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INTEGRABLE SOLUTIONS FOR IMPLICIT

FRACTIONAL ORDER FUNCTIONAL DIFFERENTIAL

EQUATIONS WITH INFINITE DELAY

Mouffak Benchohra and Mohammed Said Souid

Abstract. In this paper we study the existence of integrable solutions
for initial value problem for implicit fractional order functional differential
equations with infinite delay. Our results are based on Schauder type fixed
point theorem and the Banach contraction principle fixed point theorem.

1. Introduction

Differential equations of fractional order have recently proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications of differential equations of fractional
order in viscoelasticity, electrochemistry, control, porous media, electromagnetic,
etc. (see [5, 15, 20, 21, 24]). There has been a significant development in ordinary
and partial fractional differential equations in recent years; see the monographs of
Abbas et al. [1, 2], Kilbas et al. [18], Lakshmikantham et al. [19], and the papers
by Agarwal et al. [3, 4], Belarbi et al. [6], Benchohra et al. [7, 8, 9], El-Sayed and
Abd El-Salam [11], and the references therein.

To our knowledge, the literature on integrable solutions for fractional differential
equations is very limited. El-Sayed and Hashem [12] studies the existence of
integrable and continuous solutions for quadratic integral equations. El-Sayed
and Abd El Salam considered Lp-solutions for a weighted Cauchy problem for
differential equations involving the Riemann-Liouville fractional derivative.

Motivated by the above papers, in this paper we deal with the existence of
solutions for initial value problem (IVP for short), for implicit fractional order
functional differential equations with infinite delay

cDαy(t) = f(t, yt,
cDαyt) , t ∈ J := [0, b](1)

y(t) = φ(t) , t ∈ (−∞, 0],(2)
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where cDα is the Caputo fractional derivative, and f : J × B × B → R is a given
function satisfying some assumptions that will be specified later, and B is called a
phase space that will be defined later (see Section 2). For any function y defined on
(−∞, b] and any t ∈ J , we denote by yt the element of B defined by yt(θ) = y(t+θ),
θ ∈ (−∞, 0]. Here yt(·) represents the history of the state up to the present time t.

In the literature devoted to equations with finite delay, the state space is usually
the space of all continuous function on [−r, 0], r > 0 and α = 1 endowed with the
uniform norm topology; see the book of Hale and Lunel [14]. When the delay is
infinite, the selection of the state B (i.e. phase space) plays an important role in
the study of both qualitative and quantitative theory for functional differential
equations. A usual choice is a seminormed space satisfying suitable axioms, which
was introduced by Hale and Kato [13] (see also Kappel and Schappacher [17] and
Schumacher [23]). For a detailed discussion on this topic we refer the reader to the
book by Hino et al. [16].

This paper is organized as follows. In Section 2, we will recall briefly some
basic definitions and preliminary facts which will be used throughout the following
section. In Section 3, we give two results, the first one is based on the Banach
contraction principle (Theorem 3.1) and the second one on Schauder type fixed
point theorem (Theorem 3.2). An example is given in Section 4 to demonstrate the
application of our main results. These results can be considered as a contribution
to this emerging field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper.

By C(J,R) we denote the Banach space of all continuous functions from J into
R with the norm

‖y‖∞ := sup{|y(t)| : t ∈ J} ,

where | · | denotes a suitable complete norm on R.
Let L1(J,R) denotes the class of Lebesgue integrable functions on the interval

J , with the norm

‖u‖L1
=

∫ b

0

|u(t)| dt .

Definition 2.1 ([18, 22]). The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s) ds ,

where Γ(·) is the gamma function. When a = 0, we write Iαh(t) = h(t) ∗ ϕα(t),

where ϕα(t) = tα−1

Γ(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0,

where δ is the delta function.
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Definition 2.2 ([18]). The Caputo fractional derivative of order α > 0 of function
h ∈ L1([a, b],R+) is given by

(cDαa+h)(t) =
1

Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s) ds ,

where n = [α] + 1. If α ∈ (0, 1], then

(cDαa+h)(t) = I1−αa+
d

dt
h(t) =

∫ t

a

(t− s)−α

Γ(1− α)

d

ds
h(s) ds .

The following properties are some of the main ones of the fractional derivatives
and integrals.

Proposition 2.1. [18] Let α, β > 0. Then we have

(i) Iα : L1(J,R+)→ L1(J,R+), and if f ∈ L1(J,R+), then

IαIβf(t) = IβIαf(t) = Iα+βf(t) .

(ii) If f ∈ Lp(J,R+), 1 ≤ p ≤ +∞, then ‖Iαf‖Lp ≤
bα

Γ(α+1)‖f‖Lp .

