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We explicitly construct an integrable and strongly interacting dissipative quantum circuit via a
trotterization of the Hubbard model with imaginary interaction strength. To prove integrability, we
build an inhomogeneous transfer matrix, from which conserved superoperator charges can be derived,
in particular, the circuit’s dynamical generator. After showing the trace preservation and complete
positivity of local maps, we reinterpret them as the Kraus representation of the local dynamics of free
fermions with single-site dephasing. The integrability of the map is broken by adding interactions
to the local coherent dynamics or by removing the dephasing. In particular, even circuits built from
convex combinations of local free-fermion unitaries are nonintegrable. Moreover, the construction
allows us to explicitly build circuits belonging to different non-Hermitian symmetry classes, which
are characterized by the behavior under transposition instead of complex conjugation. We confirm
all our analytical results by using complex spacing ratios to examine the spectral statistics of the
dissipative circuits.

I. INTRODUCTION

Integrability is a fascinating field of mathematical
physics. It provides exact solutions to dynamics and
equilibrium in very diverse contexts, ranging from deter-
ministic (i) classical [1, 2] and (ii) quantum [3, 4] many-
body Hamiltonian dynamics, to classical stochastic sys-
tems, (iii) in [5], and (iv) out [6] of equilibrium. Al-
though the Liouville-Arnold [7] (i), Bethe-ansatz [8, 9]
(ii), and Onsager [10] (iii) threads of integrability were
initially developed independently, they were beautifully
united within the techniques of (quantum) inverse scat-
tering [3, 4, 11] and the celebrated Yang-Baxter equa-
tion [5, 12].

Later, quantum inverse scattering methods (a.k.a. al-
gebraic Bethe ansatz) found their way to the exact so-
lution (diagonalization) of classical stochastic systems—
many-body Markov chains, such as simple exclusion pro-
cesses [13]. More recently, related new techniques have
been developed for the exact solution of open integrable
quantum many-body systems, specifically, by extending
the algebraic Bethe ansatz to noncompact (nonunitary)
auxiliary spaces [14] and by providing an exact mapping
between Liouvillians of open many-body systems and
Bethe-ansatz integrable systems on (thermofield) dou-
bled Hilbert spaces [15, 16].

Very recently, (local) quantum circuits have become
an important paradigm of nonequilibrium many-body
physics, in particular, due to their simulability by emerg-
ing quantum computing facilities, where they provide
a natural platform for the demonstration of quantum
supremacy [17]. Moreover, (open) quantum circuits
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with local projective measurements have been shown to
host an exciting new physics paradigm of measurement-
induced phase transitions [18–22].

The natural and significant question arises, if integra-
bility methods can be extended to such a paradigm. The
results on integrable trotterizations of integrable quan-
tum spin chains [23] and classical stochastic parallel up-
date exclusion processes [24] give very encouraging hints.

In this paper, we make a key step in this direction by
constructing an integrable open (nonunitary) local quan-
tum circuit. We show that Shastry’s Ř-matrix [25–29],
the essential integrability concept of the one-dimensional
Fermi-Hubbard model, can be interpreted as a com-
pletely positive (CP) trace-preserving (TP) map over
a pair of qubits (spins 1/2) after a suitable analytic
continuation of the interaction and spectral parameters.
Our CPTP map represents a convex combination of two
coherent (unitary) symmetric nearest-neighbor-hopping
(XX) processes, one of them composed with local de-
phasing. By virtue of the Yang-Baxter equation, we then
show the existence of a commuting transfer matrix for the
brickwork quantum circuit built from such CPTP maps,
generating a family of local superoperators commuting
with the dynamical map. Integrability of the Floquet
dynamics is also demonstrated empirically by studying
spectral statistics (complex spacing ratios [30]), whose
sensitivity to integrability breaking is shown by studying
two alternative families of local open quantum circuits.

The rest of the paper is organized as follows. In Sec. II
we define the dissipative Hubbard circuit and describe in
detail its elementary local gates. Next, we prove that the
circuit is indeed integrable and CPTP in Secs. III and
IV, respectively. The subsequent three sections focus on
the physical content of our circuit: We address its Kraus
representation in Sec. V, integrability-breaking regimes
in Sec. VI, and its symmetries in Sec. VII. Finally, we
present numerical evidence corroborating all our results
in Sec. VIII before drawing conclusions and summarizing
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our findings in Sec. IX. Three Appendices present some
additional details.

II. THE DISSIPATIVE HUBBARD CIRCUIT

We consider a spin-1/2 chain of even size L with pe-
riodic boundary conditions. The density matrix ρ of
the system evolves under the action of the discrete-time
quantum channel Ψ, ρ(t + 1) = Ψ[ρ(t)]—a linear map
over the 4L-dimensional state vector ρ—that we choose
to be of the brickwork circuit form:

Ψ =





L/2
∏

j=1

Ř2j,2j+1









L/2
∏

j=1

Ř2j−1,2j





=

(1)

Here, Řkl is the Hubbard Ř-matrix nontrivially acting
on sites k and l. Each wire in Eq. (1) carries a four-
dimensional operator Hilbert space and Ř acts as a two-
site (16× 16) elementary gate (grey box). One time-step
consists of two rows of the circuit—in the second of which
the elementary gates are shifted by one site. Accordingly,
Eq. (1) can also be written as

Ψ = T
†ΦTΦ, (2)

where Φ = Ř⊗L/2 corresponds to a single row of the
circuit. We introduced the one-site translation operator
T, defined by its action on the computational operator-
basis, T |e1, e2, . . . , eL〉 = |eL, e1, . . . , eL−1〉, where in-
dices ej ∈ {0, 1, 2, 3} label four possible spin-1/2 oper-
ators at site j. While each row Φ of the circuit is factor-
izable into two-site elementary gates, the checkerboard
pattern renders the full circuit Ψ interacting. Because
the same gate Ř is applied throughout space and time,
the repeated action of Ψ leads to, in general, nonunitary
translationally-invariant Floquet dynamics.

