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Abstract. We extend integrable systems on quad-graphs, such as the Hirota equation and the

cross-ratio equation, to the noncommutative context, when the fields take values in an arbi-

trary associative algebra. We demonstrate that the three-dimensional consistency property

remains valid in this case. We derive the noncommutative zero curvature representations

for these systems, based on the latter property. Quantum systems with their quantum zero cur-

vature representations are particular cases of the general noncommutative ones.
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1. Introduction

The idea to use the ðdþ 1Þ-dimensional consistency (or compatibility) of the discrete

d-dimensional equations as the definition of their integrability was recently put for-

ward in [1, 3], (and independently in [15]). This definition, apart of being concep-

tually transparent, also has other important theoretical advantages. So, finding the

zero curvature representation for a given discrete system becomes an algorithmically

solvable problem (recall that normally this was considered as a transcendental task

whose successful solution is only possible with a large portion of luck in the guess-

work). Also, it was demonstrated in [1] that the consistency criterium can be success-

fully used to classify integrable systems within certain ansätze.

In this Letter we give a further application of the consistency approach: we show

that it works equally smoothly for noncommutative equations, where the participat-

ing fields live in an arbitrary associative (not necessary commutative) algebraA (over

the field K), and not just in C, as in [1, 3]. We do not develop the corresponding clas-

sification, but rather consider several important examples which generalize those that

have already appeared in various applications, such as the quantum Hirota equation

or in the quaternionic cross-ratio equation. It turns out that finding the zero curva-

ture representation in 2� 2 matrices with entries from A does not hinge on the par-

ticular algebra A or on prescribing some particular commutation rules for fields in

the neighboring vertices (like Weyl commutation relations in the traditional
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treatment of the quantum Hirota equation [8]). The fact that some commutation

relations are preserved by the evolution is thus conceptually separated from the

integrability.

2. Basic Setup

We start with a planar quad-graph D, i.e. a cell decomposition of a surface, with all

2-cells being quadrilaterals. The sets of the vertices, edges, and faces of D (i.e. of its

0-, 1-, and 2-cells) will be denoted by VðDÞ, EðDÞ, and FðDÞ, respectively. The quad-

graph D is supposed to carry a labelling, i.e. a function a on its edges which takes

equal values on any two opposite edges of any elementary quadrilateral. The fields

x 2 A are assigned to vertices of D. They take values in an arbitrary associative

(in general noncommutative) algebra A with unit over the field K.

Basic building blocks of systems on quad-graphs are equations on quadrilaterals

of the type

Qðx; u; v; y; a; bÞ ¼ 0; ð1Þ

where x; u; v; y 2 A are the fields assigned to the four vertices of the quadrilateral,

and a; b 2 K are the parameters assigned to its edges, as shown on Figure 1. We

say that the Equation (1) admits a zero curvature representation if to every oriented

edge ðx; uÞ carrying the label a there corresponds a matrix Lðu; x; a; lÞ depending on

an arbitrary (spectral) parameter l 2 K such that

Lðx; u; a; lÞ ¼ ðLðu; x; a; lÞÞ�1; ð2Þ

and for any elementary quadrilateral, as in Figure 1, Equation (1) is equivalent to

Lðx; v; b; lÞLðv; y; a; lÞLðy; u; b; lÞLðu; x; a; lÞ ¼ I; ð3Þ

that is,

Lðy; u; b; lÞLðu; x; a; lÞ ¼ Lðy; v; a; lÞLðv; x; b; lÞ: ð4Þ

3. Noncommutative Hirota Equation

We start our considerations with the following equation:

yx�1 ¼ fabðuv
�1Þ: ð5Þ

Figure 1. An elementary quadrilateral.
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(Here and below, any time we encounter the inverse x�1 of a nonzero element x 2 A,

its existence is assumed.) We require that this equation does not depend on how we

regard the elementary quadrilateral. First of all, in general, the elementary quadri-

laterals are not supposed to be oriented in some consistent manner, which means

that we cannot distinguish between left and right, so that (5) has to be equivalent to

yx�1 ¼ fbaðvu
�1Þ:

Therefore, we require that

fabðAÞ ¼ fbaðA
�1Þ: ð6Þ

Second, Equation (5) should allow to exchange the roles of x and y, i.e. to be equiva-

lent to

xy�1 ¼ fabðvu
�1Þ:

Hence, we impose the following condition on the function fab:

fabðA
�1Þ ¼ ð fabðAÞÞ

�1: ð7Þ

Additionally, if one wants be able to exchange the roles of the pairs ðx; yÞ and ðu; vÞ,

then (5) should be equivalent to

uv�1 ¼ fbaðxy
�1Þ:

This leads to the following condition on the function fab:

fbaðAÞ ¼ f�1ab ðA
�1Þ: ð8Þ

Here f�1ab stands for the inverse function to fab, which has to be distinguished from the

inversion in the algebra A in the formula (7).

All the conditions (6)–(8) are satisfied for the function which characterizes the

Hirota equation:

fabðAÞ ¼
1� ðb=aÞA

ðb=aÞ � A
: ð9Þ

3.1. THREE-DIMENSIONAL CONSISTENCY

Now we demonstrate that the noncommutative Hirota equation has a deep property

of the three-dimensional consistency [3]. Consider an elementary cube of the three-

dimensional lattice, as shown in Figure 2.

We assume that all edges of the elementary cube parallel to the axis number j

ð j ¼ 1; 2; 3Þ carry the label aj. Now, the fundamental three-dimensional consistency

property should be understood as follows. Suppose that the values of the dependent

variable are given at the vertex x and at its three neighbors x1, x2, and x3. Then the

Hirota equation (5) uniquely determines its values at x12, x13, and x23. After that, the

Hirota equation delivers three á priori different values for the value of the dependent

variable at the vertex x123, coming from the faces ðx1; x12; x123; x13Þ,
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ðx2; x23; x123; x12Þ, and ðx3; x13; x123; x23Þ, respectively. The three-dimensional consis-

tency means that these three values for x123 actually coincide.

THEOREM 1. The noncommutative Hirota equation is three-dimensionally con-

sistent.

First proof of Theorem 1. We give two proofs of this theorem. The first one is

based on direct computations and is therefore more specific for the Hirota equation.

The second one paves the way to the derivation of the zero curvature representation

from the equations governing the system, and is of a more general nature.

We have, by construction,

xijx
�1 ¼ faiajðxix

�1
j Þ;

and

x123x
�1
i ¼ fajakðxijx

�1
ik Þ; ð10Þ

where ði; j; kÞ is an arbitrary permutation of ð1; 2; 3Þ. So, the three-dimensional con-

sistency is equivalent to the equation

fajak ðxijx
�1
ik Þxi ¼ faiakðxijx

�1
jk Þxj;

or else to

fajakð faiaj ðxix
�1
j Þðfaiak ðxix

�1
k ÞÞ�1Þ ¼ faiakð faiajðxix

�1
j Þð fajakðxjx

�1
k ÞÞ�1Þxjx

�1
i :

Taking into account that actually fab depends only on b=a, we slightly abuse the

notations and write fab ¼ fb=a. Denoting

l ¼
aj

ai
; m ¼

ak

aj
; and A ¼ xix

�1
j ; B�1 ¼ xjx

�1
k ;

and taking into account the property (7), we rewrite the above equation as

fmð flðAÞflmðBA
�1ÞÞ ¼ flmð flðAÞfmðBÞÞA

�1: ð11Þ

Figure 2. Elementary cube of the three-dimensional lattice.
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So, in order to prove the theorem, we have to demonstrate that the function (9) satis-

fies this functional equation for any l; m 2 K and for any A;B 2 A. In this proof we

repeatedly use the identity

flðCD
�1Þ ¼ ðD� lCÞðlD� CÞ�1:

The proof of the functional Equation (11) is as follows.