(iii) The fractional integration operator Iα is linear.

The following theorems will be needed.

Theorem 2.1 (Schauder fixed point theorem [10]). Let E a Banach space

and Q be a convex subset of E and T : Q → Q is compact, and continuous map.

Then T has at least one fixed point in Q.

Theorem 2.2 (Kolmogorov compactness criterion [10]). Let Ω ⊆ Lp(J,R),
1 ≤ p ≤ ∞. If

(i) Ω is bounded in Lp(J,R), and

(ii) uh → u as h→ 0 uniformly with respect to u ∈ Ω,

then Ω is relatively compact in Lp(J,R), where

uh(t) =
1

h

∫ t+h

t

u(s) ds .

In this paper, we assume that the state space (B, ‖ · ‖B) is a seminormed linear
space of functions mapping (−∞, 0] into R, and satisfying the following fundamental
axioms which were introduced by Hale and Kato in [13].

(A1) If y : (−∞, b]→ R, and y0 ∈ B, then for every t ∈ J the following conditions
hold:

(i) yt is in B

(ii) ‖yt‖B ≤ K(t)
∫ t

0
|y(s)|ds+M(t)‖y0‖B,

(iii) |y(t)| ≤ H‖yt‖B, where H ≥ 0 is a constant, K : J → [0,∞) is
continuous, M : [0,∞)→ [0,∞) is locally bounded and H, K, M , are
independent of y(·).

(A2) For the function y(·) in (A1), yt is a B-valued continuous function on J .

(A3) The space B is complete.
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3. Existence of solutions

Let us start by defining what we mean by an integrable solution of the problem
(1)− (2).
Let the space

Ω = {y : (−∞, b]→ R : y|(−∞,0] ∈ B and y|J ∈ L
1(J)} .

Definition 3.1. A function y ∈ Ω is said to be a solution of IVP (1)–(2) if y
satisfies (1) and (2).

For the existence of solutions for the problem (1)–(2), we need the following
auxiliary lemma.

Lemma 3.1. The solution of the IVP (1)–(2) can be expressed by the integral

equation

y(t) = φ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1x(s) ds , t ∈ J ,(3)

y(t) = φ(t) , t ∈ (−∞, 0] ,(4)

where x is the solution of the functional integral equation

(5) x(t) = f
(

t, φ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1xs ds, xt

)

.

Proof. Let y be solution of (3)–(4), then for t ∈ J and t ∈ (−∞, 0], we have (1)
and (2), respectively. �

To present the main result, let us introduce the following assumptions:

(H1) f : J×B2 → R is measurable in t ∈ J , for any (u1, u2) ∈ B2 and continuous
in (u1, u2) ∈ B2, for almost all t ∈ J .

(H2) There exist constants k1, k2 > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ k1‖x1 − x2‖B + k2‖y1 − y2‖B ,

for t ∈ J , and every x1, x2, y1, y2 ∈ B.

Our first existence result for the IVP (1)–(2) is based on the Banach contraction
principle. Set

Kb = sup{|K(t)| : t ∈ J} .

Theorem 3.1. Assume that the assumptions (H1)-(H2) are satisfied. If

(6)
k1Kbb

2α

Γ(2α+ 1)
+
k2Kbb

α

Γ(α+ 1)
< 1 ,

then the IVP (1)–(2) has a unique solution on the interval (−∞, b].

Proof. Transform the problem (1)–(2) into a fixed point problem. Consider the
operator N : Ω→ Ω defined by:

(Ny)(t) =

{

φ(t) , t ∈ (−∞, 0] ;
1

Γ(α)

∫ t

0
(t− s)α−1f(s, Iαys, ys) ds , t ∈ J .
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We shall use the Banach contraction principle to prove that N has a fixed point.
Let x(·) : (−∞, b]→ R be the function defined by

x(t) =

{

0 , if t ∈ J ;

φ(t) , if t ∈ (−∞, 0] .

Then x0 = φ. For each z ∈ L1(J,R), with z(0) = 0, we denote by z the function
defined by

z(t) =

{

z(t) , if t ∈ J ;

0 , if t ∈ (−∞, 0] .

if y(·) satisfies the integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Iαys, ys) ds ,

we can decompose y(·) as y(t) = z(t) + x(t), 0 ≤ t ≤ b, which implies yt = zt + xt,
for every 0 ≤ t ≤ b, and the function z(·) satisfies

z(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Iα(zs + xs), zs + xs) ds .