After a Jordan-Wigner transformation, the Hubbard
model can be understood as a spin ladder formed of a
pair of XX models (corresponding to up- and down-spin
fermions or to the bra and the ket of the density ma-
trix [15] in our nonunitary formulation) coupled by the
Hubbard interaction along the rungs. Thus, we start with
the (two-site) spin-1/2 XX Ř-matrix,

Ř =
1

a







a 0 0 0
0 c −ib 0
0 ib c 0
0 0 0 a






, (3)

which admits a simple trigonometric parametrization:

a = cosλ, b = sinλ, c = 1. (4)

Ř = Ř(λ) is real orthogonal for imaginary spectral pa-
rameter λ ∈ iR.1 We introduce a basis {eβα} of 2 × 2
matrices such that the only nonzero entry (equal to 1)
of eβα is in row α and column β. We then consider the
action of Ř on two copies of the system (corresponding
to ket (↑) and bra (↓) of the vectorized density matrix
ρ =

∑

mn ρmn |m〉 〈n| 7→ |ρ〉 = ∑

mn ρmn |m〉 ⊗ |n〉∗),

ř↑(λ) = Řαγ
βδ (λ) e

β
α ⊗ ✶2 ⊗ eδγ ⊗ ✶2,

ř↓(λ) = Řαγ
βδ (λ)✶2 ⊗ eβα ⊗ ✶2 ⊗ eδγ ,

(5)

where ✶d is the d × d identity matrix. Summation over
repeated indices is assumed throughout.

In terms of the XX Ř-matrices, the Hubbard Ř-matrix
reads (choosing the appropriate gauge) [29]

Ř(λ, µ) = β ř(λ− µ) + α ř(λ+ µ) (σz ⊗ σz ⊗ ✶4) , (6)

where ř(λ) = ř↑(λ)ř↓(λ) and σx,y,z denote the stan-
dard Pauli matrices. The two prefactors α ≡ α(λ, µ, u)
and β ≡ β(λ, µ, u) depend on two independent spec-
tral parameters λ and µ and on the Hubbard interac-
tion strength u. The Hubbard Ř-matrix—which is not
of difference form—satisfies the Yang-Baxter equation,

(

✶4 ⊗ Ř(λ, µ)
) (

Ř(λ, ν)⊗ ✶4

) (

✶4 ⊗ Ř(µ, ν)
)

=

=
(

Ř(µ, ν)⊗ ✶4

) (

✶4 ⊗ Ř(λ, ν)
) (

Ř(λ, µ)⊗ ✶4

)

,
(7)

if the ratio α/β is fixed as

α

β
=

cos(λ+ µ) sinh(h− ℓ)

cos(λ− µ) cosh(h− ℓ)
, (8)

where h and ℓ are implicitly defined in terms of λ, µ,
and u through sinh(2h)/ sin(2λ) = sinh(2ℓ)/ sin(2µ) = u.
Finally, by choosing

β =
cos(λ− µ) cosh(h− ℓ)

cos(λ− µ) cosh(h− ℓ) + cos(λ+ µ) sinh(h− ℓ)
,

(9)
we have α + β = 1. Furthermore, with this choice of β,
Ř satisfies the unitarity condition:

Ř(λ, µ)Ř(µ, λ) = ✶16. (10)

III. PROOF OF THE INTEGRABILITY OF THE

HUBBARD CIRCUIT

By construction, the Hubbard circuit Ψ (1) is inte-
grable. Indeed, since Ř satisfies the (braid) Yang-Baxter

1 We have introduced the factors of ±i multiplying b (correspond-
ing to the choice x = −i in Eq. (12.93) of Ref. [29]) to compensate
for the imaginary spectral parameter (since sin iλ = i sinhλ).
While these factors could be removed by a trivial similarity trans-
formation, this choice will prove convenient below.