fmð flðAÞflmðBA
�1ÞÞ

¼ ððlmA� BÞ � mflðAÞðA� lmBÞÞðmðlmA� BÞ � flðAÞðA� lmBÞÞ�1

¼ ðmAðl� flðAÞÞ � ð1� lm2flðAÞÞBÞðAðlm
2 � flðAÞÞ � mð1� lflðAÞÞBÞ

�1

Next, we use the fact that

1� lflðAÞ ¼ Aðl� flðAÞÞ:

This allows us to continue the chain of equations above:

¼ ðmð1� lflðAÞÞ � ð1� lm2flðAÞÞBÞðAðlm
2 � flðAÞÞ � mAðl� flðAÞÞBÞ

�1

¼ ðm� B� lmflðAÞð1� mBÞÞðlmðm� BÞ � flðAÞð1� mBÞÞ�1A�1

¼ flmðflðAÞfmðBÞÞA
�1:

The Theorem is proved. &

Remark. It is difficult to write down an expression for x123 from which the

symmetry with respect to permutations of indices ð1; 2; 3Þ would be apparent. For

example, by simplifying (10) one can get

x123 ¼
� aj

ai
� xix

�1
j

��1

ð‘ijxi þ ‘jkxk þ ‘kixix
�1
j xkÞ�

� ð‘kjxi þ ‘ikxj þ ‘jixkÞ
�1
� aj

ai
� xix

�1
j

�

xj; ð12Þ

where

‘ij ¼
ai

aj
�
aj

ai
:

Of course, in the commutative case this expression becomes symmetric:

x123 ¼
‘ijxixj þ ‘jkxjxk þ ‘kixkxi

‘kjxi þ ‘ikxj þ ‘jixk
;

but it is not so in the noncommutative case. On the other hand, one can rewrite (10)

as

xijx
�1
ik ¼ fajakðx123x

�1
i Þ;

and a product of three such equations gives

fa1a2 ðx123x
�1
3 Þfa3a1ðx123x

�1
2 Þfa2a3ðx123x

�1
1 Þ ¼ 1:
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This equation for x123 is obviously symmetric with respect to permutations of indi-

ces. Moreover, it makes it apparent that x123 depends on x1; x2; x3 only, and not on x

(this was called the ‘tetrahedron property’ in [1]).

3.2. ZERO CURVATURE REPRESENTATION FROM THREE-DIMENSIONAL

CONSISTENCY

Second proof of Theorem 1. We have to prove that the following three schemes for

computing x123 lead to one and the same result:

. ðx; x1; x2Þ 7! x12; ðx; x1; x3Þ 7!x13; ðx1; x12; x13Þ 7!x123:

. ðx; x1; x2Þ 7! x12; ðx; x2; x3Þ 7!x23; ðx2; x12; x23Þ 7!x123:

. ðx; x1; x3Þ 7! x13; ðx; x2; x3Þ 7!x23; ðx3; x13; x23Þ 7!x123:

We shall do this for the first two schemes only, since the last is done in a similar way

(or just by changing indices). The Hirota equation on the face ðx; x1; x13; x3Þ,

x13x
�1 ¼ fa3a1ðx3x

�1
1 Þ;

can be written as a formula which gives x13 as a fractional-linear transformation

of x3:

x13 ¼ ða1x3 � a3x1Þða3x3 � a1x1Þ
�1x ¼ Lðx1; x; a1; a3Þ½x3�; ð13Þ

where

Lðx1; x; a1; a3Þ ¼
a1 �a3x1

a3x
�1 �a1x

�1x1

� �

: ð14Þ

Here we use the notation which is common for Möbius transformations on C repre-

sented as a linear action of the group GL(2, C). In the present case, we define the

action of the group GL(2, A) on A by the formula

a b

c d

� �

½z� ¼ ðazþ bÞðczþ dÞ�1; a; b; c; d; z 2 A:

It is easy to see that this is indeed the left action of the group, provided the multi-

plication in GL(2, A) is defined by the natural formula

a0 b0

c0 d0

� �

a b

c d

� �

¼
a0aþ b0c a0bþ b0d

c0aþ d0c c0bþ d0d

� �

:

Absolutely similarly to (13), we find

x23 ¼ Lðx2; x; a2; a3Þ½x3�: ð15Þ

From (15) we derive, by the shift in the direction of the first coordinate axis, the

expression for x123 obtained by the first scheme above:

x123 ¼ Lðx12; x1; a2; a3Þ½x13�; ð16Þ
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while from (13) we find the expression for x123 corresponding to the second scheme:

x123 ¼ Lðx12; x2; a1; a3Þ½x23�: ð17Þ

Substituting (13), (15) on the right-hand sides of (16), (17), respectively, we represent

the equality we want to demonstrate in the following form:

Lðx12; x1; a2; a3ÞLðx1; x; a1; a3Þ½x3� ¼ Lðx12; x2; a1; a3ÞLðx2; x; a2; a3Þ½x3�: ð18Þ

We demonstrate that actually the stronger claim holds, namely that

Lðx12; x1; a2; a3ÞLðx1; x; a1; a3Þ ¼ Lðx12; x2; a1; a3ÞLðx2; x; a2; a3Þ: ð19Þ

Indeed, the 11 entries on both parts of this matrix identity are equal to

a1a2 � a23x12x
�1. Equating 12 entries in both parts is equivalent to the Hirota equa-

tion of the face ðx; x1; x12; x2Þ, and the same holds for the 21 entries. Finally,

equating the 22 entries is equivalent to the condition that x12x
�1 commutes with

x2x
�1
1 , and this is, of course, so in virtue of the Hirota equation. This finishes the sec-

ond proof. &

Actually, Equation (19) is nothing but the zero curvature representation of the

noncommutative Hirota equation. It remains only to spell out the necessary con-

struction which parallels the commutative one presented in [3].

To derive a zero-curvature representation for an equation on D of the type (1) pos-

sessing the property of the three-dimensional consistency, we extend the quad-graph

D into the third dimension. This means that we consider the second copy D0 of D and

add edges connecting each vertex x 2 VðDÞ with its copy x0 2 VðD0Þ. In this way we

obtain a ‘three-dimensional quad-graph’ D, whose set of vertices is

VðDÞ ¼ VðDÞ [ VðD0Þ;

whose set of edges is

EðDÞ ¼ EðDÞ [ EðD0Þ [ fðx; x0Þ: x 2 VðDÞg;

and whose set of faces is

FðDÞ ¼ FðDÞ [ FðD0Þ [ fðx; u; u0; x0Þ: x; u 2 VðDÞg:

We extend the labelling to EðDÞ in the following way: each edge ðx0; u0Þ 2 EðD0Þ car-

ries the same label as its counterpart ðx; uÞ 2 EðDÞ, while all ‘vertical’ edges ðx; x0Þ

carry one and the same label l. This label plays the role of the spectral parameter.

Elementary building blocks of D are ‘cubes’ ðx; u; y; v; x0; u0; y0; v0Þ, as shown

in Figure 3. This figure is identical to Figure 2 up to the notations. Consider

Equation (1) on the ‘vertical’ face ðx; u; u0; x0Þ:

Qðx; u; x0; u0; a; lÞ ¼ 0;

and suppose that it gives u0 as a fractional-linear transformation of x0:

u0 ¼ Lðu; x; a; lÞ½x0�:
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Then, due to the three-dimensional consistency, we have,

y0 ¼ Lð y; u; b; lÞLðu; x; a; lÞ½x0� ¼ Lð y; v; a; lÞLðv; x; b; lÞ½x0�:

This holds for arbitrary x0 2 A and for all l 2 K. If now some structural peculiarities

of the matrices L allow us to conclude from the above that (4) holds, then the matri-

ces L are the transition matrices of a zero-curvature representation. (In the commu-

tative case, we could simply normalize the determinant of L in order to perform the

last step.)