Set

L0 = {z ∈ L1(J,R) : z0 = 0} ,

and let ‖ · ‖b be the seminorm in L0 defined by

‖z‖b = ‖z0‖B +

∫ b

0

|z(t)| dt =

∫ b

0

|z(t)| dt , z ∈ L0 .

L0 is a Banach space with norm ‖ · ‖b. Let the operator P : L0 → L0 be defined by

(7) (Pz)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, Iα(zs + xs), zs + xs) ds , t ∈ J ,

That the operator N has a fixed point is equivalent to P has a fixed point, and so
we turn to proving that P has a fixed point. We shall show that P : L0 → L0 is a
contraction map. Indeed, consider z, z∗ ∈ L0. Then we have for each t ∈ J

|P (z)(t)− P (z∗)(t)|

≤
1

Γ(α)

∫ t

0

(t−s)α−1|f(s, Iα(zs+xs), zs+xs)−f(s, I
α(z∗s+xs), z

∗
s+xs)| ds

≤
1

Γ(α)

∫ t

0

(t− s)α−1[k1‖I
α(zs − z

∗
s)‖B + k2‖zs − z

∗
s‖B] ds

≤
1

Γ(α)

∫ t

0

(t− s)α−1Kb [k1‖I
α(z(s)− z∗(s))‖+ k2‖z(s)− z

∗(s)‖] ds

≤
( k1Kbb

2α

Γ(2α+ 1)
+
k2b
α

Γ(α+ 1)

)

‖z − z∗‖b .
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Therefore

‖P (z)− P (z∗)‖b ≤
( k1Kbb

2α

Γ(2α+ 1)
+
k2Kbb

α

Γ(α+ 1)

)

‖z − z∗‖b .

Consequently by (6) P is a contraction. As a consequence of the Banach contraction
principle, we deduce that P has a unique fixed point which is a solution of the
problem (1)–(2). �

The following result is based on Schauder fixed point theorem.

Theorem 3.2. Assume that (H1) and the following condition hold.

(H3) There exist a positive function a ∈ L1(J) and constants, qi > 0; i = 1, 2
such that:

|f(t, u1, u2)| ≤ |a(t)|+ q1‖u1‖B + q2‖u2‖B , ∀ (t, u1, u2) ∈ J × R
2 .

If

(8) Kb

(

q1b
2α

Γ(2α+ 1)
+
q2b
α

Γ(α+ 1)

)

< 1 ,

then the IVP (1)–(2) has at least one solution y ∈ L1(J,R).

Proof. Let P : L0 → L0 be defined as in(7), and

r =

bα‖a‖L1

Γ(α+1) +Mb‖φ‖B( q1b
2α

Γ(2α+1) + q2b
α

Γ(α+1) )

1−Kb(
q1b2α

Γ(2α+1) + q2bα

Γ(α+1) )
,

where Mb = sup{|M(t)| : t ∈ J}, and consider the set

Br := {z ∈ L0, ‖z‖b ≤ r} .

Clearly Br is nonempty, bounded, convex and closed. We shall show that the
operator P satisfies the assumptions of Schauder fixed point theorem. The proof
will be given in three steps.

Step 1: P is continuous.
Let zn be a sequence such that zn → z in L0. Then

|(Pzn)(t)− (Pz)(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, Iα(zns + xs), zns + xs)

− f(s, Iα(zs + xs), zs + xs)| ds

Since f is a continuous function, we have

‖P (zn)− P (z)‖b

≤
bα

Γ(α+ 1)
‖f(·, Iα(zn(·)

+ x(·), zn(·)
) + x(·))

− f(·, Iα(z(·) + x(·)), z(·) + x(·))‖L1
→ 0

as n→∞ .
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Step 2: P maps Br into itself.
Let z ∈ Br. Since f is a continuous functions, we have for each t ∈ [0, b]

|(Pz)(t)| ≤
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, Iα(zs + xs), zs + xs)| ds

≤
1

Γ(α)

∫ t

0

(t− s)α−1[a(t)|+ q1‖I
α(zs + xs)‖B + q2‖zs + xs‖B] ds

≤
bα‖a‖L1

Γ(α+ 1)
+
( q1b

2α

Γ(2α+ 1)
+
q2b
α

Γ(α+ 1)

)

(Kbr +Mb‖φ‖B) ,

where

‖zs + xs‖B ≤ ‖zs‖B + ‖xs‖B .

Hence ‖(Pz)‖L1 ≤ r. Then PBr ⊂ Br.