3

equation (7), there exists a one-parameter family t(ω)
of transfer matrices in involution, i.e., [t(ω1), t(ω2)] = 0
for all ω1, ω2. After introducing an auxiliary space, la-
beled a, identical to the (local) four-dimensional physical
Hilbert space, the transfer matrix is expressed as the par-
tial trace of the monodromy matrix, t(ω) = Tra Ta(ω),
with

Ta(ω) =

←
∏

1≤j≤L

Raj

(

ω,
λ+ µ

2
− (−1)j

λ− µ

2

)

, (11)

where R = PŘ, P is a 16×16 permutation matrix defined

by P (|ρ1〉 ⊗ |ρ2〉) = |ρ2〉 ⊗ |ρ1〉, and the symbol
←∏

j
in-

dicates an ordered product with decreasing index j. The
monodromy matrix Ta is inhomogeneous (staggered) to
account for the checkerboard pattern of the quantum cir-
cuit. Evaluating the monodromy matrix (11) at the two
special (a.k.a. shift) points ω = λ and ω = µ, the Floquet
propagator Ψ, defined by Eq. (1), can be written as

Ψ = t(µ)−1t(λ). (12)

To verify this claim, we start by computing the mon-
odromy matrix at ω = λ. It reads as

Ta(λ) =
←
∏

1≤j≤L/2

Ra,2j(λ, µ)Pa,2j−1

=

←
∏

1≤j≤L/2

Pa,2jŘa,2j(λ, µ)Pa,2j−1

=

←
∏

1≤j≤L/2

Pa,2jPa,2j−1Ř2j−1,2j(λ, µ),

(13)

where we have used the identities R(λ, λ) = R(µ, µ) = P
and ŘalPak = PakŘkl. Because all P and Ř opera-
tors commute with each other when acting on different
Hilbert spaces (i.e., when they have no subscript indices
in common), taking the trace over the auxiliary space
yields

t(λ) = Tra





←
∏

1≤j≤L

Paj





L/2
∏

j=1

Ř2j−1,2j(λ, µ). (14)

To evaluate the remaining trace, we use PalPak = PakPkl

to permute Pa1 over all the other Paj and then use
Tra Pa1 = ✶4. The transfer matrix finally reads as

t(λ) =





←
∏

2≤j≤L

P1j





L/2
∏

j=1

Ř2j−1,2j(λ, µ). (15)

The computation for ω = µ proceeds similarly and results
in the expression

Ta(µ) =





←
∏

1≤j≤L

Paj



 Řa1(µ, λ)

L/2−1
∏

j=1

Ř2j,2j+1(µ, λ).

(16)

To evaluate the trace over the auxiliary space, we first
cycle Řa1 to the left of the product of permutations, per-
mute it over PaL to obtain ŘL1, take it out of the trace,
and, at last, evaluate the resulting trace of permutations
as above. Finally, imposing periodic boundary conditions
(i.e., identifying j = L+1 with j = 1) and using the uni-
tarity condition (10), the transfer matrix at ω = µ is
given by

t(µ) =





←
∏

2≤j≤L

P1j





L/2
∏

j=1

(

Ř2j,2j+1(λ, µ)
)−1

. (17)

It is now evident that the dynamical generator (1) can
be written as in Eq. (12):

Ψ = t(µ)−1t(λ)

=





L/2
∏

j=1

Ř2j,2j+1(λ, µ)









L/2
∏

j=1

Ř2j−1,2j(λ, µ)



 .
(18)

The involution property of the transfer matrix implies
the integrability of the circuit since Ψ commutes with
t(ω) for all ω and, in particular, with the two infinite
sets of local superoperator charges generated from t(ω)
by logarithmic differentiation:

Q(1)
n =

dn

dωn
log t(ω)

∣

∣

∣

∣

ω=λ

, Q(2)
n =

dn

dωn
log t(ω)

∣

∣

∣

∣

ω=µ

.

(19)

IV. THE HUBBARD Ř-MATRIX AS A LOCAL

CPTP MAP

Having proved that the circuit is integrable, it re-
mains to be shown that it describes proper open quan-
tum dynamics, i.e., that it is a CPTP map. It suffices to
show this for the elementary gates Ř. Indeed, choosing
λ, µ, u ∈ iR (purely imaginary interaction), then α, β ∈ R

and Ř becomes a bistochastic quantum map [31, 32]
(i.e., a unital CPTP map). To check this result, we first
reshuffle the indices of Ř to obtain the dynamical Choi

matrix D [31], such that Dαγεη
βδζθ = Řαβεζ

γδηθ . Due to the

channel-state duality [33, 34], the map Ř is CP if D is
non-negative; it is TP if the partial trace of D over the
first copy of the system is the identity; and it is unital
if the partial trace over the second copy of the system
is the identity. The TP and unitary conditions can be
written as

Dαγεη
αδεθ = Řααεε

γδηθ = δγδ δ
η
θ , (20a)

Dαγεη
βγζη = Řαβεζ

γγηη = δαβ δ
ε
ζ , (20b)

respectively. To see that Eq. (20a) holds, we write out
the components of the Choi matrix using Eq. (6),

Dαγεη
βδζθ (λ,µ) = β Řαε

γη(λ− µ)Řβζ
δθ (λ− µ)

+ α Řαε
ιη (λ+ µ)Řβζ

κθ(λ+ µ) (σz)
ι
γ (σ

z)
κ
δ ,

(21)
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compute the trace of Eq. (20a),

Dαγεη
αδεθ =

(

Ř†Ř
)γη

δθ
×

{

β + α if γ = δ

β − α if γ 6= δ

= (β + α)δγδ δ
η
θ = δγδ δ

η
θ ,

(22)

and find that the map is indeed TP. In Eq. (22), the three
equalities hold because (i) Ř admits a real representation,
(ii) it is unitary, and (iii) we have fixed α+β = 1, respec-
tively. Similarly, a computation starting from Eq. (20b)
leads to a term proportional to ŘŘ†, which again is non-
vanishing only when the prefactor is β + α = 1, and the
map is therefore unital. Finally, since we have a rank-
two map, of the sixteen eigenvalues of D fourteen are zero
and the remaining two are explicitly found to be 4α > 0
and 4β > 0.2 The Choi matrix is therefore non-negative
and the map is CP. We have thus shown that a suitable
analytic continuation of Ř is a unital CPTP map.