THEOREM 2. The Hirota equation admits a zero curvature representation with

matrices from the loop group GLð2;AÞ½l�: the transition matrix along the ðorientedÞ

edge ðx; uÞ carrying the label a is given by

Lðu; x; a; lÞ ¼
a �lu

lx�1 �ax�1u

� �

: ð20Þ

Proof. Recall that the 11 entries of both matrix products in (4) are equal to

ab� l2yx�1. It is easy to see that if, for L;M 2 GLð2;AÞ, there holds L½x� ¼ M½x�

for all x 2 A, and L11 ¼ M11, then with necessity L ¼ M. &

3.3. QUANTUM HIROTA EQUATION

When speaking about solutions of equations like (1), one has in mind a suitably

posed initial value problem for it. For a two-dimensional Equation (1), Cauchy

data (the values of the dependent variable x) should be prescribed along a one-

dimensional path, i.e. on a sequence of points C ¼ fzig
i¼i1
i¼i0
, where i05�1, i141

and zi 2 VðDÞ. Whenever such a path contains three vertices of an elementary quad-

rilateral from FðDÞ, Equation (1) can be applied to get the value of x in the fourth

vertex. This fourth vertex is then said to belong to EðCÞ, the evolution set of C. (Note

that the original three vertices are not counted to EðCÞ.) Continuing this process

ad infinitum, we get a full set EðCÞ of vertices where the dependent variables

are defined by a successive application of the equation to the initial data along C.

Figure 3. Elementary cube of the three-dimensional lattice.
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Of course, there are cases when the set EðCÞ is empty (think, for instance, of the case

when C is the set of vertices of a regular quadratic lattice lying on a coordinate line);

one is interested in C with a possibly large EðCÞ. However, all data along C should be

independent. This is formalized in the following definition: the path C is space-like,

if EðCÞ \ C ¼ ;.

It is well known that, in the case of the regular square lattice, the zigzag line as in

Figure 4 is a space-like path with E covering the whole lattice [4, 8]. Equation (1) in

this case defines the evolution in the vertical direction, i.e. the map fxigi2Z 7! f ~xxigi2Z.

One often imposes the periodicity in the horizontal direction with an even period 2N;

in this case one is dealing with the regular square lattice on a cylinder rather than on

the plane.

A theory of the quantum Hirota equation on the regular square lattice was devel-

oped in [8]. As demonstrated there, in the noncommutative case, the map

fxigi2Z 7! f ~xxigi2Z preserves the following Weyl-like commutation relations:

½xi; xj� ¼ 0; j� i even;

xixj ¼ qxjxi; j� i > 0 odd:
ð21Þ

Actually, this holds for an arbitrary space-like path in an arbitrary quad-graph D,

and for an arbitrary function fab. So, this property has, in principle, nothing to do

with integrability. The noncommutative Hirota equation with the Weyl commuta-

tion rules (21) along a space-like path is called the quantum Hirota equation.

We would like to stress that the quantum Hirota equation defines an evolution

also in the multi-dimensional situation. This is due to its consistency property proven

above for an arbitrary noncommutative Hirota system. So, in the notations of

Figure 2, one can take as a Cauchy path the sequence fx; x1; x12; x123g with the

commutation relations

½x; x12� ¼ ½x1; x123� ¼ 0; xx1 ¼ qx1x;

xx123 ¼ qx123x; x12x123 ¼ qx123x12;

and get the values x3 and x23 with the commutation relations

½x; x23� ¼ ½x3; x123� ¼ 0; xx3 ¼ qx3x;

xx123 ¼ qx123x; x23x123 ¼ qx123x23;

Figure 4. The Cauchy problem on a zigzag.
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in two different ways, according to two schemes:

. ðx1; x12; x123Þ 7! x13; ðx; x1; x13Þ 7!x3; ðx3; x13; x123Þ 7!x23:

. ðx; x1; x12Þ 7!x2; ðx2; x12; x123Þ 7! x23; ðx; x2; x23Þ 7! x3:

Due to the three-dimensional consistency, these two schemes lead to identical results.

This property separates the quantum Hirota equation among all other quantum

equations of the type (5). As demonstrated above, this property also allows us to

derive the quantum zero curvature representation found in [8].