Step 3: P is compact.
We will show that P is compact, this is PBr is relatively compact. Clearly PBr

is bounded in L0, i.e. condition (i) of Kolmogorov compactness criterion is satisfied.
It remains to show (Pz)h → (Pz), in L0 for each z ∈ Br.
Let z ∈ Br, then we have

‖(Pz)h − (Pz)‖L1

=

∫ b

0

|(Pz)h(t)− (Pz)(t)| dt

=

∫ b

0

∣

∣

∣

1

h

∫ t+h

t

(Pz)(s)ds− (Pz)(t)
∣

∣

∣
dt

≤

∫ b

0

( 1

h

∫ t+h

t

|(Pz)(s)− (Pz)(t)| ds
)

dt

≤

∫ b

0

1

h

∫ t+h

t

|Iαf (s, zs + xs), zs + xs)− I
αf (t, Iα(zt + xt), zt + xt) | ds dt .

Since z ∈ Br ⊂ L0 and assumption (H3) that implies f ∈ L0 and by Proposition
2.1, it follows that Iαf ∈ L1(J,R), then we have

(9)
1

h

∫ t+h

t

∣

∣Iαf ((zs + xs), zs + xs)− I
αf (t, Iα(zt + xt), zt + xt)

∣

∣ ds→ 0

as h→ 0 , t ∈ J .

Hence

(Pz)h → (Pz) uniformly as h→ 0 .

Then by Kolmogorov compactness criterion, PBr is relatively compact. As a
consequence of Schauder’s fixed point theorem the IVP (1)–(2) has at least one
solution in Br. �
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4. Example

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional initial value problem,

cDαy(t) =
ce−γt+t

(et + e−t)(1 + ‖yt‖+ ‖cDαyt‖)
, t ∈ J := [0, b] , α ∈ (0, 1] ,(10)

y(t) = φ(t) , t ∈ (−∞, 0] ,(11)

where c > 1 is fixed. Let γ be a positive real constant and

Bγ = {y ∈ L1(−∞, 0] : lim
θ→−∞

eγθy(θ), exists in R} .

The norm of Bγ is given by

‖y‖γ =

∫ 0

−∞

eγθ|y(θ)| dθ .

Let y : (−∞, b]→ R be such that y0 ∈ Bγ . Then

lim
θ→−∞

eγθyt(θ) = lim
θ→−∞

eγθy(t+ θ) = lim
θ→−∞

eγ(θ−t)y(θ)

= eγt lim
θ→−∞

eγθy0(θ) <∞.

Hence yt ∈ Bγ . Finally we prove that

‖yt‖γ ≤ K(t)

∫ t

0

|y(s)| ds+M(t)‖y0‖γ ,

where K =M = 1 and H = 1. We have

|yt(θ)| = |y(t+ θ)| .

If θ + t ≤ 0, we get

|yt(θ)| ≤

∫ 0

−∞

|y(s)| ds .

For t+ θ ≥ 0, then we have

|yt(θ)| ≤

∫ t

0

|y(s)| ds .

Thus for all t+ θ ∈ J , we get

|yt(θ)| ≤

∫ 0

−∞

|y(s)| ds+

∫ t

0

|y(s)| ds .

Then

‖yt‖γ ≤ ‖y0‖γ +

∫ t

0

|y(s)| ds .
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It is clear that (Bγ , ‖ · ‖) is a Banach space. We can conclude that Bγ is a phase
space. Set

f(t, y, z) =
e−γt+t

c(et + e−t)(1 + y + z)
, (t, x, z) ∈ J ×Bγ ×Bγ .

For t ∈ J , y1, y2, z1, z2 ∈ Bγ , we have

|f(t, y1, z1)− f(t, y2, z2)| =
e−γt+t

c(et + e−t)

∣

∣

∣

1

1 + y1 + z1
−

1

1 + y2 + z2

∣

∣

∣

=
e−γt+t(|y1 − y2|+ |z1 − z2|)

c(et + e−t)(1 + y1 + z1)(1 + y2 + z2)

≤
e−γt × et(|y1 − y2|+ |z1 − z2|)

c(et + e−t)

≤
e−γt(‖y1 − y2‖γ + ‖z1 − z2‖γ)

c

≤
1

c
‖y1 − y2‖γ +

1

c
‖z1 − z2‖γ .

Hence the condition (H2) holds. We choose b such that Kbb
2α

cΓ(2α+1) + Kbb
α

cΓ(α+1) < 1.

Since Kb = 1, then

b2α

cΓ(2α+ 1)
+

bα

cΓ(α+ 1)
< 1 .

Then by Theorem 3.1, the problem (10)–(11) has a unique integrable solution on
[−∞, b].

Acknowledgement. We are grateful to the referee for the careful reading of the
paper.
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