V. KRAUS REPRESENTATION

The previous result implies that Ř can be written in
the Kraus form [31, 35, 36]. Abandoning the formal iden-
tification with the Fermi-Hubbard model, we identify, by
reordering tensor factors,

φαγεη
βδζθ (q+, q−, p) ≡ Řαεγη

βζδθ (λ, µ, u) (23)

with a vectorized quantum map parametrized by three
independent real parameters: the coherent hopping
strengths q± ≡ −i(λ ± µ) ∈ R and the relative weight
of the channels p ≡ α ∈ [0, 1]. Swapping the second and
third tensor-product factors in Eq. (6), φ can be written
in the vectorized Kraus representation,

φ(q+, q−, p) = K− ⊗K∗− +K+ ⊗K∗+, (24)

acting on (local two-site) states as φ[ρ] = K−ρK
†
− +

K+ρK
†
+, with Kraus operators

K− =
√

1− p Ř(iq−), K+ =
√
p Ř(iq+) (σ

z ⊗ ✶2) .
(25)

We see that the Kraus map of Eqs. (24) and (25),
which we dub the Hubbard-Kraus map, describes the
discrete-time dynamics of free fermions (after undoing
the Jordan-Wigner transformation) subjected to local
dephasing.3 Indeed, after a suitable change of basis,

2 The analytic continuation of λ, µ, and u to the imaginary axes
can always be chosen to render α and β positive.

3 Note that, the circuit Ψ does not describe a dissipative Hubbard
model. Ř is used as a mathematical device to build an integrable
circuit which, a priori, is unrelated to the original model. For a
recent study of an exactly-solvable dissipative Hubbard model,
see Ref. [37].

the Ř-matrix (3) with parametrization (4) can be writ-
ten as Ř(iq±) = exp{i gd(q±)HXX}, where HXX =
(σx ⊗ σx + σy ⊗ σy) /2 is the XX-chain Hamiltonian and
gd(q) =

∫ q

0
dx/ coshx is the Gudermannian function. In

the Trotter limit, q± → 0, gd(q±) → q±, and the quan-
tum map (24) describes the quantum stochastic process
in which, at each (discrete) half-time-step, with proba-
bility 1 − p, a fermion hops from the first to the second
site (or vice-versa) with amplitude q−; or, with probabil-
ity p, it hops with amplitude q+; in the latter case, it is
also subject to dephasing when at the first site. We again
emphasize that only the local Kraus maps describe free
dynamics (with dephasing), as the checkerboard pattern
of the circuit makes the full circuit strongly interacting.

VI. BREAKING INTEGRABILITY

A natural way of breaking the integrability of the cir-
cuit is by adding interactions to the local coherent pro-
cesses. This can be achieved by replacing, in Eq. (25),
the XX Ř-matrices by more general XXZ (six-vertex) Ř-
matrices [5, 38], which have the same form of Eq. (3) but
admit a two-parameter trigonometric parametrization,

a = sin(λ+ γ), b = sinλ, c = sin γ, (26)

where γ ∈ (−π, π] is related to the anisotropy parameter
of the XXZ chain and, as before, λ ∈ iR. The XX Ř-
matrix (4) follows from Eq. (26) upon setting γ = π/2.
The resulting Kraus operators (25) have five independent
real parameters p, q±, γ± and the extensive dephasing-
XXZ circuit is built from them exactly as before. Note
that integrability is broken because the Ř-matrix ob-
tained this way from Eqs. (5) and (6) no longer satisfies
the Yang-Baxter equation (7).

Furthermore, while one might be tempted to conjec-
ture the integrability of the quantum map (25) for gen-
eral Ř-matrices at a free-fermion point [39] (i.e., satisfy-
ing a2 = c2 − b2), this turns out not to be correct. One
such model is obtained from the Hubbard-Kraus map by
removing dephasing from the second channel. The re-
sulting quantum map, still of the form (24), is a convex
combination of two unitary free Kraus channels,

K− =
√

1− p Ř(iq−), K+ =
√
p Ř(iq+), (27)

which no longer satisfies the Yang-Baxter equation (7).
We thus arrive at the strong conclusion that even the
simplest local dynamics (i.e., the convex combination of
free unitaries) can lead to nonintegrable quantum cir-
cuits. This result highlights the special, and rather non-
trivial, nature of the construction of the Hubbard-Kraus
circuit above. Below, we will give numerical evidence for
the breaking of integrability in the preceding two exam-
ples (dubbed XXZ circuit and two-free-channel circuit).
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VII. SYMMETRIES AND SPECTRAL

STATISTICS

According to the quantum chaos conjectures [40, 41]
of dissipative systems [30, 42], the statistics of the com-
plex eigenvalues of an integrable circuit are the same
as those of uncorrelated random variables (henceforth,
Poisson statistics), while nonintegrable models follow the
predictions of random matrix theory (RMT), in the cor-
responding symmetry class. The comparison can only
be done once all the (unitary and mutually commuting)
symmetries of the model have been resolved, i.e., separat-
ing sectors with a fixed set of eigenvalues of the unitary
symmetries.4

Let us describe the unitary symmetries of our circuits
(see Appendix A for details). Because of the structure
of the quantum circuit (1), all the considered models are
invariant under translation by two sites (

[

Ψ,T2
]

= 0)
and, therefore, have L/2 sectors of conserved quasi-
momentum k ∈ {0, 1, . . . , L/2− 1}.

