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Abstract. We present a class of nonlinear Klein-Gordon systems which are
soluble by means of a scattering transform. More specifically, for each TV ̂  2 we
present a system of (N— 1) nonlinear Klein-Gordon equations, together with
the corresponding N x N matrix scattering problem which can be used to solve
it. We illustrate these with some special examples. The general system is shown
to be closely related to the equations of the periodic Toda lattice. We present a
Backlund transformation and superposition formula for the general system.

Introduction

Part of the current folk-lore in soliton theory is that the only integrable, nonlinear
Klein-Gordon equations in one variable θ:

θxt = F(θ) (1.1)

are those for which

<). (L2)

This belief stems from two distinct lines of argument one is the study of self-
Backlund transformations, and the other is the question of the existence of an
infinite number of polynomial conserved densities (p.c.d.s).

A well known result is that Eq. (1.1) possesses a self-Backlund transformation
if and only if condition (1.2) is satisfied [1-3].

The question of the existence of p.c.d.s is more complicated, however. The
sufficiency of (1.2) for the existence of an infinite number of p.c.d.s is well known,
but the necessity has never been proven. Kruskal [4] looked for a conserved
density with leading order term θxx (of weight 4) for Eq. (1.1), and found (1.2) to be
necessary for its existence. Dodd and Bullough [5] later found several higher order
p.c.d.s for the equation:

Θxt = e2θ-e-θ (1.3)

but believed, at the time, that only a finite number of those existed.
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It is of interest that Eq. (1.3) arises in the context of Lie-Backlund contact
transformations [6-8], which are, of course, intimately related to conservation
laws through Noether's theorem [9].

In this paper we present integrable systems of nonlinear Klein-Gordon
Eq. (1.1) which are more complicated than the scalar equations satisfying (1.2).
Indeed, for each N^.2 we present a JV xJV matrix scattering problem with an
isospectral flow whose typical form is an (N— l)-component nonlinear Klein-
Gordon system:

v-θ^), (1.4)

where Ann_ί are constants and n=l,2, ...,N(modN). However, there exist
restrictions of these systems, among which is the scalar Eq. (1.3).

We also show that these systems are closely related to the periodic Toda lattice
equations. Using the Backlund transformations of the Toda lattice as our model,
we write down the Backlund transformation for our systems of nonlinear Klein-
Gordon equations.

2. The Eigenvalue Problem

Recently we [10,11] have considered the factorisation of third order scalar
differential operators into the product of three first order factors.

The general JVth order elliptic scalar differential operator

L = dN + uN_2d
N~2+ ... +M13 + M0 (2.1)

may be written as

where the functions in the linea^ factors are written in potential form for the

purpose of this paper here and in what follows d = dx=—\.
\ ox/

The Nth order scalar eigenvalue problem

LΨl=ζN

Ψl (2.2)

may then be written as

C O

d
Ψl

ΨN

C . o
(2.2a)

u
JV

where the trace ]Γ ^ vanishes because M J V _ 1 =0.
«=ι

Given the eigenvalue problem (2.2a) we could consider time evolutions of the
column vector ψ = (φ l 5..., ψN)τ which are of the form

(2.3)
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where M is an N x N matrix whose components Mtj depend upon ζ, the functions
θ(n} and, possibly, their .x-derivatives. In order that the time evolution (2.3) should
lead to an isospectral flow of Klein-Gordon type, M is chosen inversely pro-
portional to ζ:

(2.4)

where the atj are independent of ζ. The details of the ensuing calculation would be
out of place here (see [12,11] for the 2 x2 and 3 x 3 cases respectively), so we just
present the time evolution:

0

(2.5)

,-ι 0

where ann_l and aίN are the only non-zero elements.
The integrability conditions between (2.2a) and (2.5) are

(2.6)

and

where n = l , . . . , N , and the indices are considered modulo N.
From Eq. (2.6) we deduce

so that Eq. (2.7) implies

(2.7)

(2.8)

(2.9)

where Ann_1 are constants and n=l,...,N (modTV).
Equations (2.9) are a system of nonlinear Klein-Gordon equations which can

be solved exactly by means of the scattering problem (2.2a) and (2.5).
The most interesting case is when all the An are positive; without loss of

generality we may then set An = l:

(2.10)

which will be considered in more detail in the next section.
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3. Some Examples

Second Order

The simplest examples of the systems introduced here are those derived from a
2 x 2 scattering problem

£
. <3 "-ΘJ\ψ2]

where, as in Sect. 2, we have used the condition that the trace, £ θ{"\ should vanish.
The time evolution of the column vector v|/ = (φ1? ιp2)

τ is given by

0 Aί2e

1e-M 0

Taking Al2 = A2i = ^, we obtain the integrability condition

(3.3)

which is the well-known sinh-Gordon equation it was solved independently by
Ablowitz et al. [13] and Takhtadzhyan and Faddeev [14].