It would be desirable to relate this property with another one [8], namely the

Yang–Baxter relation

rðl; uÞrðlm; vÞrðm; uÞ ¼ rðm; vÞrðlm; uÞrðl; vÞ

for the solution of the functional equation

rðl; qwÞ

rðl; q�1wÞ
¼ flðwÞ;

which also separates the Hirota equation among all other equations of the type (5)

with fab ¼ fb=a.

4. Noncommutative Cross-ratio Equation

4.1. EQUATION AND ITS DIFFERENT FORMS

Consider the system on a quad-graph D, consisting of the following equations on ele-

mentary quadrilaterals:

ðx� uÞðu� yÞ�1ðy� vÞðv� xÞ�1 ¼
a

b
; ð22Þ

where a; b 2 K. This equation was previously considered in two particular settings,

when it has important geometrical applications: A ¼ C, K ¼ C (discrete conformal

maps; for the case of a regular square lattice and a=b ¼ �1 see, e.g., [16]; for the gene-

ral case on arbitrary quad-graphs see [3]), and A ¼ H, K ¼ R (discrete isothermic

surfaces and their Darboux transformations, see [2, 11]). If A ¼ CðnÞ, the Clifford

algebra over K ¼ R, this equation describes multi-dimensional isothermic nets,

cf. [17].

In the notations with indices, Equation (22) can be put as

a1ðx12 � x1Þðx1 � xÞ�1 ¼ a2ðx12 � x2Þðx2 � xÞ�1: ð23Þ

This makes obvious the symmetry of this equation with respect to the simultaneous

flip x1 $ x2, a1 $ a2, as well as to the simultaneous flip x $ x12, a1 $ a2. Several

other forms of this equation and its consequences will be of interest for us. For

instance, we transform (23) as
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a1ðx12 � xÞðx1 � xÞ�1 � a1 ¼ a2ðx12 � xÞðx2 � xÞ�1 � a2

in order to arrive at the so-called three-leg form:

a1ðx1 � xÞ�1 � a2ðx2 � xÞ�1 ¼ ða1 � a2Þðx12 � xÞ�1: ð24Þ

Notice that by multiplying this equation by x12 � x from the right, we eventually

arrive at

a1ðx1 � xÞ�1ðx12 � x1Þ ¼ a2ðx2 � xÞ�1ðx12 � x2Þ; ð25Þ

which is thus demonstrated to be equivalent to (23), the fact nonobvious in the non-

commutative context.

One could choose the point x12 as the common point of the three legs, and, instead

of (24), obtain the equation

a2ðx1 � x12Þ
�1 � a1ðx2 � x12Þ

�1 ¼ ða2 � a1Þðx� x12Þ
�1:

Since the right-hand sides of this equation and of Equation (24) coincide, we come to

the following consequence of the basic equation:

a1ðx1 � xÞ�1 � a2ðx2 � xÞ�1 ¼ a1ðx12 � x2Þ
�1 � a2ðx12 � x1Þ

�1: ð26Þ

4.2. THREE-DIMENSIONAL CONSISTENCY

THEOREM 3. The noncommutative cross-ratio equation is three-dimensionally con-

sistent.

Proof. We proceed as in the second proof of Theorem 1. From the cross-ratio

equation of the face ðx; x1; x13; x3Þ,

a1ðx13 � x1Þðx1 � xÞ�1 ¼ a3ðx13 � x3Þðx3 � xÞ�1;

we derive

a1a
�1
3 ðx13 � x1Þðx1 � xÞ�1ðx3 � xÞ ¼ ðx13 � x1Þ þ ðx1 � x3Þ;

which is equivalent to

ðx13 � x1Þ 1þ a1a
�1
3 ðx� x1Þ

�1ðx3 � xÞ
� �

¼ x3 � x1 ¼ ðx3 � xÞ þ ðx� x1Þ:

This can be put in the matrix form as

x13 � x1 ¼ Lðx1; x; a1; a3Þ½x3 � x�; ð27Þ

where

Lðx1; x; a1; a3Þ ¼
1 x� x1

a1a
�1
3 ðx� x1Þ

�1 1

� �

: ð28Þ

Similarly,

x23 � x2 ¼ Lðx2; x; a2; a3Þ½x3 � x�; ð29Þ
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From (29), (27) we derive, by the shift in the direction of the first, resp. the second

coordinate axis, the expressions for x123 obtained by the first, resp. the second

scheme above:

x123 � x12 ¼ Lðx12; x1; a2; a3Þ½x13 � x1�; ð30Þ

x123 � x12 ¼ Lðx12; x2; a1; a3Þ½x23 � x2�: ð31Þ

Substituting (27), (29) on the right-hand sides of (30), (31), respectively, we represent

the equality we want to demonstrate in the following form:

Lðx12; x1; a2; a3ÞLðx1; x; a1; a3Þ½x3 � x�

¼ Lðx12; x2; a1; a3ÞLðx2; x; a2; a3Þ½x3 � x�: ð32Þ

This is a consequence of a stronger claim:

Lðx12; x1; a2; a3ÞLðx1; x; a1; a3Þ ¼ Lðx12; x2; a1; a3ÞLðx2; x; a2; a3Þ: ð33Þ

Indeed, the 12 entries on the both sides are equal to x� x12. Equating the 11 entries

is equivalent to Equation (23), equating the 22 entries is equivalent to the (inverted)

Equation (25), and equating the 21 entries is equivalent to Equation (26). This fini-

shes the proof. &

Remark. As in the case of the Hirota equation, this proof does not lead to an

expression for x123 which would make the claim self-evident. However, also in this

case the three-leg form of equations comes to help. Namely, summing up the

equations

aiðx123 � xjkÞ
�1 � ajðx123 � xikÞ

�1 ¼ ðai � ajÞðx123 � xkÞ
�1;

we come to the equation

ða2 � a3Þðx123 � x1Þ
�1 þ ða3 � a1Þðx123 � x2Þ

�1 þ ða1 � a2Þðx123 � x3Þ
�1 ¼ 0;

ð34Þ

which makes two things obvious: first, that x123 depends only on x1, x2, x3 and not

on x (tetrahedron property) and, second, the symmetry of the resulting x123 with

respect to permutations of indices ð1; 2; 3Þ. Comparing (34) with (24), we see that

the former equation is again of the cross-ratio type: it is equivalent, e.g., to

ðx123 � x1Þðx1 � x3Þ
�1ðx3 � x2Þðx2 � x123Þ

�1 ¼ ða2 � a3Þða3 � a1Þ
�1: ð35Þ

4.3. ZERO CURVATURE REPRESENTATION

Setting a3 ¼ l�1 in the proof of Theorem 3, we come to the following statement:

THEOREM 4. The cross-ratio equation admits a zero-curvature representation with

matrices from the loop group GLð2;AÞ½l�: the transition matrix along the ðorientedÞ

edge ðx; uÞ carrying the label a is given by
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Lðu; x; a; lÞ ¼
1 x� u

laðx� uÞ�1 1

� �

: ð36Þ

An essential point is, we stress it again, that this zero curvature representation was

derived from the equations of the system, without any additional information. More-

over, the proof of Theorem 3 again shows that the zero-curvature representation not

only follows from the three-dimensional consistency, but is, in turn, instrumental in

establishing it.

5. Concluding Remarks

The present paper has to be considered within the context of the ongoing study of

noncommutative integrable systems [5, 6, 13, 14] which puts quantum integrable sys-

tems on a more general basis (see also [9, 12]). We expect that discrete integrable

noncommutative systems of the sort considered in this paper are of fundamental

importance, just like is the case in the commutative context [3]. It will be important

to extend the classification results of [1] to the noncommutative case, and to get com-

plete lists of discrete integrable equations. Also, a more thorough understanding of

the quantum case and the origin of its specific (Yang–Baxter) structures is desirable.

This could also lead to a new approach to the classification of solutions of the Yang–

Baxter equation.
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