Furthermore, the circuits are invariant under simul-
taneous space translation by one site (half a unit cell)
and temporal translation by one circuit layer (half a time
step), which can be encoded in the commutation relation
[

TΦ,T†Φ
]

= 0. For a sector of fixed quasi-momentum k,

(Ψ)k = e−4πik/L(TΦ)2k, where (A)k ≡ PkAPk and Pk are
orthogonal momentum-projection operators:

Pk =
2

L

L/2−1
∑

n=0

T
2n exp

{

−2πi
kn

L/2

}

. (28)

Therefore, resolving the space-time symmetry of Ψ
amounts to examining the spectral statistics of (TΦ)k.

Besides the kinematic symmetries of the circuit, the
XX and XXZ Ř-matrices display conservation of (total)
magnetization in each (bra and ket) copy of the system
independently.5 Accordingly, the quantum map Φ splits
into (L + 1)2 sectors, each of dimension N =

(

L
M↑

)(

L
M↓

)

,

where M↑ and M↓ denote the total magnetization in the
two copies.

Once inside a fixed sector of the unitary symmetries,
the symmetry class to which each circuit belongs is de-
termined by its behavior under transposition (which can
be understood as non-Hermitian time reversal) instead
of complex conjugation [43, 44]. Transposition symme-
try imposes local correlations and completely determines
the short-distance spectral statistics [43, 45]. We argue
in Appendix B that both the Hubbard-Kraus and two-
free-channel circuits admit a transposition symmetry; the
latter—being nonintegrable—has, therefore, the same

4 Otherwise, levels from different symmetry sectors overlap with-
out interacting and one obtains apparent Poisson statistics re-
gardless of the actual statistics.

5 This also restricts the allowed incoherent processes to dephasing,
which is the case in all our models.

Figure 1. (a)–(c): CSR distributions obtained from sampling
105 uncorrelated random variables (Poisson spectrum) (a) or
exact diagonalization of 104 × 104 random matrices from the
GinOE (b) or class AI† (c) [104 realizations superimposed in
(b) and (c)]. (d)–(f): CSR distributions of (a single realiza-
tion of) the operator (TΦ)k for the Hubbard-Kraus (d), XXZ
(e), and two-free-channel (f) circuits. The eigenvalues were
obtained by exact diagonalization in sectors of fixed L = 12,
M↑ = 4, M↓ = 3, and k = 0, 1, 2—leading to three sectors of
fixed quasi-momentum k with 18150 eigenvalues each, the ra-
tios of which were then superimposed. The numerical param-
eters were chosen as follows: q+ = −0.2, q− = 0.6, p = 0.55
(for all three circuits) and γ+ = γ− = 1 (for the XXZ cir-
cuit). (g)–(i): 〈r〉 versus 〈− cos θ〉 plots for the (g) Hubbard-
Kraus, (h) XXZ, and (i) two-free-channel circuits, obtained
by randomly sampling (40 samples) p, q±, and γ±, for differ-
ent L, M↑, and M↓ and fixed k = 1. Larger, black-rimmed
dots mark the average (center of mass) for each symmetry
sector. The points accumulate around the Poisson (2/3, 0),
AI† (0.722, 0.188), and GinOE (0.738, 0.241) points or spread
over the line between them.

spectral statistics as matrices from class AI† [30, 43, 46]
(complex symmetric random matrices with Gaussian en-
tries). In contrast, the XXZ circuit breaks transposition
symmetry and has, therefore, the same spectral statistics
as matrices from the Ginibre Orthogonal Ensemble (Gi-
nOE, real asymmetric random matrices with Gaussian
entries).6

6 Because matrices from the Ginibre Orthogonal Ensemble (Gi-
nOE) and Ginibre Unitary Ensemble (GinUE) differ by their
behavior under complex conjugation and not transposition, they
share the same spectral correlations. For this reason, the large-
N results presented for the GinUE in Ref. [30] carry over to the
GinOE.
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VIII. NUMERICAL RESULTS

To probe the statistics of the dissipative quantum cir-
cuits, we consider the complex spacing ratios (CSRs) [30]
of the eigenvalues of the operator (TΦ)k. We denote the
set of eigenvalues by {Λj} and, for each Λj , we find its
nearest neighbor, ΛNN

j , and its next-to-nearest neigh-

bor, ΛNNN
j . The CSRs are defined by zj = (ΛNN

j −
Λj)/(Λ

NNN
j − Λj). In the thermodynamic limit, the

probability distribution of zj is flat on the unit disk for
Poisson statistics; for non-Hermitian random matrices,
it has a characteristic C-shape (an analytic surmise is
given in Ref. [30]), see Figs. 1(a)–1(c). In Figs. 1(d)–1(f)
we plot the CSR distribution of (TΦ)k for, respectively,
the Hubbard-Kraus, XXZ, and two-free-channel circuits
(eigenvalues obtained from exact diagonalization). The
flat distribution of the integrable Hubbard-Kraus circuit
(d) and the C-shaped distribution of the chaotic XXZ
(e) and two-unitary-channel (f) circuits are clearly visi-
ble. In the latter two cases, the CSR distribution also
allows us to distinguish the different symmetry classes to
which the circuits belong.