By allowing θ to assume imaginary values, θ = ίθ, we obtain the sine-Gordon
equation,

(3.4)

As is well known, this equation, having degenerate vacua, possesses multiso-
liton solutions.

By taking 421 =05 A12 = 1, we obtain the Liouville equation,

Θxt = e2θ. (3.5)

Third Order

Some more interesting examples may be derived by considering the 3 x 3
scattering problem :

+Φx ζ o \/Ψl\
0 -2φx ζ \\ψ2, (3.6)

Ψ3 C 0 -

where we have put

θ(2)=-2φ (3.7)

in order that the trace, ^θ("\ should vanish.
The time evolution of \j/ = (φ1, φ2, ψ3)

Γ is given by

0 0 ^ 1 3exp(2θ)\/V l\

= - A21exp(-θ-3φ) 0 0 \lψ2 . (3.8)

0 A32εxp(3φ-θ) 0 \ψj
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If we set Aί3 = A21 = A32 = 1, then we obtain, as integrability conditions

θ = e2θ-e-θcosh3φ
_, (3.9)

φxt = e sinh3(/>.

A particular case of the system (3.9) is

This is an example of a single component nonlinear Klein-Gordon equation which
is completely integrable. However, as will be seen in Sect. 4, and as is to be
expected from the results summarised in Sect. 1, this equation does not possess a
self-Backlund transformation; the Backlund transformation (4.8) relates solutions
of (3.10) not to one another, but rather to solutions of the more complicated
system (3.9).

Further, on calculating the hierarchy of polynomial conserved densities of
(3.9), by expanding the logarithm of the transmission coefficient of (3.6) in an
asymptotic series for large ζ, one finds first, that every third such density is trivial,
being an exact derivative and second, that every second density (of odd parity
with respect to x) is an exact derivative when φ is identically zero. The result of this
is that the next simplest conserved quantity after the "momentum"

(3.11)

is (for φsO)

dχ. (3.12)

This quantity is, on identifying θx with v, the Hamiltonian of the modified
Kupershmidt equation

which is discussed in [10].
By letting φ assume imaginary values, φ = iφ, we may transform the system

(3.9) into

~xt~_e _~β ~C°S (3.14)

Like the sine-Gordon equation, this system, possessing degenerate vacua, has
"kink" solutions these, as well as two-kink and kink-antikink solutions have been
obtained by Hirota's method [15]. The single kink, or soliton solution is

l + e3η

2 J n '

[2-e

where η = kx + 3ί/fe.

(3.15)
j/λ^

φ = arctan
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To generate the multi-soliton solutions to (3.14), one could use the super-
position formula (4.10) which we will derive below.

There remain some problems concerning the stability of the system (3.14),
however; this is because the momentum integral (3.11), which, being positive
definite, guarantees the stability of the system (3.9), is transformed, for the system
(3.14), into the form:

However, some preliminary numerical results of Eilbeck [16] suggest that this
system is indeed stable.

Higher Orders

The behaviour of these systems becomes more complicated as N is increased for
N ̂  4 we find that the linearised normal modes have different dispersion relations.
For example, taking JV = 4, we find that the equations may be expressed as

θχt = e2θ cosh 2φ-e~2θ cosh 2ψ

φxt = e2θsinh2φ (3.17)

In field theoretic terms, the field θ has mass 2, while φ and ψ have mass j/2.
There are various restrictions of this system which make sense either or both

of φ and ψ may be suppressed. If one, say φ, is retained, we get

Θ=e2θcosh2φ-e-2θ

which is equivalent to a system brought to our attention by Kupershmidt [17].
The other restrictions of the system reduce to sinh-Gordon equations.

For N = 5, taking θ(1) = - θ(5) = 0, θ(2) - - 0(4) - φ, θ(3) - 0 we get

The full system, with four independent field variables, is more complicated. It
may be seen that the "masses" of the normal modes of the linearised system are
given by

m2 = 2-ρ-ρ-^ (3.20)

where ρ is a nontrivial Nth root of unity.

