen. 
limited)

5 ~km fibre 1  > 60 ns 100 —

SOI ring20 Notch 0.01 1 20 ~0.2 mm2 10  > 30 ms 77 —
SOI ring53 Notch 0.01 1 1.7 ~30 mm2 10  > 25 ms 100 —
Hybrid42 Bandpass 3–14 PD limited 9–37 few mm2 0  > 25 ps 58 Medium
MEMS8 Bandpass 0.06 0.6 1.2–1.6 ~20 cm2 4.1  > 15 ms 28 Low
MW* Bandpass 0.02 0.4 1.8–2.2 ~cm3 2  > 30 s 20 —
MW† Notch 0.015 1 3–4 ~cm3 0.5  > 40 s 29 —

*Data corresponds to a microwave tunable bandpass filter manufactured by Lorch operating in the 24–3,000-MHz range.

†Data corresponds to a microwave tunable notch filer manufactured by KL Microwave operating in the 3,000–4,000-MHz range.
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using discrete component technologies. However, there is no fun-
damental limit to the improvement of these �gures, rather, as the 
discrete �lter is inherently scalable, the compactness of PhCs is an 
obvious advantage.

In this implementation, the tuning speed depends on the opti-
cal source, which ultimately is limited by the carrier injection 
dynamics, namely in the nanosecond time scale. As 200 ns thermo- 
optical switching was demonstrated in PhC waveguides49, it is 
expected that our �lter could be operated with a �xed wavelength 
source and tuned within comparable time scales.

�e bandpass width of our four-tap PhC-based �lter is 8 GHz, 
which is adequate in the context of broadband signals processing, 
but could be improved depending on the number of taps. We point 
out that Supradeepa et al.23 demonstrated a MWP �lter based on a 
tailored optical comb source, combined with a DCF, with remark-
able fast and broad tuning, high degree of recon�gurability and 
selectivity, owing to the large number of optical carriers used. �e 
implementation of this design in our device is straightforward and 
would greatly bene�t from the small footprint of the PhC delay line. 
A fully integrated device could be feasible. However, a linear disper-
sion pro�le is required as the frequency combs are equally spaced 
in frequency. In our device, the dispersion is nearly linear between 
1,548 and 1,553 nm, with an average group velocity dispersion of 
~10 ps nm − 1. If the frequency comb is spaced by 0.4 nm (~50 GHz), 
12 optical carriers could be accommodated, resulting into a delay 
interval τ/(N–1) ≈4 ps, that is, the FSR is 250 GHz. A more appropriate  
design of the PhC delay line would improve this �gure.

Methods
Description of the figures of merit. In bandpass �lters, bandwidth is de�ned as 
the  − 3-dB or the full width half maximum of the passband, whereas for notch 
�lters it refers to the spectral width at the rejection level of 20 dB with respect to 
the maximum. �e operational bandwidth is de�ned as the spectral range within 
which the �lter response can be tuned (it may not necessarily be equal to the 
spectral period or FSR). �e central frequency refers, in the case of bandpass �lters, 
to the position of the �rst maxima without considering baseband, whereas in 
notch-type �lters, it corresponds to the frequency where the operational bandwidth 
centres. Size and insertion loss address here only the subsystem that enables �lter 
tunability, that is, the delay line in our PhC-based �lter implementation. In addi-
tion, insertion loss refers to the overall optical loss in MWP and electrical loss in 
MW �lters. �e rejection level indicates the MSSL ratio for bandpass �lters, while it 
addresses the transmission minimum in the notch-type �lters. �e tunability range 
accounts for the FSR in both bandpass and notch-type �lters. �e lowest timing 
scale to perform �lter tunability is given by the tunability speed. �e power con-
sumption only refers to the power required to operate the delay line. Here, ‘high’ 
indicates more than 100 mW, whereas ‘medium’ indicates a power consumption 
range in between 10 and 100 mW.

PhC waveguide fabrication. PhC waveguides were fabricated using a planar  
process. First, a 200-nm-thick mask of silica was deposited on a semiconductor  
structure containing a 180-nm-thick layer of InGaP grown by metal-organic 
chemical vapour deposition on GaAs. A poly(methyl methacrylate) (PMMA) resist 
was spun on it and exposed using e-beam writer. A�er etching of the silica mask, 
the III-V material was processed via inductively coupled plasma etching and �nally  
a self-standing membrane was obtained by wet etching of the underlying layer  
of GaAs. �e waveguide design is shown in Fig. 1c. �e lattice period a is 482 nm, 
whereas the radius of the holes is 0.26a. �e �rst row of holes exhibits a slightly 
smaller radius (0.25a) and is shi�ed on opposite directions along the waveguide 
axis by 0.15a.

Calculation of the PhC dispersion. We used our own implementation of the 3D 
�nite di�erences in time domain method with periodic boundary conditions; with 
x the propagation direction of the Bloch mode and a the period of the PhC lattice. 
�e size of the unit cell for the calculation was: a×20a×6a and the mesh resolution 
was down to a/20. �e estimated relative accuracy in the frequency was better  
than 1/1000.

PhC characterization. �e dispersion of the waveguide was measured using a TLS, 
which was swept over its entire spectral range (1,510–1,630 nm). �e signal was 
then split to build up a Mach–Zehnder interferometer (MZI), with one of the arms 
containing the PhC waveguide. �e two outputs of the MZI were fed to a balanced 
photodetectors (characterized by a trans-impedance gain of 105) and the di�eren-
tial signal was digitized with a 14-bit analog-to-digital converter. �e wavelength 

was monitored with a reference interferometer. �e resulting interferogram S(f), 
with f the optical frequency, was �ltered using a Gaussian window centred at fj  
and Fourier-transformed to obtain the time-resolved transmission Sj(t). �e group 
delay t(fj) is de�ned as the peak of Sj(t).

MWP link characterization. �e delay introduced by the PhC waveguide and 
the corresponding loss were measured in the RF domain by inserting the device 
into a MWP link. �e optical carrier of the MWP link was generated by a TLS. 
�e RF signal was fed into the link through the RF input of a 50-GHz bandwidth 
Mach–Zehnder electro-optic modulator (MZM), which modulates the optical 
carrier intensity. �e laser delivered 5 dBm optical power to the input of the MZM 
electro-optic modulator. Insertion losses of the MZM where 5 dB resulting in a  
0-dBm input power to the polarization controller deployed to adjust the polariza-
tion state at the input of the PhC waveguide. Lensed �bres were used for input  
and output optical coupling. A high-speed photodetector was followed by an RF 
ampli�er to compensate for the loss introduced by the MZM and the PhC device.

�e resulting MWP link was characterized as a two-port electrical component 
using a VNA whose output and input ports were, respectively, connected to the 
MZM RF input and the RF ampli�er output. �e S21 parameter measured by the 
VNA provided both the RF power and phase transfer function from 10 MHz to 
50 GHz. �e measurements given in Fig. 2c,d are referenced to a �rst acquisition 
performed at the lowest optical wavelength, corresponding to a fast propagation 
regime in the PhC waveguide.

MWP filters characterization. �e results for the two-tap �lter implementation 
shown in Fig. 4 were measured by deploying the same experimental setup used  
for the MWP link characterization. On the other hand, the output signal of four 
tunable lasers was optically coupled prior the MZM for obtaining the four-tap  
�lter response illustrated in Fig. 5. As the detuning is large with respect to the 
phase matching condition50, no signi�cant nonlinear e�ects were observed in  
the PhC waveguide. 
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