To provide a more quantitative measure of spectral
chaoticity, we express the CSR in polar coordinates,
z = r exp{iθ}, and characterize its distribution by two
numbers, namely, the mean ratio 〈r〉, measuring the de-
gree of radial level repulsion, and the angular correla-
tion 〈− cos θ〉. A Monte Carlo sampling over the quan-
tum circuits with varying model parameters then yields
an 〈r〉 versus 〈− cos θ〉 scatter plot, which can again be
compared with the results for Poisson random variables
and GinOE and AI† matrices. Details on the numerical
procedure can be found in Appendix C. Figures 1(g)–
1(i) show the 〈r〉 versus 〈− cos θ〉 plots for the Hubbard-
Kraus, XXZ, and two-free-channel circuits, respectively.
For the Hubbard-Kraus circuit (g), which is integrable
by construction, we obtain a high concentration of points
around the Poisson point, even for modest system sizes.
For the chaotic XXZ circuit (h) of the same system sizes,
while points spread over the line connecting the Pois-
son and GinOE points, there is now a high accumulation
of data around the GinOE point, signaling integrability
breaking. Note that the center-of-mass values are flow-
ing to the GinOE point as sector dimension increases.
Finally, the two-free-channel circuit (i) displays the same
qualitative integrability-breaking behavior as the XXZ
circuit and, for the largest system sizes, has reached the
AI† point.

IX. CONCLUSIONS

Let us summarize the two key findings of this paper,
addressing the critical question we posed at the start,
namely, if integrability methods can be extended to the
realm of dissipative quantum circuits. First, we answered
it in the positive, by showing that Shastry’s celebrated Ř-

matrix of the Fermi-Hubbard model can be interpreted
as a unital CPTP map of a pair of qubits (spins 1/2),
for imaginary values of interaction and spectral param-
eters. By consequence of the Yang-Baxter equation,
this implies integrability of the brickwork open circuit
built from such nonunitary two-qubit maps. This result
opens a new avenue for studying general integrable open
(driven/dissipative) quantum Floquet circuits. For ex-
ample, our result straightforwardly generalizes to SU(d)
open qudit circuits using Maassarani’s Ř-matrix [28].
Second, our construction shows that building integrable
dissipative circuits is highly nontrivial, in the sense that
deformations of the Hubbard-Kraus circuit (even convex
combinations of local free-fermion unitaries) are noninte-
grable.

Finally, we note that for a real interaction parameter
u ∈ R the staggered transfer matrix (11) generates a uni-

tary Floquet circuit (12) for a 2 × L spin ladder which
represents an integrable trotterization of the Hermitian
Fermi-Hubbard model by taking λ = iτ , µ = 0, where
τ ∈ R is the time step. This remarkable side result par-
allels the result [23] for the Heisenberg chain.
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APPENDIX A: KRAUS REPRESENTATION AND

UNITARY SYMMETRIES OF THE EXTENSIVE

BRICKWORK CIRCUIT

In this Appendix, we recast the extensive circuit into
the Kraus representation and use it to give a more de-
tailed exposition of the unitary symmetries (kinematic
and dynamical) of the various Kraus circuits discussed
in the paper.

Kraus representation of the extensive circuit

To build the extensive quantum circuit of length L out
of the elementary two-site building blocks in the Kraus
representation, we define a row Kraus operator Fν by
tensoring L/2 copies of the elementary Kraus operators

K±, Fν =
⊗L/2

j=1 Kν2j
. Here, ν = (ν2, ν4, . . . , νL) is a

multi-index with all two-site indices, ν2j = ±, and Kν2j

is a Kraus operator coupling sites 2j − 1 and 2j. The
quantum map corresponding to the entire row is then Φ =
Ř⊗L/2 =

∑

ν Fν ⊗ F ∗ν (where tensor-product factors are
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reordered such that all second-copy degrees of freedom
come after the first copy). The second row of the circuit
is again obtained by translation by one site, T†ΦT. Then,
one complete time step is given by

Ψ = T
†ΦTΦ (A1)

=
∑

ν

(A2)

where the superimposed layers represent the two copies
of the system—red gates act on the ket of the density
matrix while complex conjugate blue gates act on the
bra.

Translational invariance

The two-site translation invariance of the circuit (A2),
[

Ψ,T2
]

= 0, leads to the conservation of quasi-

momentum. Since T
L = ✶, the eigenvalues of T are

exp{2πi(k/L)}, with k = 0, 1, . . . , L − 1. Then, the
translational-invariant Kraus circuit with L sites (L
even) has L/2 sectors of conserved quasi-momentum
k ∈ {0, 1, . . . , L/2 − 1}. Note that each row Kraus op-
erator Fν is not translationally invariant, only their sum
is, and hence there is no conservation of momentum in
each bra/ket copy individually. To project states into
sectors of fixed k, we use the orthogonal projection oper-
ators (28).