4. The Relationship with the Toda Lattice

The system (2.10) clearly bears some similarity to the well known Toda lattice
equations [18,19]. Indeed, introducing

τ = t - x, θ(n\x, i) = - φ(n\τ) (4.1)
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we obtain:

0(

τ?-exp((/)("-1)-(/)("))-exp(0(")-(/)("+1)) (4.2)

which are the Toda lattice equations, for which a scattering problem was found by
Flaschka [20]. The variable τ introduced above is the time in laboratory
co-ordinates. By transforming to laboratory co-ordinates, and removing a factor
of exp(— 2"0(/I)) from the wave function ψn, one may easily recover Flaschka's Lax
pair representation of the Toda equations.

Kac-van Moerbeke Equations

A closely related system to the Toda lattice is that of Kac and van Moerbeke
[21, 22]

exp(M (n"1/2)), (4.3)

where, for convenience, we have taken the indices to be half-integers. Clearly

"~1))) . (4.4)

By setting

we obtain the Toda lattice Eqs. (4.2) from (4.4).
Thus the first order system (4.3) models two Toda lattices, interpolated one

between the other. The variables with integer and half-odd integer indices
respectively satisfy autonomous systems of Toda equations.

Putting (for integer n, and arbitrary A > 0)

(4.6)
'^-t-m^L

(where φ(n} = φ(n+1/2)) we solve (4.5) and get

;<»+ D_ φ(n+ !))_ eχp(0(«)_ <£(»))]
dτ^

(4.7)

— (φ^ — φ^)= — [exp((/)^M+1^ — φ^) — exp(0^ — φ^"~1^)]
ατ ^4

which is the usual Backlund transformation relating a pair of solutions φ and φ of
(4.2).
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Bάcklund Transformation

Analogously, for the nonlinear Klein-Gordon equations discussed above we may
write down

(4.8)

:Ό_0<»+i))_ e xp(0<»-l>_0W)]
dt^ υ >'

which are easily seen to be a Backlund transformation for (2.10).
These were obtained by requiring that under the identifications (4.1), Eqs. (4.7)

should be recovered.
For the more general system (2.9), for which some of the An may be zero [see,

for example, Eq. (3.10)] a slightly different form of Backlund transformation is
needed.

The Backlund transformation (4.8) may be regarded as arising from a system
which is related to (2.10) in the same way as the Kac-van Moerbeke equations are
related to the Toda lattice. This system is

M<» + 1/2) = eχp u(n) _ eχp M(n+ 1)

OX
(4.9)

0

Έ'
where the variable n assumes integer values (mod JV). It is likely that this system is
also completely integrable.

Superposition Formula

It is possible to derive a nonlinear "superposition formula" for the systems
discussed above, by requiring that two successive Backlund transformations
should commute [23].

We let a Backlund transformation with parameter k take a solution θ to a
solution θ, and another Backlund transformation of parameter K take Θ to θ. We
then require that these transformations take θ and θ respectively into a single new
solution θ. Some algebraic manipulation then yields the result:

•exp(0(w) + 0(II)) (4.10)

as the condition that both the space and time halves of the Backlund transfor-
mations commute.

5. Conclusions

In this paper we have exhibited integrable systems of nonlinear Klein-Gordon
equations, of which the usual sine- and sinh-Gordon equations are very special
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cases. These equations were shown to be closely related to those of the periodic
Toda lattice. The simple form of these systems stems from the special structure of
their corresponding eigenvalue problems, which arise from the factorisation of
scalar differential operators, and for which they are isospectral flows. More general
scattering problems should lead to more complicated systems (see [24] for the
3 x 3 case).

Further generalisations of the systems discussed here are those related to the
generalised Toda lattices discovered by Bogoyavlensky [25] and discussed in
detail by Kostant [26]. We consider these systems in another paper [27].

Among the integrable systems presented here is the new scalar nonlinear
Klein-Gordon Eq. (3.10). While there seem to be no other such equations in the
present class of systems, it would be rash to assert that the more general systems
mentioned above could not give rise to any other such scalar equations.

As mentioned above, Eilbeck [16] has obtained numerical results concerning
the stability of some of the systems of Sect. 3. In a future paper, we intend to study
these systems in more detail, both numerically and analytically.
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