Magnetization conservation

The XX and XXZ Ř-matrices display conservation of
(total) magnetization (or particle-number in a fermion
picture) in each copy of the system independently. In
these conditions, for a given copy of the system, each row
Kraus operator Fν splits into L+1 sectors of total mag-
netization Sz = M , where Sz acts on the computational-

basis states as Sz |s1, . . . , sL〉 =
∑L

j=1 sj |s1, . . . , sL〉.
Each sector M has dimension

(

L
M

)

. Accordingly, the

quantum map Φ splits into (L + 1)2 sectors, each of di-

mension N =
(

L
M↑

)(

L
M↓

)

(here M↑ and M↓ denote the

magnetization in the two copies). We restrict ourselves to
sectors with M↑,↓ 6= L/2 to avoid an additional Z2 spin-
flip (particle-hole) symmetry. Finally, there is another
Z2 symmetry connecting the two copies of the system;
we also avoid this symmetry by considering only sectors
with M↑ 6= M↓.

APPENDIX B: TRANSPOSITION-SYMMETRY

CLASSES

In this Appendix, we elaborate on the symmetry clas-
sification of general non-Hermitian matrices and CPTP

generators, in particular in terms of the transposition
symmetry. We also argue for the presence (absence) of
transposition symmetry in the Hubbard-Kraus and two-
free-channel (XXZ) circuits.

Symmetry classification of non-Hermitian matrices

and CPTP generators

The symmetry class to which each circuit belongs is
determined by its antiunitary (and anticommuting uni-
tary) symmetries. While there are 38 symmetry classes
of non-Hermitian matrices [46–48]—dictated by the be-
havior under sign inversion, complex conjugation, trans-
position, and Hermitian conjugation—considering only
the generators of CPTP dynamics restricts the allowed
symmetry classes back to ten [44, 49], which are in one-to-
one correspondence with the Altland-Zirnbauer [50, 51]
classes of closed quantum systems. Indeed, for a genuine
quantum channel Ψ, its Hermiticity-preserving property
guarantees the existence of a symmetry Ψ = SΨ∗S† for
some unitary S, while complete positivity forbids the ex-
istence of a symmetry Ψ = −SΨ⊤S† or Ψ = −SΨS†. Of
the remaining three types of symmetries, only transpo-
sition symmetry (i.e., the existence of a unitary T such
that Ψ = TΨ⊤T † with TT ∗ = ±1) imposes local cor-
relations and, hence, completely determines the short-
distance spectral statistics [43, 45]. So, while there are
ten remaining symmetry classes, only three different uni-
versal statistics exist, differing by the amount of level
repulsion. In the absence of transposition symmetry, the
generator is represented by a general real asymmetric
matrix and shares spectral statistics with random ma-
trices from the GinOE. If there is a unitary T satisfying
TT ∗ = +1, then the generator shares the spectral statis-
tics with the complex symmetric matrices from class AI†.

Transposition symmetry of the Kraus circuits

We now analyze the behavior of the three circuits con-
sidered in the paper under transposition. We start by
showing that it suffices to consider the properties of el-
ementary two-site quantum maps. Taking the transpose
of the circuit we find Ψ⊤ = Φ⊤T⊤Φ⊤T∗ = Φ⊤T†Φ⊤T.
We want to bring it back to Ψ by a unitary transforma-
tion that satisfies the symmetries of the model. These
include translations (necessary to bring the circuit back
to the correct order of applying first gates as odd-even
bonds followed by even-odd bonds) and, possibly, local
4 × 4 unitaries in each local Hilbert space (local gauge
transformations). The procedure is depicted pictorially
in Fig. 2.

We conclude that the circuit satisfies the transposition
symmetry Ψ = TΨ⊤T † if the local quantum maps φ sat-



8

Figure 2. Schematic representation of the steps involved in determining whether there exists a transposition symmetry of the
circuit. Gray gates represent local quantum maps φ, while orange and magenta filled circles depict local unitaries v−, v+ ∈ SU(4),
respectively, and empty circles their inverses. Transposition is signaled by the flip of the wedge in the corner of the local maps.
To respect the kinematical symmetries of the circuit, the allowed unitary transformations are one-site translations and the local
unitaries v±.

isfy

φ = = (v− ⊗ v+)φ
⊤(v†+ ⊗ v†−), (B1)

for some v−, v+ ∈ SU(4) respecting the dynamical sym-
metries of the circuits (i.e., magnetization conservation).
Moreover, from Eq. (24), we see that the behavior under
transposition of φ is fully determined by the behavior of
the Kraus operators K± of each circuit (since tensoring
and transposing commute). It thus suffices to analyze
the behavior of the Kraus operators under transposition.

Two-free-channel circuit

The local quantum map φ is a convex combination of a
pair of unitary channels, whose Kraus operators are given
in Eq. (27). The transposition symmetry is evident from

Eq. (3) after a unitary change of basis by conjugation
with V = diag(1, exp{iπ/4}, exp{−iπ/4}, 1)—which cor-
responds to the choice of gauge v− = v∗+ = V in Eq. (B1).
Writing out the Kraus operators explicitly (we omit all
zero entries) in the new basis,

K±(λ±) =







cosλ±
1 sinλ±

sinλ± 1
cosλ±






, (B2)

we see that they are complex symmetric, where we de-
fined the spectral parameters λ± ≡ λ±µ ∈ iR (related to
the hopping amplitudes q± by multiplication by i). (The
normalization of the Ř-matrix is irrelevant for the pur-
pose of this appendix and will be dropped throughout.)
It follows that, in this basis, φ(λ−, λ+) = φ⊤(λ−, λ+),
and the circuit enjoys a transposition symmetry.

Hubbard-Kraus circuit

Although the Hubbard-Kraus circuit is integrable and, therefore, exhibits Poisson spectral statistics, it is instructive
to determine its symmetry class to provide contrast to the XXZ circuit case discussed below. The Kraus operators
(25) read as

K−(λ−) =







cosλ−
1 −i sinλ−

i sinλ− 1
cosλ−






and K+(λ+) =







cosλ+

1 i sinλ+

i sinλ+ −1
− cosλ+






. (B3)

While both Kraus operators cannot be symmetrized simultaneously by a change of basis as before, they still satisfy

K⊤− (λ−) = K−(−λ−) = K−(λ
∗
−) and K⊤+ (λ+) = K+(λ+). (B4)

It follows that φ(λ−, λ+) = φ⊤(λ∗−, λ+). For nonintegrable cases, generalizing the local Hubbard-Kraus map to more
than two Kraus operators of the form (25), we have made the empirical observation that the equality of the Kraus
operators and their transposes up to complex conjugation of the imaginary spectral parameters is enough to guarantee
the convergence of their spectral statistics to those of the AI† class. This condition is fulfilled by the Hubbard-Kraus
map.
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XXZ circuit

By introducing interactions into the coherent dynamics, i.e., by considering Kraus operators

K−(λ−) =







sin(γ− + λ−)
sin γ− −i sinλ−
i sinλ− sin γ−

sin(γ− + λ−)






and

K+(λ+) =







sin(γ+ + λ+)
sin γ+ i sinλ+

i sinλ+ − sin γ+
− sin(γ+ + λ+)






,

(B5)

it follows that neither can both Kraus operators be simultaneously symmetrized nor do they satisfy Eq. (B4). Hence,
the XXZ circuit does not enjoy a transposition symmetry.

APPENDIX C: DETAILS ON THE NUMERICAL

ANALYSIS

In this Appendix, we discuss in more detail the random
sampling of the circuits and the numerical analysis of
CSRs.

To obtain the scatter plots of Figs. 1(g)–1(i), we ex-
press the CSR in polar coordinates and characterize its
distributions with two numbers (the mean ratio 〈r〉 and
the angular correlation 〈− cos θ〉).

For each model, we randomly sample the two inde-
pendent hopping parameters q± from a standard nor-
mal distribution (i.e., zero mean, unit variance), the
channels’ relative weight p from a uniform distribu-
tion on [0, 1], and, in the case of the XXZ circuit, the
anisotropy parameters γ± from a uniform distribution
on (−π, π]. For a fixed random realization of the pa-
rameters, we exactly diagonalize the quantum circuit for
four different system sizes and conserved magnetization
sectors—(L,M↑,M↓)=(12, 3, 2), (10, 4, 3), (14, 4, 2), and
(12, 4, 2), corresponding to sector sizes N=2420, 5040,
13013 and 18150, respectively—and compute the pairs
(〈r〉 , 〈− cos θ〉). A Monte Carlo sampling of the quantum
circuits then yields a 〈r〉 versus 〈− cos θ〉 scatter plot.

There are three special points: For a set of un-
correlated (Poisson) random variables we have exactly

(〈r〉 , 〈− cos θ〉) = (2/3, 0), while for random matrices
from the GinOE and class AI† we have (〈r〉 , 〈− cos θ〉) ≈
(0.738, 0.241) and (〈r〉 , 〈− cos θ〉) ≈ (0.722, 0.188), re-
spectively [30]. When approaching the thermodynamic
limit, we expect that the points obtained by sampling an
integrable circuit concentrate around the Poisson point,
while they accumulate around the RMT point of the re-
spective symmetry class when sampling from a noninte-
grable model. For finite system sizes L, the points spread
over the line connecting the two fixed points and one tries
to determine to which one of them the scatter points
are flowing as L increases. This last step may be diffi-
cult to perform if only small system sizes are available
and/or finite-size effects are pronounced. Moreover, the
flow may be nonmonotonic; for instance, it may depend
more strongly on the system length L than on the mag-
netization sectors M , or sectors with different parity of
M may flow differently.

Finally, there are deviations from the pattern described
above if the spectrum is close to one-dimensional, for in-
stance, if the quantum map is very close to being unitary
(which happens when p is very close to either 0 or 1).
For this reason, we have only considered quantum cir-
cuits for which |zmax| − |zmin| > 0.2, where zmax(min) are
the eigenvalues of TΦ—in the the appropriate symmetry
sector—with largest (smallest) absolute value.
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